MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exse Structured version   Visualization version   GIF version

Theorem exse 5601
Description: Any relation on a set is set-like on it. (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
exse (𝐴𝑉𝑅 Se 𝐴)

Proof of Theorem exse
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabexg 5295 . . 3 (𝐴𝑉 → {𝑦𝐴𝑦𝑅𝑥} ∈ V)
21ralrimivw 3130 . 2 (𝐴𝑉 → ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
3 df-se 5595 . 2 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
42, 3sylibr 234 1 (𝐴𝑉𝑅 Se 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wral 3045  {crab 3408  Vcvv 3450   class class class wbr 5110   Se wse 5592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3409  df-v 3452  df-in 3924  df-ss 3934  df-pw 4568  df-se 5595
This theorem is referenced by:  wemoiso  7955  wemoiso2  7956  oiiso  9497  hartogslem1  9502  oemapwe  9654  cantnffval2  9655  om2uzoi  13927  uzsinds  13959  bpolylem  16021  om2noseqoi  28204  numiunnum  36465
  Copyright terms: Public domain W3C validator