![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoxopovel | Structured version Visualization version GIF version |
Description: Element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens and Mario Carneiro, 10-Oct-2017.) |
Ref | Expression |
---|---|
mpoxopoveq.f | ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) |
Ref | Expression |
---|---|
mpoxopovel | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (⟨𝑉, 𝑊⟩𝐹𝐾) ↔ (𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoxopoveq.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) | |
2 | 1 | mpoxopn0yelv 8197 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (⟨𝑉, 𝑊⟩𝐹𝐾) → 𝐾 ∈ 𝑉)) |
3 | 2 | pm4.71rd 563 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (⟨𝑉, 𝑊⟩𝐹𝐾) ↔ (𝐾 ∈ 𝑉 ∧ 𝑁 ∈ (⟨𝑉, 𝑊⟩𝐹𝐾)))) |
4 | 1 | mpoxopoveq 8203 | . . . . . 6 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → (⟨𝑉, 𝑊⟩𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}) |
5 | 4 | eleq2d 2819 | . . . . 5 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → (𝑁 ∈ (⟨𝑉, 𝑊⟩𝐹𝐾) ↔ 𝑁 ∈ {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})) |
6 | nfcv 2903 | . . . . . . 7 ⊢ Ⅎ𝑛𝑉 | |
7 | 6 | elrabsf 3825 | . . . . . 6 ⊢ (𝑁 ∈ {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑} ↔ (𝑁 ∈ 𝑉 ∧ [𝑁 / 𝑛][⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑)) |
8 | sbccom 3865 | . . . . . . . 8 ⊢ ([𝑁 / 𝑛][⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑 ↔ [⟨𝑉, 𝑊⟩ / 𝑥][𝑁 / 𝑛][𝐾 / 𝑦]𝜑) | |
9 | sbccom 3865 | . . . . . . . . 9 ⊢ ([𝑁 / 𝑛][𝐾 / 𝑦]𝜑 ↔ [𝐾 / 𝑦][𝑁 / 𝑛]𝜑) | |
10 | 9 | sbcbii 3837 | . . . . . . . 8 ⊢ ([⟨𝑉, 𝑊⟩ / 𝑥][𝑁 / 𝑛][𝐾 / 𝑦]𝜑 ↔ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑) |
11 | 8, 10 | bitri 274 | . . . . . . 7 ⊢ ([𝑁 / 𝑛][⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑 ↔ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑) |
12 | 11 | anbi2i 623 | . . . . . 6 ⊢ ((𝑁 ∈ 𝑉 ∧ [𝑁 / 𝑛][⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑) ↔ (𝑁 ∈ 𝑉 ∧ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)) |
13 | 7, 12 | bitri 274 | . . . . 5 ⊢ (𝑁 ∈ {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑} ↔ (𝑁 ∈ 𝑉 ∧ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)) |
14 | 5, 13 | bitrdi 286 | . . . 4 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → (𝑁 ∈ (⟨𝑉, 𝑊⟩𝐹𝐾) ↔ (𝑁 ∈ 𝑉 ∧ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))) |
15 | 14 | pm5.32da 579 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ (⟨𝑉, 𝑊⟩𝐹𝐾)) ↔ (𝐾 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)))) |
16 | 3anass 1095 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑) ↔ (𝐾 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))) | |
17 | 15, 16 | bitr4di 288 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ (⟨𝑉, 𝑊⟩𝐹𝐾)) ↔ (𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))) |
18 | 3, 17 | bitrd 278 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (⟨𝑉, 𝑊⟩𝐹𝐾) ↔ (𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 {crab 3432 Vcvv 3474 [wsbc 3777 ⟨cop 4634 ‘cfv 6543 (class class class)co 7408 ∈ cmpo 7410 1st c1st 7972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |