| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prnz | Structured version Visualization version GIF version | ||
| Description: A pair containing a set is not empty. (Contributed by NM, 9-Apr-1994.) |
| Ref | Expression |
|---|---|
| prnz.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| prnz | ⊢ {𝐴, 𝐵} ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prnz.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | prid1 4715 | . 2 ⊢ 𝐴 ∈ {𝐴, 𝐵} |
| 3 | 2 | ne0ii 4294 | 1 ⊢ {𝐴, 𝐵} ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∅c0 4283 {cpr 4578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3905 df-un 3907 df-nul 4284 df-sn 4577 df-pr 4579 |
| This theorem is referenced by: opnz 5413 propssopi 5448 fiint 9211 wilthlem2 27004 upgrbi 29069 wlkvtxiedg 29601 shincli 31337 chincli 31435 constrextdg2lem 33756 spr0nelg 47506 sprvalpwn0 47513 |
| Copyright terms: Public domain | W3C validator |