| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exse | Structured version Visualization version GIF version | ||
| Description: Any relation on a set is set-like on it. (Contributed by Mario Carneiro, 22-Jun-2015.) |
| Ref | Expression |
|---|---|
| exse | ⊢ (𝐴 ∈ 𝑉 → 𝑅 Se 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabexg 5273 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
| 2 | 1 | ralrimivw 3128 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) |
| 3 | df-se 5568 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
| 4 | 2, 3 | sylibr 234 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝑅 Se 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∀wral 3047 {crab 3395 Vcvv 3436 class class class wbr 5089 Se wse 5565 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-in 3904 df-ss 3914 df-pw 4549 df-se 5568 |
| This theorem is referenced by: wemoiso 7905 wemoiso2 7906 oiiso 9423 hartogslem1 9428 oemapwe 9584 cantnffval2 9585 om2uzoi 13862 uzsinds 13894 bpolylem 15955 om2noseqoi 28233 numiunnum 36514 |
| Copyright terms: Public domain | W3C validator |