![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prnz | Structured version Visualization version GIF version |
Description: A pair containing a set is not empty. (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
prnz.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
prnz | ⊢ {𝐴, 𝐵} ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prnz.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | prid1 4767 | . 2 ⊢ 𝐴 ∈ {𝐴, 𝐵} |
3 | 2 | ne0ii 4350 | 1 ⊢ {𝐴, 𝐵} ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ≠ wne 2938 Vcvv 3478 ∅c0 4339 {cpr 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-v 3480 df-dif 3966 df-un 3968 df-nul 4340 df-sn 4632 df-pr 4634 |
This theorem is referenced by: opnz 5484 propssopi 5518 fiint 9364 fiintOLD 9365 wilthlem2 27127 upgrbi 29125 wlkvtxiedg 29658 shincli 31391 chincli 31489 spr0nelg 47401 sprvalpwn0 47408 |
Copyright terms: Public domain | W3C validator |