Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  spr0el Structured version   Visualization version   GIF version

Theorem spr0el 43010
Description: The empty set is not an unordered pair over any set 𝑉. (Contributed by AV, 21-Nov-2021.)
Assertion
Ref Expression
spr0el ∅ ∉ (Pairs‘𝑉)

Proof of Theorem spr0el
Dummy variables 𝑎 𝑏 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 spr0nelg 43004 . 2 ∅ ∉ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}}
2 sprssspr 43009 . . . . 5 (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}}
32sseli 3855 . . . 4 (∅ ∈ (Pairs‘𝑉) → ∅ ∈ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}})
43con3i 152 . . 3 (¬ ∅ ∈ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}} → ¬ ∅ ∈ (Pairs‘𝑉))
5 df-nel 3075 . . 3 (∅ ∉ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}} ↔ ¬ ∅ ∈ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}})
6 df-nel 3075 . . 3 (∅ ∉ (Pairs‘𝑉) ↔ ¬ ∅ ∈ (Pairs‘𝑉))
74, 5, 63imtr4i 284 . 2 (∅ ∉ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}} → ∅ ∉ (Pairs‘𝑉))
81, 7ax-mp 5 1 ∅ ∉ (Pairs‘𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1507  wex 1742  wcel 2050  {cab 2759  wnel 3074  c0 4179  {cpr 4443  cfv 6188  Pairscspr 43005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-nul 4180  df-if 4351  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-spr 43006
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator