MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prnz Structured version   Visualization version   GIF version

Theorem prnz 4782
Description: A pair containing a set is not empty. (Contributed by NM, 9-Apr-1994.)
Hypothesis
Ref Expression
prnz.1 𝐴 ∈ V
Assertion
Ref Expression
prnz {𝐴, 𝐵} ≠ ∅

Proof of Theorem prnz
StepHypRef Expression
1 prnz.1 . . 3 𝐴 ∈ V
21prid1 4767 . 2 𝐴 ∈ {𝐴, 𝐵}
32ne0ii 4338 1 {𝐴, 𝐵} ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  wne 2941  Vcvv 3475  c0 4323  {cpr 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-v 3477  df-dif 3952  df-un 3954  df-nul 4324  df-sn 4630  df-pr 4632
This theorem is referenced by:  opnz  5474  propssopi  5509  fiint  9324  wilthlem2  26573  upgrbi  28353  wlkvtxiedg  28882  shincli  30615  chincli  30713  spr0nelg  46144  sprvalpwn0  46151
  Copyright terms: Public domain W3C validator