| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > salincl | Structured version Visualization version GIF version | ||
| Description: The intersection of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| salincl | ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ 𝐹) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2730 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ 𝐹) = (𝐸 ∩ 𝐹)) | |
| 2 | inss1 4190 | . . . . . . . 8 ⊢ (𝐸 ∩ 𝐹) ⊆ 𝐸 | |
| 3 | 2 | a1i 11 | . . . . . . 7 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (𝐸 ∩ 𝐹) ⊆ 𝐸) |
| 4 | elssuni 4891 | . . . . . . . 8 ⊢ (𝐸 ∈ 𝑆 → 𝐸 ⊆ ∪ 𝑆) | |
| 5 | 4 | adantl 481 | . . . . . . 7 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → 𝐸 ⊆ ∪ 𝑆) |
| 6 | 3, 5 | sstrd 3948 | . . . . . 6 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (𝐸 ∩ 𝐹) ⊆ ∪ 𝑆) |
| 7 | dfss4 4222 | . . . . . 6 ⊢ ((𝐸 ∩ 𝐹) ⊆ ∪ 𝑆 ↔ (∪ 𝑆 ∖ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹))) = (𝐸 ∩ 𝐹)) | |
| 8 | 6, 7 | sylib 218 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (∪ 𝑆 ∖ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹))) = (𝐸 ∩ 𝐹)) |
| 9 | 8 | eqcomd 2735 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (𝐸 ∩ 𝐹) = (∪ 𝑆 ∖ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹)))) |
| 10 | 9 | 3adant3 1132 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ 𝐹) = (∪ 𝑆 ∖ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹)))) |
| 11 | difindi 4245 | . . . . 5 ⊢ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹)) = ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹)) | |
| 12 | 11 | difeq2i 4076 | . . . 4 ⊢ (∪ 𝑆 ∖ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹))) = (∪ 𝑆 ∖ ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹))) |
| 13 | 12 | a1i 11 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (∪ 𝑆 ∖ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹))) = (∪ 𝑆 ∖ ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹)))) |
| 14 | 1, 10, 13 | 3eqtrd 2768 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ 𝐹) = (∪ 𝑆 ∖ ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹)))) |
| 15 | simp1 1136 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → 𝑆 ∈ SAlg) | |
| 16 | saldifcl 46301 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) | |
| 17 | 16 | 3adant3 1132 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) |
| 18 | saldifcl 46301 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐹 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐹) ∈ 𝑆) | |
| 19 | 18 | 3adant2 1131 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐹) ∈ 𝑆) |
| 20 | saluncl 46299 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ (∪ 𝑆 ∖ 𝐸) ∈ 𝑆 ∧ (∪ 𝑆 ∖ 𝐹) ∈ 𝑆) → ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹)) ∈ 𝑆) | |
| 21 | 15, 17, 19, 20 | syl3anc 1373 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹)) ∈ 𝑆) |
| 22 | saldifcl 46301 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹)) ∈ 𝑆) → (∪ 𝑆 ∖ ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹))) ∈ 𝑆) | |
| 23 | 15, 21, 22 | syl2anc 584 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (∪ 𝑆 ∖ ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹))) ∈ 𝑆) |
| 24 | 14, 23 | eqeltrd 2828 | 1 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ 𝐹) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∖ cdif 3902 ∪ cun 3903 ∩ cin 3904 ⊆ wss 3905 ∪ cuni 4861 SAlgcsalg 46290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-salg 46291 |
| This theorem is referenced by: saldifcl2 46310 salincld 46334 |
| Copyright terms: Public domain | W3C validator |