![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem4 | Structured version Visualization version GIF version |
Description: Lemma for stoweid 46019: a class variable replaces a setvar variable, for constant functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem4.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) |
Ref | Expression |
---|---|
stoweidlem4 | ⊢ ((𝜑 ∧ 𝐵 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝐵) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2827 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ ℝ ↔ 𝐵 ∈ ℝ)) | |
2 | 1 | anbi2d 630 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝜑 ∧ 𝑥 ∈ ℝ) ↔ (𝜑 ∧ 𝐵 ∈ ℝ))) |
3 | simpl 482 | . . . . . 6 ⊢ ((𝑥 = 𝐵 ∧ 𝑡 ∈ 𝑇) → 𝑥 = 𝐵) | |
4 | 3 | mpteq2dva 5248 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑡 ∈ 𝑇 ↦ 𝑥) = (𝑡 ∈ 𝑇 ↦ 𝐵)) |
5 | 4 | eleq1d 2824 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ 𝐵) ∈ 𝐴)) |
6 | 2, 5 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐵 → (((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) ↔ ((𝜑 ∧ 𝐵 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝐵) ∈ 𝐴))) |
7 | stoweidlem4.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) | |
8 | 6, 7 | vtoclg 3554 | . 2 ⊢ (𝐵 ∈ ℝ → ((𝜑 ∧ 𝐵 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝐵) ∈ 𝐴)) |
9 | 8 | anabsi7 671 | 1 ⊢ ((𝜑 ∧ 𝐵 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝐵) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ↦ cmpt 5231 ℝcr 11152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-opab 5211 df-mpt 5232 |
This theorem is referenced by: stoweidlem18 45974 stoweidlem19 45975 stoweidlem22 45978 stoweidlem32 45988 stoweidlem36 45992 stoweidlem40 45996 stoweidlem41 45997 stoweidlem55 46011 |
Copyright terms: Public domain | W3C validator |