Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem4 | Structured version Visualization version GIF version |
Description: Lemma for stoweid 43494: a class variable replaces a setvar variable, for constant functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem4.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) |
Ref | Expression |
---|---|
stoweidlem4 | ⊢ ((𝜑 ∧ 𝐵 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝐵) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ ℝ ↔ 𝐵 ∈ ℝ)) | |
2 | 1 | anbi2d 628 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝜑 ∧ 𝑥 ∈ ℝ) ↔ (𝜑 ∧ 𝐵 ∈ ℝ))) |
3 | simpl 482 | . . . . . 6 ⊢ ((𝑥 = 𝐵 ∧ 𝑡 ∈ 𝑇) → 𝑥 = 𝐵) | |
4 | 3 | mpteq2dva 5170 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑡 ∈ 𝑇 ↦ 𝑥) = (𝑡 ∈ 𝑇 ↦ 𝐵)) |
5 | 4 | eleq1d 2823 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ 𝐵) ∈ 𝐴)) |
6 | 2, 5 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐵 → (((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) ↔ ((𝜑 ∧ 𝐵 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝐵) ∈ 𝐴))) |
7 | stoweidlem4.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) | |
8 | 6, 7 | vtoclg 3495 | . 2 ⊢ (𝐵 ∈ ℝ → ((𝜑 ∧ 𝐵 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝐵) ∈ 𝐴)) |
9 | 8 | anabsi7 667 | 1 ⊢ ((𝜑 ∧ 𝐵 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝐵) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ↦ cmpt 5153 ℝcr 10801 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-opab 5133 df-mpt 5154 |
This theorem is referenced by: stoweidlem18 43449 stoweidlem19 43450 stoweidlem22 43453 stoweidlem32 43463 stoweidlem36 43467 stoweidlem40 43471 stoweidlem41 43472 stoweidlem55 43486 |
Copyright terms: Public domain | W3C validator |