| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exse | Structured version Visualization version GIF version | ||
| Description: Any relation on a set is set-like on it. (Contributed by Mario Carneiro, 22-Jun-2015.) |
| Ref | Expression |
|---|---|
| exse | ⊢ (𝐴 ∈ 𝑉 → 𝑅 Se 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabexg 5307 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
| 2 | 1 | ralrimivw 3136 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) |
| 3 | df-se 5607 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
| 4 | 2, 3 | sylibr 234 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝑅 Se 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3051 {crab 3415 Vcvv 3459 class class class wbr 5119 Se wse 5604 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rab 3416 df-v 3461 df-in 3933 df-ss 3943 df-pw 4577 df-se 5607 |
| This theorem is referenced by: wemoiso 7972 wemoiso2 7973 oiiso 9551 hartogslem1 9556 oemapwe 9708 cantnffval2 9709 om2uzoi 13973 uzsinds 14005 bpolylem 16064 om2noseqoi 28249 numiunnum 36488 |
| Copyright terms: Public domain | W3C validator |