![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > salincl | Structured version Visualization version GIF version |
Description: The intersection of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
salincl | ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ 𝐹) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2736 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ 𝐹) = (𝐸 ∩ 𝐹)) | |
2 | inss1 4245 | . . . . . . . 8 ⊢ (𝐸 ∩ 𝐹) ⊆ 𝐸 | |
3 | 2 | a1i 11 | . . . . . . 7 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (𝐸 ∩ 𝐹) ⊆ 𝐸) |
4 | elssuni 4942 | . . . . . . . 8 ⊢ (𝐸 ∈ 𝑆 → 𝐸 ⊆ ∪ 𝑆) | |
5 | 4 | adantl 481 | . . . . . . 7 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → 𝐸 ⊆ ∪ 𝑆) |
6 | 3, 5 | sstrd 4006 | . . . . . 6 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (𝐸 ∩ 𝐹) ⊆ ∪ 𝑆) |
7 | dfss4 4275 | . . . . . 6 ⊢ ((𝐸 ∩ 𝐹) ⊆ ∪ 𝑆 ↔ (∪ 𝑆 ∖ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹))) = (𝐸 ∩ 𝐹)) | |
8 | 6, 7 | sylib 218 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (∪ 𝑆 ∖ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹))) = (𝐸 ∩ 𝐹)) |
9 | 8 | eqcomd 2741 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (𝐸 ∩ 𝐹) = (∪ 𝑆 ∖ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹)))) |
10 | 9 | 3adant3 1131 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ 𝐹) = (∪ 𝑆 ∖ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹)))) |
11 | difindi 4298 | . . . . 5 ⊢ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹)) = ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹)) | |
12 | 11 | difeq2i 4133 | . . . 4 ⊢ (∪ 𝑆 ∖ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹))) = (∪ 𝑆 ∖ ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹))) |
13 | 12 | a1i 11 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (∪ 𝑆 ∖ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹))) = (∪ 𝑆 ∖ ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹)))) |
14 | 1, 10, 13 | 3eqtrd 2779 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ 𝐹) = (∪ 𝑆 ∖ ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹)))) |
15 | simp1 1135 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → 𝑆 ∈ SAlg) | |
16 | saldifcl 46275 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) | |
17 | 16 | 3adant3 1131 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) |
18 | saldifcl 46275 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐹 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐹) ∈ 𝑆) | |
19 | 18 | 3adant2 1130 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐹) ∈ 𝑆) |
20 | saluncl 46273 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ (∪ 𝑆 ∖ 𝐸) ∈ 𝑆 ∧ (∪ 𝑆 ∖ 𝐹) ∈ 𝑆) → ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹)) ∈ 𝑆) | |
21 | 15, 17, 19, 20 | syl3anc 1370 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹)) ∈ 𝑆) |
22 | saldifcl 46275 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹)) ∈ 𝑆) → (∪ 𝑆 ∖ ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹))) ∈ 𝑆) | |
23 | 15, 21, 22 | syl2anc 584 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (∪ 𝑆 ∖ ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹))) ∈ 𝑆) |
24 | 14, 23 | eqeltrd 2839 | 1 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ 𝐹) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∖ cdif 3960 ∪ cun 3961 ∩ cin 3962 ⊆ wss 3963 ∪ cuni 4912 SAlgcsalg 46264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-salg 46265 |
This theorem is referenced by: saldifcl2 46284 salincld 46308 |
Copyright terms: Public domain | W3C validator |