MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prnz Structured version   Visualization version   GIF version

Theorem prnz 4744
Description: A pair containing a set is not empty. (Contributed by NM, 9-Apr-1994.)
Hypothesis
Ref Expression
prnz.1 𝐴 ∈ V
Assertion
Ref Expression
prnz {𝐴, 𝐵} ≠ ∅

Proof of Theorem prnz
StepHypRef Expression
1 prnz.1 . . 3 𝐴 ∈ V
21prid1 4729 . 2 𝐴 ∈ {𝐴, 𝐵}
32ne0ii 4310 1 {𝐴, 𝐵} ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wne 2926  Vcvv 3450  c0 4299  {cpr 4594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-v 3452  df-dif 3920  df-un 3922  df-nul 4300  df-sn 4593  df-pr 4595
This theorem is referenced by:  opnz  5436  propssopi  5471  fiint  9284  fiintOLD  9285  wilthlem2  26986  upgrbi  29027  wlkvtxiedg  29560  shincli  31298  chincli  31396  constrextdg2lem  33745  spr0nelg  47481  sprvalpwn0  47488
  Copyright terms: Public domain W3C validator