| Step | Hyp | Ref
| Expression |
| 1 | | fnse.3 |
. . . . . . 7
⊢ (𝜑 → 𝑅 Se 𝐵) |
| 2 | | fnse.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 3 | 2 | ffvelcdmda 7079 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝐵) |
| 4 | | seex 5618 |
. . . . . . 7
⊢ ((𝑅 Se 𝐵 ∧ (𝐹‘𝑧) ∈ 𝐵) → {𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∈ V) |
| 5 | 1, 3, 4 | syl2an2r 685 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → {𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∈ V) |
| 6 | | snex 5411 |
. . . . . 6
⊢ {(𝐹‘𝑧)} ∈ V |
| 7 | | unexg 7742 |
. . . . . 6
⊢ (({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∈ V ∧ {(𝐹‘𝑧)} ∈ V) → ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}) ∈ V) |
| 8 | 5, 6, 7 | sylancl 586 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}) ∈ V) |
| 9 | | imaeq2 6048 |
. . . . . . . . 9
⊢ (𝑤 = ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}) → (◡𝐹 “ 𝑤) = (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}))) |
| 10 | 9 | eleq1d 2820 |
. . . . . . . 8
⊢ (𝑤 = ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}) → ((◡𝐹 “ 𝑤) ∈ V ↔ (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})) ∈ V)) |
| 11 | 10 | imbi2d 340 |
. . . . . . 7
⊢ (𝑤 = ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}) → ((𝜑 → (◡𝐹 “ 𝑤) ∈ V) ↔ (𝜑 → (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})) ∈ V))) |
| 12 | | fnse.4 |
. . . . . . 7
⊢ (𝜑 → (◡𝐹 “ 𝑤) ∈ V) |
| 13 | 11, 12 | vtoclg 3538 |
. . . . . 6
⊢ (({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}) ∈ V → (𝜑 → (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})) ∈ V)) |
| 14 | 13 | impcom 407 |
. . . . 5
⊢ ((𝜑 ∧ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}) ∈ V) → (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})) ∈ V) |
| 15 | 8, 14 | syldan 591 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})) ∈ V) |
| 16 | | inss2 4218 |
. . . . . 6
⊢ (𝐴 ∩ (◡𝑇 “ {𝑧})) ⊆ (◡𝑇 “ {𝑧}) |
| 17 | | vex 3468 |
. . . . . . . . . 10
⊢ 𝑤 ∈ V |
| 18 | 17 | eliniseg 6086 |
. . . . . . . . 9
⊢ (𝑧 ∈ V → (𝑤 ∈ (◡𝑇 “ {𝑧}) ↔ 𝑤𝑇𝑧)) |
| 19 | 18 | elv 3469 |
. . . . . . . 8
⊢ (𝑤 ∈ (◡𝑇 “ {𝑧}) ↔ 𝑤𝑇𝑧) |
| 20 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → (𝐹‘𝑥) = (𝐹‘𝑤)) |
| 21 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → (𝐹‘𝑦) = (𝐹‘𝑧)) |
| 22 | 20, 21 | breqan12d 5140 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ↔ (𝐹‘𝑤)𝑅(𝐹‘𝑧))) |
| 23 | 20, 21 | eqeqan12d 2750 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ (𝐹‘𝑤) = (𝐹‘𝑧))) |
| 24 | | breq12 5129 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → (𝑥𝑆𝑦 ↔ 𝑤𝑆𝑧)) |
| 25 | 23, 24 | anbi12d 632 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → (((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦) ↔ ((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧))) |
| 26 | 22, 25 | orbi12d 918 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → (((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦)) ↔ ((𝐹‘𝑤)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧)))) |
| 27 | | fnse.1 |
. . . . . . . . . 10
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦)))} |
| 28 | 26, 27 | brab2a 5753 |
. . . . . . . . 9
⊢ (𝑤𝑇𝑧 ↔ ((𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑤)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧)))) |
| 29 | 2 | ffvelcdmda 7079 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝐵) |
| 30 | 29 | adantrr 717 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝐹‘𝑤) ∈ 𝐵) |
| 31 | | breq1 5127 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 = (𝐹‘𝑤) → (𝑢𝑅(𝐹‘𝑧) ↔ (𝐹‘𝑤)𝑅(𝐹‘𝑧))) |
| 32 | 31 | elrab3 3677 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑤) ∈ 𝐵 → ((𝐹‘𝑤) ∈ {𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ↔ (𝐹‘𝑤)𝑅(𝐹‘𝑧))) |
| 33 | 30, 32 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝐹‘𝑤) ∈ {𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ↔ (𝐹‘𝑤)𝑅(𝐹‘𝑧))) |
| 34 | 33 | biimprd 248 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝐹‘𝑤)𝑅(𝐹‘𝑧) → (𝐹‘𝑤) ∈ {𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)})) |
| 35 | | simpl 482 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧) → (𝐹‘𝑤) = (𝐹‘𝑧)) |
| 36 | | fvex 6894 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹‘𝑤) ∈ V |
| 37 | 36 | elsn 4621 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑤) ∈ {(𝐹‘𝑧)} ↔ (𝐹‘𝑤) = (𝐹‘𝑧)) |
| 38 | 35, 37 | sylibr 234 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧) → (𝐹‘𝑤) ∈ {(𝐹‘𝑧)}) |
| 39 | 38 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧) → (𝐹‘𝑤) ∈ {(𝐹‘𝑧)})) |
| 40 | 34, 39 | orim12d 966 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (((𝐹‘𝑤)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧)) → ((𝐹‘𝑤) ∈ {𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∨ (𝐹‘𝑤) ∈ {(𝐹‘𝑧)}))) |
| 41 | | elun 4133 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑤) ∈ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}) ↔ ((𝐹‘𝑤) ∈ {𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∨ (𝐹‘𝑤) ∈ {(𝐹‘𝑧)})) |
| 42 | 40, 41 | imbitrrdi 252 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (((𝐹‘𝑤)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧)) → (𝐹‘𝑤) ∈ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}))) |
| 43 | | simprl 770 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑤 ∈ 𝐴) |
| 44 | 42, 43 | jctild 525 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (((𝐹‘𝑤)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧)) → (𝑤 ∈ 𝐴 ∧ (𝐹‘𝑤) ∈ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})))) |
| 45 | 2 | ffnd 6712 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 46 | 45 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝐹 Fn 𝐴) |
| 47 | | elpreima 7053 |
. . . . . . . . . . . 12
⊢ (𝐹 Fn 𝐴 → (𝑤 ∈ (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})) ↔ (𝑤 ∈ 𝐴 ∧ (𝐹‘𝑤) ∈ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})))) |
| 48 | 46, 47 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑤 ∈ (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})) ↔ (𝑤 ∈ 𝐴 ∧ (𝐹‘𝑤) ∈ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})))) |
| 49 | 44, 48 | sylibrd 259 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (((𝐹‘𝑤)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧)) → 𝑤 ∈ (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})))) |
| 50 | 49 | expimpd 453 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑤)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧))) → 𝑤 ∈ (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})))) |
| 51 | 28, 50 | biimtrid 242 |
. . . . . . . 8
⊢ (𝜑 → (𝑤𝑇𝑧 → 𝑤 ∈ (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})))) |
| 52 | 19, 51 | biimtrid 242 |
. . . . . . 7
⊢ (𝜑 → (𝑤 ∈ (◡𝑇 “ {𝑧}) → 𝑤 ∈ (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})))) |
| 53 | 52 | ssrdv 3969 |
. . . . . 6
⊢ (𝜑 → (◡𝑇 “ {𝑧}) ⊆ (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}))) |
| 54 | 16, 53 | sstrid 3975 |
. . . . 5
⊢ (𝜑 → (𝐴 ∩ (◡𝑇 “ {𝑧})) ⊆ (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}))) |
| 55 | 54 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐴 ∩ (◡𝑇 “ {𝑧})) ⊆ (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}))) |
| 56 | 15, 55 | ssexd 5299 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐴 ∩ (◡𝑇 “ {𝑧})) ∈ V) |
| 57 | 56 | ralrimiva 3133 |
. 2
⊢ (𝜑 → ∀𝑧 ∈ 𝐴 (𝐴 ∩ (◡𝑇 “ {𝑧})) ∈ V) |
| 58 | | dfse2 6092 |
. 2
⊢ (𝑇 Se 𝐴 ↔ ∀𝑧 ∈ 𝐴 (𝐴 ∩ (◡𝑇 “ {𝑧})) ∈ V) |
| 59 | 57, 58 | sylibr 234 |
1
⊢ (𝜑 → 𝑇 Se 𝐴) |