![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prnz | Structured version Visualization version GIF version |
Description: A pair containing a set is not empty. (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
prnz.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
prnz | ⊢ {𝐴, 𝐵} ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prnz.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | prid1 4484 | . 2 ⊢ 𝐴 ∈ {𝐴, 𝐵} |
3 | 2 | ne0ii 4122 | 1 ⊢ {𝐴, 𝐵} ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2157 ≠ wne 2969 Vcvv 3383 ∅c0 4113 {cpr 4368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2775 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-v 3385 df-dif 3770 df-un 3772 df-nul 4114 df-sn 4367 df-pr 4369 |
This theorem is referenced by: opnz 5130 propssopi 5162 fiint 8477 wilthlem2 25144 upgrbi 26320 wlkvtxiedg 26866 shincli 28738 chincli 28836 spr0nelg 42513 sprvalpwn0 42520 |
Copyright terms: Public domain | W3C validator |