Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem4 Structured version   Visualization version   GIF version

Theorem stoweidlem4 45925
Description: Lemma for stoweid 45984: a class variable replaces a setvar variable, for constant functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypothesis
Ref Expression
stoweidlem4.1 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
Assertion
Ref Expression
stoweidlem4 ((𝜑𝐵 ∈ ℝ) → (𝑡𝑇𝐵) ∈ 𝐴)
Distinct variable groups:   𝑥,𝑡,𝐵   𝑥,𝐴   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑡)   𝑇(𝑡)

Proof of Theorem stoweidlem4
StepHypRef Expression
1 eleq1 2832 . . . . 5 (𝑥 = 𝐵 → (𝑥 ∈ ℝ ↔ 𝐵 ∈ ℝ))
21anbi2d 629 . . . 4 (𝑥 = 𝐵 → ((𝜑𝑥 ∈ ℝ) ↔ (𝜑𝐵 ∈ ℝ)))
3 simpl 482 . . . . . 6 ((𝑥 = 𝐵𝑡𝑇) → 𝑥 = 𝐵)
43mpteq2dva 5266 . . . . 5 (𝑥 = 𝐵 → (𝑡𝑇𝑥) = (𝑡𝑇𝐵))
54eleq1d 2829 . . . 4 (𝑥 = 𝐵 → ((𝑡𝑇𝑥) ∈ 𝐴 ↔ (𝑡𝑇𝐵) ∈ 𝐴))
62, 5imbi12d 344 . . 3 (𝑥 = 𝐵 → (((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴) ↔ ((𝜑𝐵 ∈ ℝ) → (𝑡𝑇𝐵) ∈ 𝐴)))
7 stoweidlem4.1 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
86, 7vtoclg 3566 . 2 (𝐵 ∈ ℝ → ((𝜑𝐵 ∈ ℝ) → (𝑡𝑇𝐵) ∈ 𝐴))
98anabsi7 670 1 ((𝜑𝐵 ∈ ℝ) → (𝑡𝑇𝐵) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cmpt 5249  cr 11183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-opab 5229  df-mpt 5250
This theorem is referenced by:  stoweidlem18  45939  stoweidlem19  45940  stoweidlem22  45943  stoweidlem32  45953  stoweidlem36  45957  stoweidlem40  45961  stoweidlem41  45962  stoweidlem55  45976
  Copyright terms: Public domain W3C validator