Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exse | Structured version Visualization version GIF version |
Description: Any relation on a set is set-like on it. (Contributed by Mario Carneiro, 22-Jun-2015.) |
Ref | Expression |
---|---|
exse | ⊢ (𝐴 ∈ 𝑉 → 𝑅 Se 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabexg 5272 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
2 | 1 | ralrimivw 3143 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) |
3 | df-se 5570 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
4 | 2, 3 | sylibr 233 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝑅 Se 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ∀wral 3061 {crab 3403 Vcvv 3441 class class class wbr 5089 Se wse 5567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5240 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rab 3404 df-v 3443 df-in 3904 df-ss 3914 df-se 5570 |
This theorem is referenced by: wemoiso 7876 wemoiso2 7877 oiiso 9386 hartogslem1 9391 oemapwe 9543 cantnffval2 9544 om2uzoi 13768 uzsinds 13800 bpolylem 15849 |
Copyright terms: Public domain | W3C validator |