Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  spr0el Structured version   Visualization version   GIF version

Theorem spr0el 44886
Description: The empty set is not an unordered pair over any set 𝑉. (Contributed by AV, 21-Nov-2021.)
Assertion
Ref Expression
spr0el ∅ ∉ (Pairs‘𝑉)

Proof of Theorem spr0el
Dummy variables 𝑎 𝑏 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 spr0nelg 44880 . 2 ∅ ∉ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}}
2 sprssspr 44885 . . . . 5 (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}}
32sseli 3921 . . . 4 (∅ ∈ (Pairs‘𝑉) → ∅ ∈ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}})
43con3i 154 . . 3 (¬ ∅ ∈ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}} → ¬ ∅ ∈ (Pairs‘𝑉))
5 df-nel 3051 . . 3 (∅ ∉ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}} ↔ ¬ ∅ ∈ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}})
6 df-nel 3051 . . 3 (∅ ∉ (Pairs‘𝑉) ↔ ¬ ∅ ∈ (Pairs‘𝑉))
74, 5, 63imtr4i 291 . 2 (∅ ∉ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}} → ∅ ∉ (Pairs‘𝑉))
81, 7ax-mp 5 1 ∅ ∉ (Pairs‘𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wex 1785  wcel 2109  {cab 2716  wnel 3050  c0 4261  {cpr 4568  cfv 6430  Pairscspr 44881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-spr 44882
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator