| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > spr0el | Structured version Visualization version GIF version | ||
| Description: The empty set is not an unordered pair over any set 𝑉. (Contributed by AV, 21-Nov-2021.) |
| Ref | Expression |
|---|---|
| spr0el | ⊢ ∅ ∉ (Pairs‘𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spr0nelg 47477 | . 2 ⊢ ∅ ∉ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} | |
| 2 | sprssspr 47482 | . . . . 5 ⊢ (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} | |
| 3 | 2 | sseli 3942 | . . . 4 ⊢ (∅ ∈ (Pairs‘𝑉) → ∅ ∈ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) |
| 4 | 3 | con3i 154 | . . 3 ⊢ (¬ ∅ ∈ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} → ¬ ∅ ∈ (Pairs‘𝑉)) |
| 5 | df-nel 3030 | . . 3 ⊢ (∅ ∉ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} ↔ ¬ ∅ ∈ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) | |
| 6 | df-nel 3030 | . . 3 ⊢ (∅ ∉ (Pairs‘𝑉) ↔ ¬ ∅ ∈ (Pairs‘𝑉)) | |
| 7 | 4, 5, 6 | 3imtr4i 292 | . 2 ⊢ (∅ ∉ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} → ∅ ∉ (Pairs‘𝑉)) |
| 8 | 1, 7 | ax-mp 5 | 1 ⊢ ∅ ∉ (Pairs‘𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 ∉ wnel 3029 ∅c0 4296 {cpr 4591 ‘cfv 6511 Pairscspr 47478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-spr 47479 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |