Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > salincl | Structured version Visualization version GIF version |
Description: The intersection of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
salincl | ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ 𝐹) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2739 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ 𝐹) = (𝐸 ∩ 𝐹)) | |
2 | inss1 4159 | . . . . . . . 8 ⊢ (𝐸 ∩ 𝐹) ⊆ 𝐸 | |
3 | 2 | a1i 11 | . . . . . . 7 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (𝐸 ∩ 𝐹) ⊆ 𝐸) |
4 | elssuni 4868 | . . . . . . . 8 ⊢ (𝐸 ∈ 𝑆 → 𝐸 ⊆ ∪ 𝑆) | |
5 | 4 | adantl 481 | . . . . . . 7 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → 𝐸 ⊆ ∪ 𝑆) |
6 | 3, 5 | sstrd 3927 | . . . . . 6 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (𝐸 ∩ 𝐹) ⊆ ∪ 𝑆) |
7 | dfss4 4189 | . . . . . 6 ⊢ ((𝐸 ∩ 𝐹) ⊆ ∪ 𝑆 ↔ (∪ 𝑆 ∖ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹))) = (𝐸 ∩ 𝐹)) | |
8 | 6, 7 | sylib 217 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (∪ 𝑆 ∖ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹))) = (𝐸 ∩ 𝐹)) |
9 | 8 | eqcomd 2744 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (𝐸 ∩ 𝐹) = (∪ 𝑆 ∖ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹)))) |
10 | 9 | 3adant3 1130 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ 𝐹) = (∪ 𝑆 ∖ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹)))) |
11 | difindi 4212 | . . . . 5 ⊢ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹)) = ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹)) | |
12 | 11 | difeq2i 4050 | . . . 4 ⊢ (∪ 𝑆 ∖ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹))) = (∪ 𝑆 ∖ ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹))) |
13 | 12 | a1i 11 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (∪ 𝑆 ∖ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹))) = (∪ 𝑆 ∖ ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹)))) |
14 | 1, 10, 13 | 3eqtrd 2782 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ 𝐹) = (∪ 𝑆 ∖ ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹)))) |
15 | simp1 1134 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → 𝑆 ∈ SAlg) | |
16 | saldifcl 43750 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) | |
17 | 16 | 3adant3 1130 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) |
18 | saldifcl 43750 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐹 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐹) ∈ 𝑆) | |
19 | 18 | 3adant2 1129 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐹) ∈ 𝑆) |
20 | saluncl 43748 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ (∪ 𝑆 ∖ 𝐸) ∈ 𝑆 ∧ (∪ 𝑆 ∖ 𝐹) ∈ 𝑆) → ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹)) ∈ 𝑆) | |
21 | 15, 17, 19, 20 | syl3anc 1369 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹)) ∈ 𝑆) |
22 | saldifcl 43750 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹)) ∈ 𝑆) → (∪ 𝑆 ∖ ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹))) ∈ 𝑆) | |
23 | 15, 21, 22 | syl2anc 583 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (∪ 𝑆 ∖ ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹))) ∈ 𝑆) |
24 | 14, 23 | eqeltrd 2839 | 1 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ 𝐹) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ∪ cun 3881 ∩ cin 3882 ⊆ wss 3883 ∪ cuni 4836 SAlgcsalg 43739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-salg 43740 |
This theorem is referenced by: saldifcl2 43757 salincld 43781 |
Copyright terms: Public domain | W3C validator |