![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > salincl | Structured version Visualization version GIF version |
Description: The intersection of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
salincl | ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ 𝐹) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2731 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ 𝐹) = (𝐸 ∩ 𝐹)) | |
2 | inss1 4227 | . . . . . . . 8 ⊢ (𝐸 ∩ 𝐹) ⊆ 𝐸 | |
3 | 2 | a1i 11 | . . . . . . 7 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (𝐸 ∩ 𝐹) ⊆ 𝐸) |
4 | elssuni 4940 | . . . . . . . 8 ⊢ (𝐸 ∈ 𝑆 → 𝐸 ⊆ ∪ 𝑆) | |
5 | 4 | adantl 480 | . . . . . . 7 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → 𝐸 ⊆ ∪ 𝑆) |
6 | 3, 5 | sstrd 3991 | . . . . . 6 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (𝐸 ∩ 𝐹) ⊆ ∪ 𝑆) |
7 | dfss4 4257 | . . . . . 6 ⊢ ((𝐸 ∩ 𝐹) ⊆ ∪ 𝑆 ↔ (∪ 𝑆 ∖ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹))) = (𝐸 ∩ 𝐹)) | |
8 | 6, 7 | sylib 217 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (∪ 𝑆 ∖ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹))) = (𝐸 ∩ 𝐹)) |
9 | 8 | eqcomd 2736 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (𝐸 ∩ 𝐹) = (∪ 𝑆 ∖ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹)))) |
10 | 9 | 3adant3 1130 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ 𝐹) = (∪ 𝑆 ∖ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹)))) |
11 | difindi 4280 | . . . . 5 ⊢ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹)) = ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹)) | |
12 | 11 | difeq2i 4118 | . . . 4 ⊢ (∪ 𝑆 ∖ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹))) = (∪ 𝑆 ∖ ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹))) |
13 | 12 | a1i 11 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (∪ 𝑆 ∖ (∪ 𝑆 ∖ (𝐸 ∩ 𝐹))) = (∪ 𝑆 ∖ ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹)))) |
14 | 1, 10, 13 | 3eqtrd 2774 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ 𝐹) = (∪ 𝑆 ∖ ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹)))) |
15 | simp1 1134 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → 𝑆 ∈ SAlg) | |
16 | saldifcl 45333 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) | |
17 | 16 | 3adant3 1130 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) |
18 | saldifcl 45333 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐹 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐹) ∈ 𝑆) | |
19 | 18 | 3adant2 1129 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐹) ∈ 𝑆) |
20 | saluncl 45331 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ (∪ 𝑆 ∖ 𝐸) ∈ 𝑆 ∧ (∪ 𝑆 ∖ 𝐹) ∈ 𝑆) → ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹)) ∈ 𝑆) | |
21 | 15, 17, 19, 20 | syl3anc 1369 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹)) ∈ 𝑆) |
22 | saldifcl 45333 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹)) ∈ 𝑆) → (∪ 𝑆 ∖ ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹))) ∈ 𝑆) | |
23 | 15, 21, 22 | syl2anc 582 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (∪ 𝑆 ∖ ((∪ 𝑆 ∖ 𝐸) ∪ (∪ 𝑆 ∖ 𝐹))) ∈ 𝑆) |
24 | 14, 23 | eqeltrd 2831 | 1 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ 𝐹) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 ∖ cdif 3944 ∪ cun 3945 ∩ cin 3946 ⊆ wss 3947 ∪ cuni 4907 SAlgcsalg 45322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-inf2 9638 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-salg 45323 |
This theorem is referenced by: saldifcl2 45342 salincld 45366 |
Copyright terms: Public domain | W3C validator |