| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prnz | Structured version Visualization version GIF version | ||
| Description: A pair containing a set is not empty. (Contributed by NM, 9-Apr-1994.) |
| Ref | Expression |
|---|---|
| prnz.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| prnz | ⊢ {𝐴, 𝐵} ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prnz.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | prid1 4714 | . 2 ⊢ 𝐴 ∈ {𝐴, 𝐵} |
| 3 | 2 | ne0ii 4293 | 1 ⊢ {𝐴, 𝐵} ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 ≠ wne 2929 Vcvv 3437 ∅c0 4282 {cpr 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-v 3439 df-dif 3901 df-un 3903 df-nul 4283 df-sn 4576 df-pr 4578 |
| This theorem is referenced by: opnz 5416 propssopi 5451 fiint 9218 wilthlem2 27007 upgrbi 29073 wlkvtxiedg 29605 shincli 31344 chincli 31442 constrextdg2lem 33782 spr0nelg 47600 sprvalpwn0 47607 |
| Copyright terms: Public domain | W3C validator |