Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scottab Structured version   Visualization version   GIF version

Theorem scottab 42990
Description: Value of the Scott operation at a class abstraction. (Contributed by Rohan Ridenour, 14-Aug-2023.)
Hypothesis
Ref Expression
scottab.1 (π‘₯ = 𝑦 β†’ (πœ‘ ↔ πœ“))
Assertion
Ref Expression
scottab Scott {π‘₯ ∣ πœ‘} = {π‘₯ ∣ (πœ‘ ∧ βˆ€π‘¦(πœ“ β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)))}
Distinct variable groups:   π‘₯,𝑦   πœ‘,𝑦   πœ“,π‘₯
Allowed substitution hints:   πœ‘(π‘₯)   πœ“(𝑦)

Proof of Theorem scottab
StepHypRef Expression
1 nfv 1917 . 2 β„²π‘₯πœ“
2 scottab.1 . 2 (π‘₯ = 𝑦 β†’ (πœ‘ ↔ πœ“))
31, 2scottabf 42989 1 Scott {π‘₯ ∣ πœ‘} = {π‘₯ ∣ (πœ‘ ∧ βˆ€π‘¦(πœ“ β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)))}
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396  βˆ€wal 1539   = wceq 1541  {cab 2709   βŠ† wss 3948  β€˜cfv 6543  rankcrnk 9757  Scott cscott 42984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-scott 42985
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator