| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > spr0el | Structured version Visualization version GIF version | ||
| Description: The empty set is not an unordered pair over any set 𝑉. (Contributed by AV, 21-Nov-2021.) |
| Ref | Expression |
|---|---|
| spr0el | ⊢ ∅ ∉ (Pairs‘𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spr0nelg 47481 | . 2 ⊢ ∅ ∉ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} | |
| 2 | sprssspr 47486 | . . . . 5 ⊢ (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} | |
| 3 | 2 | sseli 3945 | . . . 4 ⊢ (∅ ∈ (Pairs‘𝑉) → ∅ ∈ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) |
| 4 | 3 | con3i 154 | . . 3 ⊢ (¬ ∅ ∈ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} → ¬ ∅ ∈ (Pairs‘𝑉)) |
| 5 | df-nel 3031 | . . 3 ⊢ (∅ ∉ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} ↔ ¬ ∅ ∈ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) | |
| 6 | df-nel 3031 | . . 3 ⊢ (∅ ∉ (Pairs‘𝑉) ↔ ¬ ∅ ∈ (Pairs‘𝑉)) | |
| 7 | 4, 5, 6 | 3imtr4i 292 | . 2 ⊢ (∅ ∉ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} → ∅ ∉ (Pairs‘𝑉)) |
| 8 | 1, 7 | ax-mp 5 | 1 ⊢ ∅ ∉ (Pairs‘𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2708 ∉ wnel 3030 ∅c0 4299 {cpr 4594 ‘cfv 6514 Pairscspr 47482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-spr 47483 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |