![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > salincl | Structured version Visualization version GIF version |
Description: The intersection of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
salincl | ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ 𝐹) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2825 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ 𝐹) = (𝐸 ∩ 𝐹)) | |
2 | inss1 4056 | . . . . . . . 8 ⊢ (𝐸 ∩ 𝐹) ⊆ 𝐸 | |
3 | 2 | a1i 11 | . . . . . . 7 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (𝐸 ∩ 𝐹) ⊆ 𝐸) |
4 | elssuni 4688 | . . . . . . . 8 ⊢ (𝐸 ∈ 𝑆 → 𝐸 ⊆ ∪ 𝑆) | |
5 | 4 | adantl 475 | . . . . . . 7 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → 𝐸 ⊆ ∪ 𝑆) |
6 | 3, 5 | sstrd 3836 | . . . . . 6 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (𝐸 ∩ 𝐹) ⊆ ∪ 𝑆) |
7 | dfss4 4087 | . . . . . 6 ⊢ ((𝐸 ∩ 𝐹) ⊆ ∪ 𝑆 ↔ (∪ 𝑆 ∖ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹))) = (𝐸 ∩ 𝐹)) | |
8 | 6, 7 | sylib 210 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (∪ 𝑆 ∖ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹))) = (𝐸 ∩ 𝐹)) |
9 | 8 | eqcomd 2830 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (𝐸 ∩ 𝐹) = (∪ 𝑆 ∖ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹)))) |
10 | 9 | 3adant3 1168 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ 𝐹) = (∪ 𝑆 ∖ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹)))) |
11 | difindi 4110 | . . . . 5 ⊢ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹)) = ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹)) | |
12 | 11 | difeq2i 3951 | . . . 4 ⊢ (∪ 𝑆 ∖ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹))) = (∪ 𝑆 ∖ ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹))) |
13 | 12 | a1i 11 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (∪ 𝑆 ∖ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹))) = (∪ 𝑆 ∖ ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹)))) |
14 | 1, 10, 13 | 3eqtrd 2864 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ 𝐹) = (∪ 𝑆 ∖ ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹)))) |
15 | simp1 1172 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → 𝑆 ∈ SAlg) | |
16 | saldifcl 41329 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) | |
17 | 16 | 3adant3 1168 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) |
18 | saldifcl 41329 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐹 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐹) ∈ 𝑆) | |
19 | 18 | 3adant2 1167 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐹) ∈ 𝑆) |
20 | saluncl 41327 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ (∪ 𝑆 ∖ 𝐸) ∈ 𝑆 ∧ (∪ 𝑆 ∖ 𝐹) ∈ 𝑆) → ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹)) ∈ 𝑆) | |
21 | 15, 17, 19, 20 | syl3anc 1496 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹)) ∈ 𝑆) |
22 | saldifcl 41329 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹)) ∈ 𝑆) → (∪ 𝑆 ∖ ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹))) ∈ 𝑆) | |
23 | 15, 21, 22 | syl2anc 581 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (∪ 𝑆 ∖ ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹))) ∈ 𝑆) |
24 | 14, 23 | eqeltrd 2905 | 1 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ 𝐹) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ∖ cdif 3794 ∪ cun 3795 ∩ cin 3796 ⊆ wss 3797 ∪ cuni 4657 SAlgcsalg 41318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 ax-inf2 8814 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-ral 3121 df-rex 3122 df-reu 3123 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-pss 3813 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-tp 4401 df-op 4403 df-uni 4658 df-int 4697 df-iun 4741 df-br 4873 df-opab 4935 df-mpt 4952 df-tr 4975 df-id 5249 df-eprel 5254 df-po 5262 df-so 5263 df-fr 5300 df-we 5302 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-pred 5919 df-ord 5965 df-on 5966 df-lim 5967 df-suc 5968 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-ov 6907 df-oprab 6908 df-mpt2 6909 df-om 7326 df-wrecs 7671 df-recs 7733 df-rdg 7771 df-1o 7825 df-oadd 7829 df-er 8008 df-en 8222 df-dom 8223 df-sdom 8224 df-fin 8225 df-salg 41319 |
This theorem is referenced by: saldifcl2 41336 salincld 41360 |
Copyright terms: Public domain | W3C validator |