![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exse | Structured version Visualization version GIF version |
Description: Any relation on a set is set-like on it. (Contributed by Mario Carneiro, 22-Jun-2015.) |
Ref | Expression |
---|---|
exse | ⊢ (𝐴 ∈ 𝑉 → 𝑅 Se 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabexg 5087 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
2 | 1 | ralrimivw 3128 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) |
3 | df-se 5364 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
4 | 2, 3 | sylibr 226 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝑅 Se 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2051 ∀wral 3083 {crab 3087 Vcvv 3410 class class class wbr 4926 Se wse 5361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2745 ax-sep 5057 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ral 3088 df-rab 3092 df-v 3412 df-in 3831 df-ss 3838 df-se 5364 |
This theorem is referenced by: wemoiso 7485 wemoiso2 7486 oiiso 8795 hartogslem1 8800 oemapwe 8950 cantnffval2 8951 om2uzoi 13137 uzsinds 13169 bpolylem 15261 |
Copyright terms: Public domain | W3C validator |