Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoxopovel Structured version   Visualization version   GIF version

Theorem mpoxopovel 7887
 Description: Element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens and Mario Carneiro, 10-Oct-2017.)
Hypothesis
Ref Expression
mpoxopoveq.f 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ {𝑛 ∈ (1st𝑥) ∣ 𝜑})
Assertion
Ref Expression
mpoxopovel ((𝑉𝑋𝑊𝑌) → (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) ↔ (𝐾𝑉𝑁𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)))
Distinct variable groups:   𝑛,𝐾,𝑥,𝑦   𝑛,𝑉,𝑥,𝑦   𝑛,𝑊,𝑥,𝑦   𝑛,𝑋,𝑥,𝑦   𝑛,𝑌,𝑥,𝑦   𝑥,𝑁,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑛)   𝐹(𝑥,𝑦,𝑛)   𝑁(𝑛)

Proof of Theorem mpoxopovel
StepHypRef Expression
1 mpoxopoveq.f . . . 4 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ {𝑛 ∈ (1st𝑥) ∣ 𝜑})
21mpoxopn0yelv 7880 . . 3 ((𝑉𝑋𝑊𝑌) → (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) → 𝐾𝑉))
32pm4.71rd 566 . 2 ((𝑉𝑋𝑊𝑌) → (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) ↔ (𝐾𝑉𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾))))
41mpoxopoveq 7886 . . . . . 6 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
54eleq2d 2875 . . . . 5 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) ↔ 𝑁 ∈ {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}))
6 nfcv 2955 . . . . . . 7 𝑛𝑉
76elrabsf 3766 . . . . . 6 (𝑁 ∈ {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑} ↔ (𝑁𝑉[𝑁 / 𝑛][𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑))
8 sbccom 3802 . . . . . . . 8 ([𝑁 / 𝑛][𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑[𝑉, 𝑊⟩ / 𝑥][𝑁 / 𝑛][𝐾 / 𝑦]𝜑)
9 sbccom 3802 . . . . . . . . 9 ([𝑁 / 𝑛][𝐾 / 𝑦]𝜑[𝐾 / 𝑦][𝑁 / 𝑛]𝜑)
109sbcbii 3778 . . . . . . . 8 ([𝑉, 𝑊⟩ / 𝑥][𝑁 / 𝑛][𝐾 / 𝑦]𝜑[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)
118, 10bitri 278 . . . . . . 7 ([𝑁 / 𝑛][𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)
1211anbi2i 625 . . . . . 6 ((𝑁𝑉[𝑁 / 𝑛][𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑) ↔ (𝑁𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))
137, 12bitri 278 . . . . 5 (𝑁 ∈ {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑} ↔ (𝑁𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))
145, 13syl6bb 290 . . . 4 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) ↔ (𝑁𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)))
1514pm5.32da 582 . . 3 ((𝑉𝑋𝑊𝑌) → ((𝐾𝑉𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾)) ↔ (𝐾𝑉 ∧ (𝑁𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))))
16 3anass 1092 . . 3 ((𝐾𝑉𝑁𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑) ↔ (𝐾𝑉 ∧ (𝑁𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)))
1715, 16bitr4di 292 . 2 ((𝑉𝑋𝑊𝑌) → ((𝐾𝑉𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾)) ↔ (𝐾𝑉𝑁𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)))
183, 17bitrd 282 1 ((𝑉𝑋𝑊𝑌) → (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) ↔ (𝐾𝑉𝑁𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  {crab 3110  Vcvv 3442  [wsbc 3722  ⟨cop 4534  ‘cfv 6332  (class class class)co 7145   ∈ cmpo 7147  1st c1st 7682 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5171  ax-nul 5178  ax-pr 5299  ax-un 7454 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4805  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-id 5429  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6291  df-fun 6334  df-fv 6340  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7684  df-2nd 7685 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator