MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prnz Structured version   Visualization version   GIF version

Theorem prnz 4758
Description: A pair containing a set is not empty. (Contributed by NM, 9-Apr-1994.)
Hypothesis
Ref Expression
prnz.1 𝐴 ∈ V
Assertion
Ref Expression
prnz {𝐴, 𝐵} ≠ ∅

Proof of Theorem prnz
StepHypRef Expression
1 prnz.1 . . 3 𝐴 ∈ V
21prid1 4743 . 2 𝐴 ∈ {𝐴, 𝐵}
32ne0ii 4324 1 {𝐴, 𝐵} ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wne 2933  Vcvv 3464  c0 4313  {cpr 4608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-v 3466  df-dif 3934  df-un 3936  df-nul 4314  df-sn 4607  df-pr 4609
This theorem is referenced by:  opnz  5453  propssopi  5488  fiint  9343  fiintOLD  9344  wilthlem2  27036  upgrbi  29077  wlkvtxiedg  29610  shincli  31348  chincli  31446  constrextdg2lem  33787  spr0nelg  47457  sprvalpwn0  47464
  Copyright terms: Public domain W3C validator