| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prnz | Structured version Visualization version GIF version | ||
| Description: A pair containing a set is not empty. (Contributed by NM, 9-Apr-1994.) |
| Ref | Expression |
|---|---|
| prnz.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| prnz | ⊢ {𝐴, 𝐵} ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prnz.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | prid1 4729 | . 2 ⊢ 𝐴 ∈ {𝐴, 𝐵} |
| 3 | 2 | ne0ii 4310 | 1 ⊢ {𝐴, 𝐵} ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ∅c0 4299 {cpr 4594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-dif 3920 df-un 3922 df-nul 4300 df-sn 4593 df-pr 4595 |
| This theorem is referenced by: opnz 5436 propssopi 5471 fiint 9284 fiintOLD 9285 wilthlem2 26986 upgrbi 29027 wlkvtxiedg 29560 shincli 31298 chincli 31396 constrextdg2lem 33745 spr0nelg 47481 sprvalpwn0 47488 |
| Copyright terms: Public domain | W3C validator |