MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filssufilg Structured version   Visualization version   GIF version

Theorem filssufilg 23262
Description: A filter is contained in some ultrafilter. This version of filssufil 23263 contains the choice as a hypothesis (in the assumption that 𝒫 𝒫 𝑋 is well-orderable). (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
filssufilg ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
Distinct variable groups:   𝑓,𝐹   𝑓,𝑋

Proof of Theorem filssufilg
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → 𝒫 𝒫 𝑋 ∈ dom card)
2 rabss 4029 . . . . 5 ({𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ⊆ 𝒫 𝒫 𝑋 ↔ ∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝑔 ∈ 𝒫 𝒫 𝑋))
3 filsspw 23202 . . . . . . 7 (𝑔 ∈ (Fil‘𝑋) → 𝑔 ⊆ 𝒫 𝑋)
4 velpw 4565 . . . . . . 7 (𝑔 ∈ 𝒫 𝒫 𝑋𝑔 ⊆ 𝒫 𝑋)
53, 4sylibr 233 . . . . . 6 (𝑔 ∈ (Fil‘𝑋) → 𝑔 ∈ 𝒫 𝒫 𝑋)
65a1d 25 . . . . 5 (𝑔 ∈ (Fil‘𝑋) → (𝐹𝑔𝑔 ∈ 𝒫 𝒫 𝑋))
72, 6mprgbir 3071 . . . 4 {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ⊆ 𝒫 𝒫 𝑋
8 ssnum 9975 . . . 4 ((𝒫 𝒫 𝑋 ∈ dom card ∧ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ⊆ 𝒫 𝒫 𝑋) → {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∈ dom card)
91, 7, 8sylancl 586 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∈ dom card)
10 ssid 3966 . . . . . . 7 𝐹𝐹
1110jctr 525 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐹))
12 sseq2 3970 . . . . . . 7 (𝑔 = 𝐹 → (𝐹𝑔𝐹𝐹))
1312elrab 3645 . . . . . 6 (𝐹 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ↔ (𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐹))
1411, 13sylibr 233 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔})
1514ne0d 4295 . . . 4 (𝐹 ∈ (Fil‘𝑋) → {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ≠ ∅)
1615adantr 481 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ≠ ∅)
17 sseq2 3970 . . . . . . 7 (𝑔 = 𝑥 → (𝐹𝑔𝐹 𝑥))
18 simpr1 1194 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → 𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔})
19 ssrab 4030 . . . . . . . . . 10 (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ↔ (𝑥 ⊆ (Fil‘𝑋) ∧ ∀𝑔𝑥 𝐹𝑔))
2018, 19sylib 217 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → (𝑥 ⊆ (Fil‘𝑋) ∧ ∀𝑔𝑥 𝐹𝑔))
2120simpld 495 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → 𝑥 ⊆ (Fil‘𝑋))
22 simpr2 1195 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → 𝑥 ≠ ∅)
23 simpr3 1196 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → [] Or 𝑥)
24 sorpssun 7667 . . . . . . . . . 10 (( [] Or 𝑥 ∧ (𝑔𝑥𝑥)) → (𝑔) ∈ 𝑥)
2524ralrimivva 3197 . . . . . . . . 9 ( [] Or 𝑥 → ∀𝑔𝑥𝑥 (𝑔) ∈ 𝑥)
2623, 25syl 17 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → ∀𝑔𝑥𝑥 (𝑔) ∈ 𝑥)
27 filuni 23236 . . . . . . . 8 ((𝑥 ⊆ (Fil‘𝑋) ∧ 𝑥 ≠ ∅ ∧ ∀𝑔𝑥𝑥 (𝑔) ∈ 𝑥) → 𝑥 ∈ (Fil‘𝑋))
2821, 22, 26, 27syl3anc 1371 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → 𝑥 ∈ (Fil‘𝑋))
29 n0 4306 . . . . . . . . 9 (𝑥 ≠ ∅ ↔ ∃ 𝑥)
30 ssel2 3939 . . . . . . . . . . . . . 14 ((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥) → ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔})
31 sseq2 3970 . . . . . . . . . . . . . . 15 (𝑔 = → (𝐹𝑔𝐹))
3231elrab 3645 . . . . . . . . . . . . . 14 ( ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ↔ ( ∈ (Fil‘𝑋) ∧ 𝐹))
3330, 32sylib 217 . . . . . . . . . . . . 13 ((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥) → ( ∈ (Fil‘𝑋) ∧ 𝐹))
3433simprd 496 . . . . . . . . . . . 12 ((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥) → 𝐹)
35 ssuni 4893 . . . . . . . . . . . 12 ((𝐹𝑥) → 𝐹 𝑥)
3634, 35sylancom 588 . . . . . . . . . . 11 ((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥) → 𝐹 𝑥)
3736ex 413 . . . . . . . . . 10 (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} → (𝑥𝐹 𝑥))
3837exlimdv 1936 . . . . . . . . 9 (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} → (∃ 𝑥𝐹 𝑥))
3929, 38biimtrid 241 . . . . . . . 8 (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} → (𝑥 ≠ ∅ → 𝐹 𝑥))
4018, 22, 39sylc 65 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → 𝐹 𝑥)
4117, 28, 40elrabd 3647 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → 𝑥 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔})
4241ex 413 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → ((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔}))
4342alrimiv 1930 . . . 4 (𝐹 ∈ (Fil‘𝑋) → ∀𝑥((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔}))
4443adantr 481 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → ∀𝑥((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔}))
45 zornn0g 10441 . . 3 (({𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∈ dom card ∧ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ≠ ∅ ∧ ∀𝑥((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔})) → ∃𝑓 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔}∀ ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ¬ 𝑓)
469, 16, 44, 45syl3anc 1371 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → ∃𝑓 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔}∀ ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ¬ 𝑓)
47 sseq2 3970 . . . . 5 (𝑔 = 𝑓 → (𝐹𝑔𝐹𝑓))
4847elrab 3645 . . . 4 (𝑓 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ↔ (𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓))
4931ralrab 3651 . . . 4 (∀ ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ¬ 𝑓 ↔ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓))
50 simpll 765 . . . . . 6 (((𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓) ∧ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓)) → 𝑓 ∈ (Fil‘𝑋))
51 sstr2 3951 . . . . . . . . . . 11 (𝐹𝑓 → (𝑓𝐹))
5251imim1d 82 . . . . . . . . . 10 (𝐹𝑓 → ((𝐹 → ¬ 𝑓) → (𝑓 → ¬ 𝑓)))
53 df-pss 3929 . . . . . . . . . . . . 13 (𝑓 ↔ (𝑓𝑓))
5453simplbi2 501 . . . . . . . . . . . 12 (𝑓 → (𝑓𝑓))
5554necon1bd 2961 . . . . . . . . . . 11 (𝑓 → (¬ 𝑓𝑓 = ))
5655a2i 14 . . . . . . . . . 10 ((𝑓 → ¬ 𝑓) → (𝑓𝑓 = ))
5752, 56syl6 35 . . . . . . . . 9 (𝐹𝑓 → ((𝐹 → ¬ 𝑓) → (𝑓𝑓 = )))
5857ralimdv 3166 . . . . . . . 8 (𝐹𝑓 → (∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓) → ∀ ∈ (Fil‘𝑋)(𝑓𝑓 = )))
5958imp 407 . . . . . . 7 ((𝐹𝑓 ∧ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓)) → ∀ ∈ (Fil‘𝑋)(𝑓𝑓 = ))
6059adantll 712 . . . . . 6 (((𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓) ∧ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓)) → ∀ ∈ (Fil‘𝑋)(𝑓𝑓 = ))
61 isufil2 23259 . . . . . 6 (𝑓 ∈ (UFil‘𝑋) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀ ∈ (Fil‘𝑋)(𝑓𝑓 = )))
6250, 60, 61sylanbrc 583 . . . . 5 (((𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓) ∧ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓)) → 𝑓 ∈ (UFil‘𝑋))
63 simplr 767 . . . . 5 (((𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓) ∧ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓)) → 𝐹𝑓)
6462, 63jca 512 . . . 4 (((𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓) ∧ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓)) → (𝑓 ∈ (UFil‘𝑋) ∧ 𝐹𝑓))
6548, 49, 64syl2anb 598 . . 3 ((𝑓 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ ∀ ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ¬ 𝑓) → (𝑓 ∈ (UFil‘𝑋) ∧ 𝐹𝑓))
6665reximi2 3082 . 2 (∃𝑓 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔}∀ ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ¬ 𝑓 → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
6746, 66syl 17 1 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087  wal 1539  wex 1781  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  cun 3908  wss 3910  wpss 3911  c0 4282  𝒫 cpw 4560   cuni 4865   Or wor 5544  dom cdm 5633  cfv 6496   [] crpss 7659  cardccrd 9871  Filcfil 23196  UFilcufil 23250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-rpss 7660  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-en 8884  df-dom 8885  df-fin 8887  df-fi 9347  df-dju 9837  df-card 9875  df-fbas 20793  df-fg 20794  df-fil 23197  df-ufil 23252
This theorem is referenced by:  filssufil  23263  numufl  23266
  Copyright terms: Public domain W3C validator