| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > spr0el | Structured version Visualization version GIF version | ||
| Description: The empty set is not an unordered pair over any set 𝑉. (Contributed by AV, 21-Nov-2021.) |
| Ref | Expression |
|---|---|
| spr0el | ⊢ ∅ ∉ (Pairs‘𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spr0nelg 47463 | . 2 ⊢ ∅ ∉ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} | |
| 2 | sprssspr 47468 | . . . . 5 ⊢ (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} | |
| 3 | 2 | sseli 3979 | . . . 4 ⊢ (∅ ∈ (Pairs‘𝑉) → ∅ ∈ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) |
| 4 | 3 | con3i 154 | . . 3 ⊢ (¬ ∅ ∈ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} → ¬ ∅ ∈ (Pairs‘𝑉)) |
| 5 | df-nel 3047 | . . 3 ⊢ (∅ ∉ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} ↔ ¬ ∅ ∈ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) | |
| 6 | df-nel 3047 | . . 3 ⊢ (∅ ∉ (Pairs‘𝑉) ↔ ¬ ∅ ∈ (Pairs‘𝑉)) | |
| 7 | 4, 5, 6 | 3imtr4i 292 | . 2 ⊢ (∅ ∉ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} → ∅ ∉ (Pairs‘𝑉)) |
| 8 | 1, 7 | ax-mp 5 | 1 ⊢ ∅ ∉ (Pairs‘𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∃wex 1779 ∈ wcel 2108 {cab 2714 ∉ wnel 3046 ∅c0 4333 {cpr 4628 ‘cfv 6561 Pairscspr 47464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-spr 47465 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |