MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filssufilg Structured version   Visualization version   GIF version

Theorem filssufilg 23062
Description: A filter is contained in some ultrafilter. This version of filssufil 23063 contains the choice as a hypothesis (in the assumption that 𝒫 𝒫 𝑋 is well-orderable). (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
filssufilg ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
Distinct variable groups:   𝑓,𝐹   𝑓,𝑋

Proof of Theorem filssufilg
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → 𝒫 𝒫 𝑋 ∈ dom card)
2 rabss 4005 . . . . 5 ({𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ⊆ 𝒫 𝒫 𝑋 ↔ ∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝑔 ∈ 𝒫 𝒫 𝑋))
3 filsspw 23002 . . . . . . 7 (𝑔 ∈ (Fil‘𝑋) → 𝑔 ⊆ 𝒫 𝑋)
4 velpw 4538 . . . . . . 7 (𝑔 ∈ 𝒫 𝒫 𝑋𝑔 ⊆ 𝒫 𝑋)
53, 4sylibr 233 . . . . . 6 (𝑔 ∈ (Fil‘𝑋) → 𝑔 ∈ 𝒫 𝒫 𝑋)
65a1d 25 . . . . 5 (𝑔 ∈ (Fil‘𝑋) → (𝐹𝑔𝑔 ∈ 𝒫 𝒫 𝑋))
72, 6mprgbir 3079 . . . 4 {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ⊆ 𝒫 𝒫 𝑋
8 ssnum 9795 . . . 4 ((𝒫 𝒫 𝑋 ∈ dom card ∧ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ⊆ 𝒫 𝒫 𝑋) → {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∈ dom card)
91, 7, 8sylancl 586 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∈ dom card)
10 ssid 3943 . . . . . . 7 𝐹𝐹
1110jctr 525 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐹))
12 sseq2 3947 . . . . . . 7 (𝑔 = 𝐹 → (𝐹𝑔𝐹𝐹))
1312elrab 3624 . . . . . 6 (𝐹 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ↔ (𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐹))
1411, 13sylibr 233 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔})
1514ne0d 4269 . . . 4 (𝐹 ∈ (Fil‘𝑋) → {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ≠ ∅)
1615adantr 481 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ≠ ∅)
17 sseq2 3947 . . . . . . 7 (𝑔 = 𝑥 → (𝐹𝑔𝐹 𝑥))
18 simpr1 1193 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → 𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔})
19 ssrab 4006 . . . . . . . . . 10 (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ↔ (𝑥 ⊆ (Fil‘𝑋) ∧ ∀𝑔𝑥 𝐹𝑔))
2018, 19sylib 217 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → (𝑥 ⊆ (Fil‘𝑋) ∧ ∀𝑔𝑥 𝐹𝑔))
2120simpld 495 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → 𝑥 ⊆ (Fil‘𝑋))
22 simpr2 1194 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → 𝑥 ≠ ∅)
23 simpr3 1195 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → [] Or 𝑥)
24 sorpssun 7583 . . . . . . . . . 10 (( [] Or 𝑥 ∧ (𝑔𝑥𝑥)) → (𝑔) ∈ 𝑥)
2524ralrimivva 3123 . . . . . . . . 9 ( [] Or 𝑥 → ∀𝑔𝑥𝑥 (𝑔) ∈ 𝑥)
2623, 25syl 17 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → ∀𝑔𝑥𝑥 (𝑔) ∈ 𝑥)
27 filuni 23036 . . . . . . . 8 ((𝑥 ⊆ (Fil‘𝑋) ∧ 𝑥 ≠ ∅ ∧ ∀𝑔𝑥𝑥 (𝑔) ∈ 𝑥) → 𝑥 ∈ (Fil‘𝑋))
2821, 22, 26, 27syl3anc 1370 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → 𝑥 ∈ (Fil‘𝑋))
29 n0 4280 . . . . . . . . 9 (𝑥 ≠ ∅ ↔ ∃ 𝑥)
30 ssel2 3916 . . . . . . . . . . . . . 14 ((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥) → ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔})
31 sseq2 3947 . . . . . . . . . . . . . . 15 (𝑔 = → (𝐹𝑔𝐹))
3231elrab 3624 . . . . . . . . . . . . . 14 ( ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ↔ ( ∈ (Fil‘𝑋) ∧ 𝐹))
3330, 32sylib 217 . . . . . . . . . . . . 13 ((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥) → ( ∈ (Fil‘𝑋) ∧ 𝐹))
3433simprd 496 . . . . . . . . . . . 12 ((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥) → 𝐹)
35 ssuni 4866 . . . . . . . . . . . 12 ((𝐹𝑥) → 𝐹 𝑥)
3634, 35sylancom 588 . . . . . . . . . . 11 ((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥) → 𝐹 𝑥)
3736ex 413 . . . . . . . . . 10 (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} → (𝑥𝐹 𝑥))
3837exlimdv 1936 . . . . . . . . 9 (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} → (∃ 𝑥𝐹 𝑥))
3929, 38syl5bi 241 . . . . . . . 8 (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} → (𝑥 ≠ ∅ → 𝐹 𝑥))
4018, 22, 39sylc 65 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → 𝐹 𝑥)
4117, 28, 40elrabd 3626 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → 𝑥 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔})
4241ex 413 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → ((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔}))
4342alrimiv 1930 . . . 4 (𝐹 ∈ (Fil‘𝑋) → ∀𝑥((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔}))
4443adantr 481 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → ∀𝑥((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔}))
45 zornn0g 10261 . . 3 (({𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∈ dom card ∧ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ≠ ∅ ∧ ∀𝑥((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔})) → ∃𝑓 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔}∀ ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ¬ 𝑓)
469, 16, 44, 45syl3anc 1370 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → ∃𝑓 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔}∀ ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ¬ 𝑓)
47 sseq2 3947 . . . . 5 (𝑔 = 𝑓 → (𝐹𝑔𝐹𝑓))
4847elrab 3624 . . . 4 (𝑓 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ↔ (𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓))
4931ralrab 3630 . . . 4 (∀ ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ¬ 𝑓 ↔ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓))
50 simpll 764 . . . . . 6 (((𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓) ∧ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓)) → 𝑓 ∈ (Fil‘𝑋))
51 sstr2 3928 . . . . . . . . . . 11 (𝐹𝑓 → (𝑓𝐹))
5251imim1d 82 . . . . . . . . . 10 (𝐹𝑓 → ((𝐹 → ¬ 𝑓) → (𝑓 → ¬ 𝑓)))
53 df-pss 3906 . . . . . . . . . . . . 13 (𝑓 ↔ (𝑓𝑓))
5453simplbi2 501 . . . . . . . . . . . 12 (𝑓 → (𝑓𝑓))
5554necon1bd 2961 . . . . . . . . . . 11 (𝑓 → (¬ 𝑓𝑓 = ))
5655a2i 14 . . . . . . . . . 10 ((𝑓 → ¬ 𝑓) → (𝑓𝑓 = ))
5752, 56syl6 35 . . . . . . . . 9 (𝐹𝑓 → ((𝐹 → ¬ 𝑓) → (𝑓𝑓 = )))
5857ralimdv 3109 . . . . . . . 8 (𝐹𝑓 → (∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓) → ∀ ∈ (Fil‘𝑋)(𝑓𝑓 = )))
5958imp 407 . . . . . . 7 ((𝐹𝑓 ∧ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓)) → ∀ ∈ (Fil‘𝑋)(𝑓𝑓 = ))
6059adantll 711 . . . . . 6 (((𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓) ∧ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓)) → ∀ ∈ (Fil‘𝑋)(𝑓𝑓 = ))
61 isufil2 23059 . . . . . 6 (𝑓 ∈ (UFil‘𝑋) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀ ∈ (Fil‘𝑋)(𝑓𝑓 = )))
6250, 60, 61sylanbrc 583 . . . . 5 (((𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓) ∧ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓)) → 𝑓 ∈ (UFil‘𝑋))
63 simplr 766 . . . . 5 (((𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓) ∧ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓)) → 𝐹𝑓)
6462, 63jca 512 . . . 4 (((𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓) ∧ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓)) → (𝑓 ∈ (UFil‘𝑋) ∧ 𝐹𝑓))
6548, 49, 64syl2anb 598 . . 3 ((𝑓 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ ∀ ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ¬ 𝑓) → (𝑓 ∈ (UFil‘𝑋) ∧ 𝐹𝑓))
6665reximi2 3175 . 2 (∃𝑓 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔}∀ ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ¬ 𝑓 → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
6746, 66syl 17 1 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086  wal 1537  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  cun 3885  wss 3887  wpss 3888  c0 4256  𝒫 cpw 4533   cuni 4839   Or wor 5502  dom cdm 5589  cfv 6433   [] crpss 7575  cardccrd 9693  Filcfil 22996  UFilcufil 23050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-rpss 7576  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-fin 8737  df-fi 9170  df-dju 9659  df-card 9697  df-fbas 20594  df-fg 20595  df-fil 22997  df-ufil 23052
This theorem is referenced by:  filssufil  23063  numufl  23066
  Copyright terms: Public domain W3C validator