MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exse Structured version   Visualization version   GIF version

Theorem exse 5649
Description: Any relation on a set is set-like on it. (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
exse (𝐴𝑉𝑅 Se 𝐴)

Proof of Theorem exse
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabexg 5343 . . 3 (𝐴𝑉 → {𝑦𝐴𝑦𝑅𝑥} ∈ V)
21ralrimivw 3148 . 2 (𝐴𝑉 → ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
3 df-se 5642 . 2 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
42, 3sylibr 234 1 (𝐴𝑉𝑅 Se 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wral 3059  {crab 3433  Vcvv 3478   class class class wbr 5148   Se wse 5639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rab 3434  df-v 3480  df-in 3970  df-ss 3980  df-pw 4607  df-se 5642
This theorem is referenced by:  wemoiso  7997  wemoiso2  7998  oiiso  9575  hartogslem1  9580  oemapwe  9732  cantnffval2  9733  om2uzoi  13993  uzsinds  14025  bpolylem  16081  om2noseqoi  28324  numiunnum  36453
  Copyright terms: Public domain W3C validator