MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filssufilg Structured version   Visualization version   GIF version

Theorem filssufilg 23142
Description: A filter is contained in some ultrafilter. This version of filssufil 23143 contains the choice as a hypothesis (in the assumption that 𝒫 𝒫 𝑋 is well-orderable). (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
filssufilg ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
Distinct variable groups:   𝑓,𝐹   𝑓,𝑋

Proof of Theorem filssufilg
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → 𝒫 𝒫 𝑋 ∈ dom card)
2 rabss 4015 . . . . 5 ({𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ⊆ 𝒫 𝒫 𝑋 ↔ ∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝑔 ∈ 𝒫 𝒫 𝑋))
3 filsspw 23082 . . . . . . 7 (𝑔 ∈ (Fil‘𝑋) → 𝑔 ⊆ 𝒫 𝑋)
4 velpw 4549 . . . . . . 7 (𝑔 ∈ 𝒫 𝒫 𝑋𝑔 ⊆ 𝒫 𝑋)
53, 4sylibr 233 . . . . . 6 (𝑔 ∈ (Fil‘𝑋) → 𝑔 ∈ 𝒫 𝒫 𝑋)
65a1d 25 . . . . 5 (𝑔 ∈ (Fil‘𝑋) → (𝐹𝑔𝑔 ∈ 𝒫 𝒫 𝑋))
72, 6mprgbir 3068 . . . 4 {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ⊆ 𝒫 𝒫 𝑋
8 ssnum 9874 . . . 4 ((𝒫 𝒫 𝑋 ∈ dom card ∧ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ⊆ 𝒫 𝒫 𝑋) → {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∈ dom card)
91, 7, 8sylancl 586 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∈ dom card)
10 ssid 3952 . . . . . . 7 𝐹𝐹
1110jctr 525 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐹))
12 sseq2 3956 . . . . . . 7 (𝑔 = 𝐹 → (𝐹𝑔𝐹𝐹))
1312elrab 3633 . . . . . 6 (𝐹 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ↔ (𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐹))
1411, 13sylibr 233 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔})
1514ne0d 4279 . . . 4 (𝐹 ∈ (Fil‘𝑋) → {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ≠ ∅)
1615adantr 481 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ≠ ∅)
17 sseq2 3956 . . . . . . 7 (𝑔 = 𝑥 → (𝐹𝑔𝐹 𝑥))
18 simpr1 1193 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → 𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔})
19 ssrab 4016 . . . . . . . . . 10 (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ↔ (𝑥 ⊆ (Fil‘𝑋) ∧ ∀𝑔𝑥 𝐹𝑔))
2018, 19sylib 217 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → (𝑥 ⊆ (Fil‘𝑋) ∧ ∀𝑔𝑥 𝐹𝑔))
2120simpld 495 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → 𝑥 ⊆ (Fil‘𝑋))
22 simpr2 1194 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → 𝑥 ≠ ∅)
23 simpr3 1195 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → [] Or 𝑥)
24 sorpssun 7624 . . . . . . . . . 10 (( [] Or 𝑥 ∧ (𝑔𝑥𝑥)) → (𝑔) ∈ 𝑥)
2524ralrimivva 3193 . . . . . . . . 9 ( [] Or 𝑥 → ∀𝑔𝑥𝑥 (𝑔) ∈ 𝑥)
2623, 25syl 17 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → ∀𝑔𝑥𝑥 (𝑔) ∈ 𝑥)
27 filuni 23116 . . . . . . . 8 ((𝑥 ⊆ (Fil‘𝑋) ∧ 𝑥 ≠ ∅ ∧ ∀𝑔𝑥𝑥 (𝑔) ∈ 𝑥) → 𝑥 ∈ (Fil‘𝑋))
2821, 22, 26, 27syl3anc 1370 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → 𝑥 ∈ (Fil‘𝑋))
29 n0 4290 . . . . . . . . 9 (𝑥 ≠ ∅ ↔ ∃ 𝑥)
30 ssel2 3925 . . . . . . . . . . . . . 14 ((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥) → ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔})
31 sseq2 3956 . . . . . . . . . . . . . . 15 (𝑔 = → (𝐹𝑔𝐹))
3231elrab 3633 . . . . . . . . . . . . . 14 ( ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ↔ ( ∈ (Fil‘𝑋) ∧ 𝐹))
3330, 32sylib 217 . . . . . . . . . . . . 13 ((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥) → ( ∈ (Fil‘𝑋) ∧ 𝐹))
3433simprd 496 . . . . . . . . . . . 12 ((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥) → 𝐹)
35 ssuni 4877 . . . . . . . . . . . 12 ((𝐹𝑥) → 𝐹 𝑥)
3634, 35sylancom 588 . . . . . . . . . . 11 ((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥) → 𝐹 𝑥)
3736ex 413 . . . . . . . . . 10 (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} → (𝑥𝐹 𝑥))
3837exlimdv 1935 . . . . . . . . 9 (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} → (∃ 𝑥𝐹 𝑥))
3929, 38biimtrid 241 . . . . . . . 8 (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} → (𝑥 ≠ ∅ → 𝐹 𝑥))
4018, 22, 39sylc 65 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → 𝐹 𝑥)
4117, 28, 40elrabd 3635 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → 𝑥 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔})
4241ex 413 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → ((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔}))
4342alrimiv 1929 . . . 4 (𝐹 ∈ (Fil‘𝑋) → ∀𝑥((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔}))
4443adantr 481 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → ∀𝑥((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔}))
45 zornn0g 10340 . . 3 (({𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∈ dom card ∧ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ≠ ∅ ∧ ∀𝑥((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔})) → ∃𝑓 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔}∀ ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ¬ 𝑓)
469, 16, 44, 45syl3anc 1370 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → ∃𝑓 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔}∀ ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ¬ 𝑓)
47 sseq2 3956 . . . . 5 (𝑔 = 𝑓 → (𝐹𝑔𝐹𝑓))
4847elrab 3633 . . . 4 (𝑓 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ↔ (𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓))
4931ralrab 3639 . . . 4 (∀ ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ¬ 𝑓 ↔ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓))
50 simpll 764 . . . . . 6 (((𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓) ∧ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓)) → 𝑓 ∈ (Fil‘𝑋))
51 sstr2 3937 . . . . . . . . . . 11 (𝐹𝑓 → (𝑓𝐹))
5251imim1d 82 . . . . . . . . . 10 (𝐹𝑓 → ((𝐹 → ¬ 𝑓) → (𝑓 → ¬ 𝑓)))
53 df-pss 3915 . . . . . . . . . . . . 13 (𝑓 ↔ (𝑓𝑓))
5453simplbi2 501 . . . . . . . . . . . 12 (𝑓 → (𝑓𝑓))
5554necon1bd 2958 . . . . . . . . . . 11 (𝑓 → (¬ 𝑓𝑓 = ))
5655a2i 14 . . . . . . . . . 10 ((𝑓 → ¬ 𝑓) → (𝑓𝑓 = ))
5752, 56syl6 35 . . . . . . . . 9 (𝐹𝑓 → ((𝐹 → ¬ 𝑓) → (𝑓𝑓 = )))
5857ralimdv 3162 . . . . . . . 8 (𝐹𝑓 → (∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓) → ∀ ∈ (Fil‘𝑋)(𝑓𝑓 = )))
5958imp 407 . . . . . . 7 ((𝐹𝑓 ∧ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓)) → ∀ ∈ (Fil‘𝑋)(𝑓𝑓 = ))
6059adantll 711 . . . . . 6 (((𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓) ∧ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓)) → ∀ ∈ (Fil‘𝑋)(𝑓𝑓 = ))
61 isufil2 23139 . . . . . 6 (𝑓 ∈ (UFil‘𝑋) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀ ∈ (Fil‘𝑋)(𝑓𝑓 = )))
6250, 60, 61sylanbrc 583 . . . . 5 (((𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓) ∧ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓)) → 𝑓 ∈ (UFil‘𝑋))
63 simplr 766 . . . . 5 (((𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓) ∧ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓)) → 𝐹𝑓)
6462, 63jca 512 . . . 4 (((𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓) ∧ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓)) → (𝑓 ∈ (UFil‘𝑋) ∧ 𝐹𝑓))
6548, 49, 64syl2anb 598 . . 3 ((𝑓 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ ∀ ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ¬ 𝑓) → (𝑓 ∈ (UFil‘𝑋) ∧ 𝐹𝑓))
6665reximi2 3078 . 2 (∃𝑓 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔}∀ ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ¬ 𝑓 → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
6746, 66syl 17 1 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086  wal 1538  wex 1780  wcel 2105  wne 2940  wral 3061  wrex 3070  {crab 3403  cun 3894  wss 3896  wpss 3897  c0 4266  𝒫 cpw 4544   cuni 4849   Or wor 5519  dom cdm 5607  cfv 6465   [] crpss 7616  cardccrd 9770  Filcfil 23076  UFilcufil 23130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-int 4892  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-se 5563  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-isom 6474  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-rpss 7617  df-om 7759  df-1st 7877  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-1o 8345  df-oadd 8349  df-er 8547  df-en 8783  df-dom 8784  df-fin 8786  df-fi 9246  df-dju 9736  df-card 9774  df-fbas 20674  df-fg 20675  df-fil 23077  df-ufil 23132
This theorem is referenced by:  filssufil  23143  numufl  23146
  Copyright terms: Public domain W3C validator