MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exse Structured version   Visualization version   GIF version

Theorem exse 5645
Description: Any relation on a set is set-like on it. (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
exse (𝐴𝑉𝑅 Se 𝐴)

Proof of Theorem exse
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabexg 5337 . . 3 (𝐴𝑉 → {𝑦𝐴𝑦𝑅𝑥} ∈ V)
21ralrimivw 3150 . 2 (𝐴𝑉 → ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
3 df-se 5638 . 2 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
42, 3sylibr 234 1 (𝐴𝑉𝑅 Se 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wral 3061  {crab 3436  Vcvv 3480   class class class wbr 5143   Se wse 5635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rab 3437  df-v 3482  df-in 3958  df-ss 3968  df-pw 4602  df-se 5638
This theorem is referenced by:  wemoiso  7998  wemoiso2  7999  oiiso  9577  hartogslem1  9582  oemapwe  9734  cantnffval2  9735  om2uzoi  13996  uzsinds  14028  bpolylem  16084  om2noseqoi  28309  numiunnum  36471
  Copyright terms: Public domain W3C validator