Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prnz | Structured version Visualization version GIF version |
Description: A pair containing a set is not empty. (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
prnz.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
prnz | ⊢ {𝐴, 𝐵} ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prnz.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | prid1 4703 | . 2 ⊢ 𝐴 ∈ {𝐴, 𝐵} |
3 | 2 | ne0ii 4276 | 1 ⊢ {𝐴, 𝐵} ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2109 ≠ wne 2944 Vcvv 3430 ∅c0 4261 {cpr 4568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-v 3432 df-dif 3894 df-un 3896 df-nul 4262 df-sn 4567 df-pr 4569 |
This theorem is referenced by: opnz 5390 propssopi 5424 fiint 9052 wilthlem2 26199 upgrbi 27444 wlkvtxiedg 27972 shincli 29703 chincli 29801 spr0nelg 44880 sprvalpwn0 44887 |
Copyright terms: Public domain | W3C validator |