![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > scottab | Structured version Visualization version GIF version |
Description: Value of the Scott operation at a class abstraction. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
Ref | Expression |
---|---|
scottab.1 | β’ (π₯ = π¦ β (π β π)) |
Ref | Expression |
---|---|
scottab | β’ Scott {π₯ β£ π} = {π₯ β£ (π β§ βπ¦(π β (rankβπ₯) β (rankβπ¦)))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . 2 β’ β²π₯π | |
2 | scottab.1 | . 2 β’ (π₯ = π¦ β (π β π)) | |
3 | 1, 2 | scottabf 42989 | 1 β’ Scott {π₯ β£ π} = {π₯ β£ (π β§ βπ¦(π β (rankβπ₯) β (rankβπ¦)))} |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 βwal 1539 = wceq 1541 {cab 2709 β wss 3948 βcfv 6543 rankcrnk 9757 Scott cscott 42984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-scott 42985 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |