Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > spr0el | Structured version Visualization version GIF version |
Description: The empty set is not an unordered pair over any set 𝑉. (Contributed by AV, 21-Nov-2021.) |
Ref | Expression |
---|---|
spr0el | ⊢ ∅ ∉ (Pairs‘𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spr0nelg 44880 | . 2 ⊢ ∅ ∉ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} | |
2 | sprssspr 44885 | . . . . 5 ⊢ (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} | |
3 | 2 | sseli 3921 | . . . 4 ⊢ (∅ ∈ (Pairs‘𝑉) → ∅ ∈ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) |
4 | 3 | con3i 154 | . . 3 ⊢ (¬ ∅ ∈ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} → ¬ ∅ ∈ (Pairs‘𝑉)) |
5 | df-nel 3051 | . . 3 ⊢ (∅ ∉ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} ↔ ¬ ∅ ∈ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) | |
6 | df-nel 3051 | . . 3 ⊢ (∅ ∉ (Pairs‘𝑉) ↔ ¬ ∅ ∈ (Pairs‘𝑉)) | |
7 | 4, 5, 6 | 3imtr4i 291 | . 2 ⊢ (∅ ∉ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} → ∅ ∉ (Pairs‘𝑉)) |
8 | 1, 7 | ax-mp 5 | 1 ⊢ ∅ ∉ (Pairs‘𝑉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ∃wex 1785 ∈ wcel 2109 {cab 2716 ∉ wnel 3050 ∅c0 4261 {cpr 4568 ‘cfv 6430 Pairscspr 44881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-spr 44882 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |