Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salincl Structured version   Visualization version   GIF version

Theorem salincl 42891
Description: The intersection of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
salincl ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) ∈ 𝑆)

Proof of Theorem salincl
StepHypRef Expression
1 eqidd 2825 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) = (𝐸𝐹))
2 inss1 4190 . . . . . . . 8 (𝐸𝐹) ⊆ 𝐸
32a1i 11 . . . . . . 7 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → (𝐸𝐹) ⊆ 𝐸)
4 elssuni 4854 . . . . . . . 8 (𝐸𝑆𝐸 𝑆)
54adantl 485 . . . . . . 7 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → 𝐸 𝑆)
63, 5sstrd 3963 . . . . . 6 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → (𝐸𝐹) ⊆ 𝑆)
7 dfss4 4220 . . . . . 6 ((𝐸𝐹) ⊆ 𝑆 ↔ ( 𝑆 ∖ ( 𝑆 ∖ (𝐸𝐹))) = (𝐸𝐹))
86, 7sylib 221 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → ( 𝑆 ∖ ( 𝑆 ∖ (𝐸𝐹))) = (𝐸𝐹))
98eqcomd 2830 . . . 4 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → (𝐸𝐹) = ( 𝑆 ∖ ( 𝑆 ∖ (𝐸𝐹))))
1093adant3 1129 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) = ( 𝑆 ∖ ( 𝑆 ∖ (𝐸𝐹))))
11 difindi 4243 . . . . 5 ( 𝑆 ∖ (𝐸𝐹)) = (( 𝑆𝐸) ∪ ( 𝑆𝐹))
1211difeq2i 4082 . . . 4 ( 𝑆 ∖ ( 𝑆 ∖ (𝐸𝐹))) = ( 𝑆 ∖ (( 𝑆𝐸) ∪ ( 𝑆𝐹)))
1312a1i 11 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → ( 𝑆 ∖ ( 𝑆 ∖ (𝐸𝐹))) = ( 𝑆 ∖ (( 𝑆𝐸) ∪ ( 𝑆𝐹))))
141, 10, 133eqtrd 2863 . 2 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) = ( 𝑆 ∖ (( 𝑆𝐸) ∪ ( 𝑆𝐹))))
15 simp1 1133 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → 𝑆 ∈ SAlg)
16 saldifcl 42887 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → ( 𝑆𝐸) ∈ 𝑆)
17163adant3 1129 . . . 4 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → ( 𝑆𝐸) ∈ 𝑆)
18 saldifcl 42887 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝐹𝑆) → ( 𝑆𝐹) ∈ 𝑆)
19183adant2 1128 . . . 4 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → ( 𝑆𝐹) ∈ 𝑆)
20 saluncl 42885 . . . 4 ((𝑆 ∈ SAlg ∧ ( 𝑆𝐸) ∈ 𝑆 ∧ ( 𝑆𝐹) ∈ 𝑆) → (( 𝑆𝐸) ∪ ( 𝑆𝐹)) ∈ 𝑆)
2115, 17, 19, 20syl3anc 1368 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (( 𝑆𝐸) ∪ ( 𝑆𝐹)) ∈ 𝑆)
22 saldifcl 42887 . . 3 ((𝑆 ∈ SAlg ∧ (( 𝑆𝐸) ∪ ( 𝑆𝐹)) ∈ 𝑆) → ( 𝑆 ∖ (( 𝑆𝐸) ∪ ( 𝑆𝐹))) ∈ 𝑆)
2315, 21, 22syl2anc 587 . 2 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → ( 𝑆 ∖ (( 𝑆𝐸) ∪ ( 𝑆𝐹))) ∈ 𝑆)
2414, 23eqeltrd 2916 1 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  cdif 3916  cun 3917  cin 3918  wss 3919   cuni 4824  SAlgcsalg 42876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-inf2 9101
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-salg 42877
This theorem is referenced by:  saldifcl2  42894  salincld  42918
  Copyright terms: Public domain W3C validator