Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salincl Structured version   Visualization version   GIF version

Theorem salincl 46353
Description: The intersection of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
salincl ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) ∈ 𝑆)

Proof of Theorem salincl
StepHypRef Expression
1 eqidd 2736 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) = (𝐸𝐹))
2 inss1 4212 . . . . . . . 8 (𝐸𝐹) ⊆ 𝐸
32a1i 11 . . . . . . 7 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → (𝐸𝐹) ⊆ 𝐸)
4 elssuni 4913 . . . . . . . 8 (𝐸𝑆𝐸 𝑆)
54adantl 481 . . . . . . 7 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → 𝐸 𝑆)
63, 5sstrd 3969 . . . . . 6 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → (𝐸𝐹) ⊆ 𝑆)
7 dfss4 4244 . . . . . 6 ((𝐸𝐹) ⊆ 𝑆 ↔ ( 𝑆 ∖ ( 𝑆 ∖ (𝐸𝐹))) = (𝐸𝐹))
86, 7sylib 218 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → ( 𝑆 ∖ ( 𝑆 ∖ (𝐸𝐹))) = (𝐸𝐹))
98eqcomd 2741 . . . 4 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → (𝐸𝐹) = ( 𝑆 ∖ ( 𝑆 ∖ (𝐸𝐹))))
1093adant3 1132 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) = ( 𝑆 ∖ ( 𝑆 ∖ (𝐸𝐹))))
11 difindi 4267 . . . . 5 ( 𝑆 ∖ (𝐸𝐹)) = (( 𝑆𝐸) ∪ ( 𝑆𝐹))
1211difeq2i 4098 . . . 4 ( 𝑆 ∖ ( 𝑆 ∖ (𝐸𝐹))) = ( 𝑆 ∖ (( 𝑆𝐸) ∪ ( 𝑆𝐹)))
1312a1i 11 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → ( 𝑆 ∖ ( 𝑆 ∖ (𝐸𝐹))) = ( 𝑆 ∖ (( 𝑆𝐸) ∪ ( 𝑆𝐹))))
141, 10, 133eqtrd 2774 . 2 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) = ( 𝑆 ∖ (( 𝑆𝐸) ∪ ( 𝑆𝐹))))
15 simp1 1136 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → 𝑆 ∈ SAlg)
16 saldifcl 46348 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → ( 𝑆𝐸) ∈ 𝑆)
17163adant3 1132 . . . 4 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → ( 𝑆𝐸) ∈ 𝑆)
18 saldifcl 46348 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝐹𝑆) → ( 𝑆𝐹) ∈ 𝑆)
19183adant2 1131 . . . 4 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → ( 𝑆𝐹) ∈ 𝑆)
20 saluncl 46346 . . . 4 ((𝑆 ∈ SAlg ∧ ( 𝑆𝐸) ∈ 𝑆 ∧ ( 𝑆𝐹) ∈ 𝑆) → (( 𝑆𝐸) ∪ ( 𝑆𝐹)) ∈ 𝑆)
2115, 17, 19, 20syl3anc 1373 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (( 𝑆𝐸) ∪ ( 𝑆𝐹)) ∈ 𝑆)
22 saldifcl 46348 . . 3 ((𝑆 ∈ SAlg ∧ (( 𝑆𝐸) ∪ ( 𝑆𝐹)) ∈ 𝑆) → ( 𝑆 ∖ (( 𝑆𝐸) ∪ ( 𝑆𝐹))) ∈ 𝑆)
2315, 21, 22syl2anc 584 . 2 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → ( 𝑆 ∖ (( 𝑆𝐸) ∪ ( 𝑆𝐹))) ∈ 𝑆)
2414, 23eqeltrd 2834 1 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  cdif 3923  cun 3924  cin 3925  wss 3926   cuni 4883  SAlgcsalg 46337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-salg 46338
This theorem is referenced by:  saldifcl2  46357  salincld  46381
  Copyright terms: Public domain W3C validator