Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prnz | Structured version Visualization version GIF version |
Description: A pair containing a set is not empty. (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
prnz.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
prnz | ⊢ {𝐴, 𝐵} ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prnz.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | prid1 4698 | . 2 ⊢ 𝐴 ∈ {𝐴, 𝐵} |
3 | 2 | ne0ii 4271 | 1 ⊢ {𝐴, 𝐵} ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 ∅c0 4256 {cpr 4563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-sn 4562 df-pr 4564 |
This theorem is referenced by: opnz 5388 propssopi 5422 fiint 9091 wilthlem2 26218 upgrbi 27463 wlkvtxiedg 27992 shincli 29724 chincli 29822 spr0nelg 44928 sprvalpwn0 44935 |
Copyright terms: Public domain | W3C validator |