Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. . . 4
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫
𝑋 ∈ dom card) →
𝒫 𝒫 𝑋
∈ dom card) |
2 | | rabss 4001 |
. . . . 5
⊢ ({𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ⊆ 𝒫 𝒫 𝑋 ↔ ∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝑔 ∈ 𝒫 𝒫 𝑋)) |
3 | | filsspw 22910 |
. . . . . . 7
⊢ (𝑔 ∈ (Fil‘𝑋) → 𝑔 ⊆ 𝒫 𝑋) |
4 | | velpw 4535 |
. . . . . . 7
⊢ (𝑔 ∈ 𝒫 𝒫
𝑋 ↔ 𝑔 ⊆ 𝒫 𝑋) |
5 | 3, 4 | sylibr 233 |
. . . . . 6
⊢ (𝑔 ∈ (Fil‘𝑋) → 𝑔 ∈ 𝒫 𝒫 𝑋) |
6 | 5 | a1d 25 |
. . . . 5
⊢ (𝑔 ∈ (Fil‘𝑋) → (𝐹 ⊆ 𝑔 → 𝑔 ∈ 𝒫 𝒫 𝑋)) |
7 | 2, 6 | mprgbir 3078 |
. . . 4
⊢ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ⊆ 𝒫 𝒫 𝑋 |
8 | | ssnum 9726 |
. . . 4
⊢
((𝒫 𝒫 𝑋 ∈ dom card ∧ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ⊆ 𝒫 𝒫 𝑋) → {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ∈ dom card) |
9 | 1, 7, 8 | sylancl 585 |
. . 3
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫
𝑋 ∈ dom card) →
{𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ∈ dom card) |
10 | | ssid 3939 |
. . . . . . 7
⊢ 𝐹 ⊆ 𝐹 |
11 | 10 | jctr 524 |
. . . . . 6
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐹)) |
12 | | sseq2 3943 |
. . . . . . 7
⊢ (𝑔 = 𝐹 → (𝐹 ⊆ 𝑔 ↔ 𝐹 ⊆ 𝐹)) |
13 | 12 | elrab 3617 |
. . . . . 6
⊢ (𝐹 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ↔ (𝐹 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐹)) |
14 | 11, 13 | sylibr 233 |
. . . . 5
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔}) |
15 | 14 | ne0d 4266 |
. . . 4
⊢ (𝐹 ∈ (Fil‘𝑋) → {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ≠ ∅) |
16 | 15 | adantr 480 |
. . 3
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫
𝑋 ∈ dom card) →
{𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ≠ ∅) |
17 | | sseq2 3943 |
. . . . . . 7
⊢ (𝑔 = ∪
𝑥 → (𝐹 ⊆ 𝑔 ↔ 𝐹 ⊆ ∪ 𝑥)) |
18 | | simpr1 1192 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ∧ 𝑥 ≠ ∅ ∧ [⊊] Or
𝑥)) → 𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔}) |
19 | | ssrab 4002 |
. . . . . . . . . 10
⊢ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ↔ (𝑥 ⊆ (Fil‘𝑋) ∧ ∀𝑔 ∈ 𝑥 𝐹 ⊆ 𝑔)) |
20 | 18, 19 | sylib 217 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ∧ 𝑥 ≠ ∅ ∧ [⊊] Or
𝑥)) → (𝑥 ⊆ (Fil‘𝑋) ∧ ∀𝑔 ∈ 𝑥 𝐹 ⊆ 𝑔)) |
21 | 20 | simpld 494 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ∧ 𝑥 ≠ ∅ ∧ [⊊] Or
𝑥)) → 𝑥 ⊆ (Fil‘𝑋)) |
22 | | simpr2 1193 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ∧ 𝑥 ≠ ∅ ∧ [⊊] Or
𝑥)) → 𝑥 ≠ ∅) |
23 | | simpr3 1194 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ∧ 𝑥 ≠ ∅ ∧ [⊊] Or
𝑥)) →
[⊊] Or 𝑥) |
24 | | sorpssun 7561 |
. . . . . . . . . 10
⊢ ((
[⊊] Or 𝑥
∧ (𝑔 ∈ 𝑥 ∧ ℎ ∈ 𝑥)) → (𝑔 ∪ ℎ) ∈ 𝑥) |
25 | 24 | ralrimivva 3114 |
. . . . . . . . 9
⊢ (
[⊊] Or 𝑥
→ ∀𝑔 ∈
𝑥 ∀ℎ ∈ 𝑥 (𝑔 ∪ ℎ) ∈ 𝑥) |
26 | 23, 25 | syl 17 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ∧ 𝑥 ≠ ∅ ∧ [⊊] Or
𝑥)) → ∀𝑔 ∈ 𝑥 ∀ℎ ∈ 𝑥 (𝑔 ∪ ℎ) ∈ 𝑥) |
27 | | filuni 22944 |
. . . . . . . 8
⊢ ((𝑥 ⊆ (Fil‘𝑋) ∧ 𝑥 ≠ ∅ ∧ ∀𝑔 ∈ 𝑥 ∀ℎ ∈ 𝑥 (𝑔 ∪ ℎ) ∈ 𝑥) → ∪ 𝑥 ∈ (Fil‘𝑋)) |
28 | 21, 22, 26, 27 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ∧ 𝑥 ≠ ∅ ∧ [⊊] Or
𝑥)) → ∪ 𝑥
∈ (Fil‘𝑋)) |
29 | | n0 4277 |
. . . . . . . . 9
⊢ (𝑥 ≠ ∅ ↔
∃ℎ ℎ ∈ 𝑥) |
30 | | ssel2 3912 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ∧ ℎ ∈ 𝑥) → ℎ ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔}) |
31 | | sseq2 3943 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = ℎ → (𝐹 ⊆ 𝑔 ↔ 𝐹 ⊆ ℎ)) |
32 | 31 | elrab 3617 |
. . . . . . . . . . . . . 14
⊢ (ℎ ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ↔ (ℎ ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ ℎ)) |
33 | 30, 32 | sylib 217 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ∧ ℎ ∈ 𝑥) → (ℎ ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ ℎ)) |
34 | 33 | simprd 495 |
. . . . . . . . . . . 12
⊢ ((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ∧ ℎ ∈ 𝑥) → 𝐹 ⊆ ℎ) |
35 | | ssuni 4863 |
. . . . . . . . . . . 12
⊢ ((𝐹 ⊆ ℎ ∧ ℎ ∈ 𝑥) → 𝐹 ⊆ ∪ 𝑥) |
36 | 34, 35 | sylancom 587 |
. . . . . . . . . . 11
⊢ ((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ∧ ℎ ∈ 𝑥) → 𝐹 ⊆ ∪ 𝑥) |
37 | 36 | ex 412 |
. . . . . . . . . 10
⊢ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} → (ℎ ∈ 𝑥 → 𝐹 ⊆ ∪ 𝑥)) |
38 | 37 | exlimdv 1937 |
. . . . . . . . 9
⊢ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} → (∃ℎ ℎ ∈ 𝑥 → 𝐹 ⊆ ∪ 𝑥)) |
39 | 29, 38 | syl5bi 241 |
. . . . . . . 8
⊢ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} → (𝑥 ≠ ∅ → 𝐹 ⊆ ∪ 𝑥)) |
40 | 18, 22, 39 | sylc 65 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ∧ 𝑥 ≠ ∅ ∧ [⊊] Or
𝑥)) → 𝐹 ⊆ ∪ 𝑥) |
41 | 17, 28, 40 | elrabd 3619 |
. . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ∧ 𝑥 ≠ ∅ ∧ [⊊] Or
𝑥)) → ∪ 𝑥
∈ {𝑔 ∈
(Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔}) |
42 | 41 | ex 412 |
. . . . 5
⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ∧ 𝑥 ≠ ∅ ∧ [⊊] Or
𝑥) → ∪ 𝑥
∈ {𝑔 ∈
(Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔})) |
43 | 42 | alrimiv 1931 |
. . . 4
⊢ (𝐹 ∈ (Fil‘𝑋) → ∀𝑥((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ∧ 𝑥 ≠ ∅ ∧ [⊊] Or
𝑥) → ∪ 𝑥
∈ {𝑔 ∈
(Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔})) |
44 | 43 | adantr 480 |
. . 3
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫
𝑋 ∈ dom card) →
∀𝑥((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ∧ 𝑥 ≠ ∅ ∧ [⊊] Or
𝑥) → ∪ 𝑥
∈ {𝑔 ∈
(Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔})) |
45 | | zornn0g 10192 |
. . 3
⊢ (({𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ∈ dom card ∧ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ≠ ∅ ∧ ∀𝑥((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ∧ 𝑥 ≠ ∅ ∧ [⊊] Or
𝑥) → ∪ 𝑥
∈ {𝑔 ∈
(Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔})) → ∃𝑓 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔}∀ℎ ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ¬ 𝑓 ⊊ ℎ) |
46 | 9, 16, 44, 45 | syl3anc 1369 |
. 2
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫
𝑋 ∈ dom card) →
∃𝑓 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔}∀ℎ ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ¬ 𝑓 ⊊ ℎ) |
47 | | sseq2 3943 |
. . . . 5
⊢ (𝑔 = 𝑓 → (𝐹 ⊆ 𝑔 ↔ 𝐹 ⊆ 𝑓)) |
48 | 47 | elrab 3617 |
. . . 4
⊢ (𝑓 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ↔ (𝑓 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝑓)) |
49 | 31 | ralrab 3623 |
. . . 4
⊢
(∀ℎ ∈
{𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ¬ 𝑓 ⊊ ℎ ↔ ∀ℎ ∈ (Fil‘𝑋)(𝐹 ⊆ ℎ → ¬ 𝑓 ⊊ ℎ)) |
50 | | simpll 763 |
. . . . . 6
⊢ (((𝑓 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝑓) ∧ ∀ℎ ∈ (Fil‘𝑋)(𝐹 ⊆ ℎ → ¬ 𝑓 ⊊ ℎ)) → 𝑓 ∈ (Fil‘𝑋)) |
51 | | sstr2 3924 |
. . . . . . . . . . 11
⊢ (𝐹 ⊆ 𝑓 → (𝑓 ⊆ ℎ → 𝐹 ⊆ ℎ)) |
52 | 51 | imim1d 82 |
. . . . . . . . . 10
⊢ (𝐹 ⊆ 𝑓 → ((𝐹 ⊆ ℎ → ¬ 𝑓 ⊊ ℎ) → (𝑓 ⊆ ℎ → ¬ 𝑓 ⊊ ℎ))) |
53 | | df-pss 3902 |
. . . . . . . . . . . . 13
⊢ (𝑓 ⊊ ℎ ↔ (𝑓 ⊆ ℎ ∧ 𝑓 ≠ ℎ)) |
54 | 53 | simplbi2 500 |
. . . . . . . . . . . 12
⊢ (𝑓 ⊆ ℎ → (𝑓 ≠ ℎ → 𝑓 ⊊ ℎ)) |
55 | 54 | necon1bd 2960 |
. . . . . . . . . . 11
⊢ (𝑓 ⊆ ℎ → (¬ 𝑓 ⊊ ℎ → 𝑓 = ℎ)) |
56 | 55 | a2i 14 |
. . . . . . . . . 10
⊢ ((𝑓 ⊆ ℎ → ¬ 𝑓 ⊊ ℎ) → (𝑓 ⊆ ℎ → 𝑓 = ℎ)) |
57 | 52, 56 | syl6 35 |
. . . . . . . . 9
⊢ (𝐹 ⊆ 𝑓 → ((𝐹 ⊆ ℎ → ¬ 𝑓 ⊊ ℎ) → (𝑓 ⊆ ℎ → 𝑓 = ℎ))) |
58 | 57 | ralimdv 3103 |
. . . . . . . 8
⊢ (𝐹 ⊆ 𝑓 → (∀ℎ ∈ (Fil‘𝑋)(𝐹 ⊆ ℎ → ¬ 𝑓 ⊊ ℎ) → ∀ℎ ∈ (Fil‘𝑋)(𝑓 ⊆ ℎ → 𝑓 = ℎ))) |
59 | 58 | imp 406 |
. . . . . . 7
⊢ ((𝐹 ⊆ 𝑓 ∧ ∀ℎ ∈ (Fil‘𝑋)(𝐹 ⊆ ℎ → ¬ 𝑓 ⊊ ℎ)) → ∀ℎ ∈ (Fil‘𝑋)(𝑓 ⊆ ℎ → 𝑓 = ℎ)) |
60 | 59 | adantll 710 |
. . . . . 6
⊢ (((𝑓 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝑓) ∧ ∀ℎ ∈ (Fil‘𝑋)(𝐹 ⊆ ℎ → ¬ 𝑓 ⊊ ℎ)) → ∀ℎ ∈ (Fil‘𝑋)(𝑓 ⊆ ℎ → 𝑓 = ℎ)) |
61 | | isufil2 22967 |
. . . . . 6
⊢ (𝑓 ∈ (UFil‘𝑋) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀ℎ ∈ (Fil‘𝑋)(𝑓 ⊆ ℎ → 𝑓 = ℎ))) |
62 | 50, 60, 61 | sylanbrc 582 |
. . . . 5
⊢ (((𝑓 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝑓) ∧ ∀ℎ ∈ (Fil‘𝑋)(𝐹 ⊆ ℎ → ¬ 𝑓 ⊊ ℎ)) → 𝑓 ∈ (UFil‘𝑋)) |
63 | | simplr 765 |
. . . . 5
⊢ (((𝑓 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝑓) ∧ ∀ℎ ∈ (Fil‘𝑋)(𝐹 ⊆ ℎ → ¬ 𝑓 ⊊ ℎ)) → 𝐹 ⊆ 𝑓) |
64 | 62, 63 | jca 511 |
. . . 4
⊢ (((𝑓 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝑓) ∧ ∀ℎ ∈ (Fil‘𝑋)(𝐹 ⊆ ℎ → ¬ 𝑓 ⊊ ℎ)) → (𝑓 ∈ (UFil‘𝑋) ∧ 𝐹 ⊆ 𝑓)) |
65 | 48, 49, 64 | syl2anb 597 |
. . 3
⊢ ((𝑓 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ∧ ∀ℎ ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ¬ 𝑓 ⊊ ℎ) → (𝑓 ∈ (UFil‘𝑋) ∧ 𝐹 ⊆ 𝑓)) |
66 | 65 | reximi2 3171 |
. 2
⊢
(∃𝑓 ∈
{𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔}∀ℎ ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹 ⊆ 𝑔} ¬ 𝑓 ⊊ ℎ → ∃𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓) |
67 | 46, 66 | syl 17 |
1
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫
𝑋 ∈ dom card) →
∃𝑓 ∈
(UFil‘𝑋)𝐹 ⊆ 𝑓) |