Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  spr0el Structured version   Visualization version   GIF version

Theorem spr0el 47644
Description: The empty set is not an unordered pair over any set 𝑉. (Contributed by AV, 21-Nov-2021.)
Assertion
Ref Expression
spr0el ∅ ∉ (Pairs‘𝑉)

Proof of Theorem spr0el
Dummy variables 𝑎 𝑏 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 spr0nelg 47638 . 2 ∅ ∉ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}}
2 sprssspr 47643 . . . . 5 (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}}
32sseli 3926 . . . 4 (∅ ∈ (Pairs‘𝑉) → ∅ ∈ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}})
43con3i 154 . . 3 (¬ ∅ ∈ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}} → ¬ ∅ ∈ (Pairs‘𝑉))
5 df-nel 3034 . . 3 (∅ ∉ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}} ↔ ¬ ∅ ∈ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}})
6 df-nel 3034 . . 3 (∅ ∉ (Pairs‘𝑉) ↔ ¬ ∅ ∈ (Pairs‘𝑉))
74, 5, 63imtr4i 292 . 2 (∅ ∉ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}} → ∅ ∉ (Pairs‘𝑉))
81, 7ax-mp 5 1 ∅ ∉ (Pairs‘𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wex 1780  wcel 2113  {cab 2711  wnel 3033  c0 4282  {cpr 4579  cfv 6489  Pairscspr 47639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6445  df-fun 6491  df-fv 6497  df-spr 47640
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator