MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoxopovel Structured version   Visualization version   GIF version

Theorem mpoxopovel 8244
Description: Element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens and Mario Carneiro, 10-Oct-2017.)
Hypothesis
Ref Expression
mpoxopoveq.f 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ {𝑛 ∈ (1st𝑥) ∣ 𝜑})
Assertion
Ref Expression
mpoxopovel ((𝑉𝑋𝑊𝑌) → (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) ↔ (𝐾𝑉𝑁𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)))
Distinct variable groups:   𝑛,𝐾,𝑥,𝑦   𝑛,𝑉,𝑥,𝑦   𝑛,𝑊,𝑥,𝑦   𝑛,𝑋,𝑥,𝑦   𝑛,𝑌,𝑥,𝑦   𝑥,𝑁,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑛)   𝐹(𝑥,𝑦,𝑛)   𝑁(𝑛)

Proof of Theorem mpoxopovel
StepHypRef Expression
1 mpoxopoveq.f . . . 4 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ {𝑛 ∈ (1st𝑥) ∣ 𝜑})
21mpoxopn0yelv 8237 . . 3 ((𝑉𝑋𝑊𝑌) → (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) → 𝐾𝑉))
32pm4.71rd 562 . 2 ((𝑉𝑋𝑊𝑌) → (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) ↔ (𝐾𝑉𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾))))
41mpoxopoveq 8243 . . . . . 6 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
54eleq2d 2825 . . . . 5 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) ↔ 𝑁 ∈ {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}))
6 nfcv 2903 . . . . . . 7 𝑛𝑉
76elrabsf 3840 . . . . . 6 (𝑁 ∈ {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑} ↔ (𝑁𝑉[𝑁 / 𝑛][𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑))
8 sbccom 3880 . . . . . . . 8 ([𝑁 / 𝑛][𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑[𝑉, 𝑊⟩ / 𝑥][𝑁 / 𝑛][𝐾 / 𝑦]𝜑)
9 sbccom 3880 . . . . . . . . 9 ([𝑁 / 𝑛][𝐾 / 𝑦]𝜑[𝐾 / 𝑦][𝑁 / 𝑛]𝜑)
109sbcbii 3852 . . . . . . . 8 ([𝑉, 𝑊⟩ / 𝑥][𝑁 / 𝑛][𝐾 / 𝑦]𝜑[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)
118, 10bitri 275 . . . . . . 7 ([𝑁 / 𝑛][𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)
1211anbi2i 623 . . . . . 6 ((𝑁𝑉[𝑁 / 𝑛][𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑) ↔ (𝑁𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))
137, 12bitri 275 . . . . 5 (𝑁 ∈ {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑} ↔ (𝑁𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))
145, 13bitrdi 287 . . . 4 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) ↔ (𝑁𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)))
1514pm5.32da 579 . . 3 ((𝑉𝑋𝑊𝑌) → ((𝐾𝑉𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾)) ↔ (𝐾𝑉 ∧ (𝑁𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))))
16 3anass 1094 . . 3 ((𝐾𝑉𝑁𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑) ↔ (𝐾𝑉 ∧ (𝑁𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)))
1715, 16bitr4di 289 . 2 ((𝑉𝑋𝑊𝑌) → ((𝐾𝑉𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾)) ↔ (𝐾𝑉𝑁𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)))
183, 17bitrd 279 1 ((𝑉𝑋𝑊𝑌) → (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) ↔ (𝐾𝑉𝑁𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  {crab 3433  Vcvv 3478  [wsbc 3791  cop 4637  cfv 6563  (class class class)co 7431  cmpo 7433  1st c1st 8011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator