Step | Hyp | Ref
| Expression |
1 | | fnse.3 |
. . . . . . 7
⊢ (𝜑 → 𝑅 Se 𝐵) |
2 | | fnse.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
3 | 2 | ffvelcdmda 6989 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝐵) |
4 | | seex 5558 |
. . . . . . 7
⊢ ((𝑅 Se 𝐵 ∧ (𝐹‘𝑧) ∈ 𝐵) → {𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∈ V) |
5 | 1, 3, 4 | syl2an2r 683 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → {𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∈ V) |
6 | | snex 5363 |
. . . . . 6
⊢ {(𝐹‘𝑧)} ∈ V |
7 | | unexg 7627 |
. . . . . 6
⊢ (({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∈ V ∧ {(𝐹‘𝑧)} ∈ V) → ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}) ∈ V) |
8 | 5, 6, 7 | sylancl 587 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}) ∈ V) |
9 | | imaeq2 5971 |
. . . . . . . . 9
⊢ (𝑤 = ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}) → (◡𝐹 “ 𝑤) = (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}))) |
10 | 9 | eleq1d 2821 |
. . . . . . . 8
⊢ (𝑤 = ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}) → ((◡𝐹 “ 𝑤) ∈ V ↔ (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})) ∈ V)) |
11 | 10 | imbi2d 342 |
. . . . . . 7
⊢ (𝑤 = ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}) → ((𝜑 → (◡𝐹 “ 𝑤) ∈ V) ↔ (𝜑 → (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})) ∈ V))) |
12 | | fnse.4 |
. . . . . . 7
⊢ (𝜑 → (◡𝐹 “ 𝑤) ∈ V) |
13 | 11, 12 | vtoclg 3510 |
. . . . . 6
⊢ (({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}) ∈ V → (𝜑 → (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})) ∈ V)) |
14 | 13 | impcom 409 |
. . . . 5
⊢ ((𝜑 ∧ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}) ∈ V) → (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})) ∈ V) |
15 | 8, 14 | syldan 592 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})) ∈ V) |
16 | | inss2 4169 |
. . . . . 6
⊢ (𝐴 ∩ (◡𝑇 “ {𝑧})) ⊆ (◡𝑇 “ {𝑧}) |
17 | | vex 3441 |
. . . . . . . . . 10
⊢ 𝑤 ∈ V |
18 | 17 | eliniseg 6008 |
. . . . . . . . 9
⊢ (𝑧 ∈ V → (𝑤 ∈ (◡𝑇 “ {𝑧}) ↔ 𝑤𝑇𝑧)) |
19 | 18 | elv 3443 |
. . . . . . . 8
⊢ (𝑤 ∈ (◡𝑇 “ {𝑧}) ↔ 𝑤𝑇𝑧) |
20 | | fveq2 6800 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → (𝐹‘𝑥) = (𝐹‘𝑤)) |
21 | | fveq2 6800 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → (𝐹‘𝑦) = (𝐹‘𝑧)) |
22 | 20, 21 | breqan12d 5097 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ↔ (𝐹‘𝑤)𝑅(𝐹‘𝑧))) |
23 | 20, 21 | eqeqan12d 2750 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ (𝐹‘𝑤) = (𝐹‘𝑧))) |
24 | | breq12 5086 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → (𝑥𝑆𝑦 ↔ 𝑤𝑆𝑧)) |
25 | 23, 24 | anbi12d 632 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → (((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦) ↔ ((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧))) |
26 | 22, 25 | orbi12d 917 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → (((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦)) ↔ ((𝐹‘𝑤)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧)))) |
27 | | fnse.1 |
. . . . . . . . . 10
⊢ 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦)))} |
28 | 26, 27 | brab2a 5687 |
. . . . . . . . 9
⊢ (𝑤𝑇𝑧 ↔ ((𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑤)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧)))) |
29 | 2 | ffvelcdmda 6989 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝐵) |
30 | 29 | adantrr 715 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝐹‘𝑤) ∈ 𝐵) |
31 | | breq1 5084 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 = (𝐹‘𝑤) → (𝑢𝑅(𝐹‘𝑧) ↔ (𝐹‘𝑤)𝑅(𝐹‘𝑧))) |
32 | 31 | elrab3 3630 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑤) ∈ 𝐵 → ((𝐹‘𝑤) ∈ {𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ↔ (𝐹‘𝑤)𝑅(𝐹‘𝑧))) |
33 | 30, 32 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝐹‘𝑤) ∈ {𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ↔ (𝐹‘𝑤)𝑅(𝐹‘𝑧))) |
34 | 33 | biimprd 249 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝐹‘𝑤)𝑅(𝐹‘𝑧) → (𝐹‘𝑤) ∈ {𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)})) |
35 | | simpl 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧) → (𝐹‘𝑤) = (𝐹‘𝑧)) |
36 | | fvex 6813 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹‘𝑤) ∈ V |
37 | 36 | elsn 4580 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑤) ∈ {(𝐹‘𝑧)} ↔ (𝐹‘𝑤) = (𝐹‘𝑧)) |
38 | 35, 37 | sylibr 234 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧) → (𝐹‘𝑤) ∈ {(𝐹‘𝑧)}) |
39 | 38 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧) → (𝐹‘𝑤) ∈ {(𝐹‘𝑧)})) |
40 | 34, 39 | orim12d 963 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (((𝐹‘𝑤)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧)) → ((𝐹‘𝑤) ∈ {𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∨ (𝐹‘𝑤) ∈ {(𝐹‘𝑧)}))) |
41 | | elun 4089 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑤) ∈ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}) ↔ ((𝐹‘𝑤) ∈ {𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∨ (𝐹‘𝑤) ∈ {(𝐹‘𝑧)})) |
42 | 40, 41 | syl6ibr 253 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (((𝐹‘𝑤)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧)) → (𝐹‘𝑤) ∈ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}))) |
43 | | simprl 769 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑤 ∈ 𝐴) |
44 | 42, 43 | jctild 527 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (((𝐹‘𝑤)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧)) → (𝑤 ∈ 𝐴 ∧ (𝐹‘𝑤) ∈ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})))) |
45 | 2 | ffnd 6627 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 Fn 𝐴) |
46 | 45 | adantr 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝐹 Fn 𝐴) |
47 | | elpreima 6963 |
. . . . . . . . . . . 12
⊢ (𝐹 Fn 𝐴 → (𝑤 ∈ (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})) ↔ (𝑤 ∈ 𝐴 ∧ (𝐹‘𝑤) ∈ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})))) |
48 | 46, 47 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑤 ∈ (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})) ↔ (𝑤 ∈ 𝐴 ∧ (𝐹‘𝑤) ∈ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})))) |
49 | 44, 48 | sylibrd 260 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (((𝐹‘𝑤)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧)) → 𝑤 ∈ (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})))) |
50 | 49 | expimpd 455 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑤)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧))) → 𝑤 ∈ (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})))) |
51 | 28, 50 | biimtrid 242 |
. . . . . . . 8
⊢ (𝜑 → (𝑤𝑇𝑧 → 𝑤 ∈ (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})))) |
52 | 19, 51 | biimtrid 242 |
. . . . . . 7
⊢ (𝜑 → (𝑤 ∈ (◡𝑇 “ {𝑧}) → 𝑤 ∈ (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})))) |
53 | 52 | ssrdv 3932 |
. . . . . 6
⊢ (𝜑 → (◡𝑇 “ {𝑧}) ⊆ (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}))) |
54 | 16, 53 | sstrid 3937 |
. . . . 5
⊢ (𝜑 → (𝐴 ∩ (◡𝑇 “ {𝑧})) ⊆ (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}))) |
55 | 54 | adantr 482 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐴 ∩ (◡𝑇 “ {𝑧})) ⊆ (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}))) |
56 | 15, 55 | ssexd 5257 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐴 ∩ (◡𝑇 “ {𝑧})) ∈ V) |
57 | 56 | ralrimiva 3140 |
. 2
⊢ (𝜑 → ∀𝑧 ∈ 𝐴 (𝐴 ∩ (◡𝑇 “ {𝑧})) ∈ V) |
58 | | dfse2 6014 |
. 2
⊢ (𝑇 Se 𝐴 ↔ ∀𝑧 ∈ 𝐴 (𝐴 ∩ (◡𝑇 “ {𝑧})) ∈ V) |
59 | 57, 58 | sylibr 234 |
1
⊢ (𝜑 → 𝑇 Se 𝐴) |