MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prnz Structured version   Visualization version   GIF version

Theorem prnz 4718
Description: A pair containing a set is not empty. (Contributed by NM, 9-Apr-1994.)
Hypothesis
Ref Expression
prnz.1 𝐴 ∈ V
Assertion
Ref Expression
prnz {𝐴, 𝐵} ≠ ∅

Proof of Theorem prnz
StepHypRef Expression
1 prnz.1 . . 3 𝐴 ∈ V
21prid1 4703 . 2 𝐴 ∈ {𝐴, 𝐵}
32ne0ii 4276 1 {𝐴, 𝐵} ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wne 2944  Vcvv 3430  c0 4261  {cpr 4568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ne 2945  df-v 3432  df-dif 3894  df-un 3896  df-nul 4262  df-sn 4567  df-pr 4569
This theorem is referenced by:  opnz  5390  propssopi  5424  fiint  9052  wilthlem2  26199  upgrbi  27444  wlkvtxiedg  27972  shincli  29703  chincli  29801  spr0nelg  44880  sprvalpwn0  44887
  Copyright terms: Public domain W3C validator