Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > scottab | Structured version Visualization version GIF version |
Description: Value of the Scott operation at a class abstraction. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
Ref | Expression |
---|---|
scottab.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
scottab | ⊢ Scott {𝑥 ∣ 𝜑} = {𝑥 ∣ (𝜑 ∧ ∀𝑦(𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦)))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1916 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | scottab.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | scottabf 42092 | 1 ⊢ Scott {𝑥 ∣ 𝜑} = {𝑥 ∣ (𝜑 ∧ ∀𝑦(𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦)))} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1538 = wceq 1540 {cab 2714 ⊆ wss 3897 ‘cfv 6466 rankcrnk 9599 Scott cscott 42087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-iota 6418 df-fv 6474 df-scott 42088 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |