MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prnz Structured version   Visualization version   GIF version

Theorem prnz 4802
Description: A pair containing a set is not empty. (Contributed by NM, 9-Apr-1994.)
Hypothesis
Ref Expression
prnz.1 𝐴 ∈ V
Assertion
Ref Expression
prnz {𝐴, 𝐵} ≠ ∅

Proof of Theorem prnz
StepHypRef Expression
1 prnz.1 . . 3 𝐴 ∈ V
21prid1 4787 . 2 𝐴 ∈ {𝐴, 𝐵}
32ne0ii 4367 1 {𝐴, 𝐵} ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  wne 2946  Vcvv 3488  c0 4352  {cpr 4650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-v 3490  df-dif 3979  df-un 3981  df-nul 4353  df-sn 4649  df-pr 4651
This theorem is referenced by:  opnz  5493  propssopi  5527  fiint  9394  fiintOLD  9395  wilthlem2  27130  upgrbi  29128  wlkvtxiedg  29661  shincli  31394  chincli  31492  spr0nelg  47350  sprvalpwn0  47357
  Copyright terms: Public domain W3C validator