Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exse | Structured version Visualization version GIF version |
Description: Any relation on a set is set-like on it. (Contributed by Mario Carneiro, 22-Jun-2015.) |
Ref | Expression |
---|---|
exse | ⊢ (𝐴 ∈ 𝑉 → 𝑅 Se 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabexg 5250 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
2 | 1 | ralrimivw 3108 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) |
3 | df-se 5536 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
4 | 2, 3 | sylibr 233 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝑅 Se 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3063 {crab 3067 Vcvv 3422 class class class wbr 5070 Se wse 5533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-se 5536 |
This theorem is referenced by: wemoiso 7789 wemoiso2 7790 oiiso 9226 hartogslem1 9231 oemapwe 9382 cantnffval2 9383 om2uzoi 13603 uzsinds 13635 bpolylem 15686 |
Copyright terms: Public domain | W3C validator |