Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  spr0el Structured version   Visualization version   GIF version

Theorem spr0el 47483
Description: The empty set is not an unordered pair over any set 𝑉. (Contributed by AV, 21-Nov-2021.)
Assertion
Ref Expression
spr0el ∅ ∉ (Pairs‘𝑉)

Proof of Theorem spr0el
Dummy variables 𝑎 𝑏 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 spr0nelg 47477 . 2 ∅ ∉ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}}
2 sprssspr 47482 . . . . 5 (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}}
32sseli 3942 . . . 4 (∅ ∈ (Pairs‘𝑉) → ∅ ∈ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}})
43con3i 154 . . 3 (¬ ∅ ∈ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}} → ¬ ∅ ∈ (Pairs‘𝑉))
5 df-nel 3030 . . 3 (∅ ∉ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}} ↔ ¬ ∅ ∈ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}})
6 df-nel 3030 . . 3 (∅ ∉ (Pairs‘𝑉) ↔ ¬ ∅ ∈ (Pairs‘𝑉))
74, 5, 63imtr4i 292 . 2 (∅ ∉ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}} → ∅ ∉ (Pairs‘𝑉))
81, 7ax-mp 5 1 ∅ ∉ (Pairs‘𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wnel 3029  c0 4296  {cpr 4591  cfv 6511  Pairscspr 47478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-spr 47479
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator