Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem22 Structured version   Visualization version   GIF version

Theorem stoweidlem22 46130
Description: If a set of real functions from a common domain is closed under addition, multiplication and it contains constants, then it is closed under subtraction. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem22.8 𝑡𝜑
stoweidlem22.9 𝑡𝐹
stoweidlem22.10 𝑡𝐺
stoweidlem22.1 𝐻 = (𝑡𝑇 ↦ ((𝐹𝑡) − (𝐺𝑡)))
stoweidlem22.2 𝐼 = (𝑡𝑇 ↦ -1)
stoweidlem22.3 𝐿 = (𝑡𝑇 ↦ ((𝐼𝑡) · (𝐺𝑡)))
stoweidlem22.4 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem22.5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem22.6 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem22.7 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
Assertion
Ref Expression
stoweidlem22 ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) − (𝐺𝑡))) ∈ 𝐴)
Distinct variable groups:   𝑓,𝑔,𝑡,𝐴   𝑓,𝐹,𝑔   𝑓,𝐺,𝑔   𝑓,𝐼,𝑔   𝑇,𝑓,𝑔,𝑡   𝜑,𝑓,𝑔   𝑔,𝐿   𝑥,𝑡,𝐴   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡)   𝐹(𝑥,𝑡)   𝐺(𝑥,𝑡)   𝐻(𝑥,𝑡,𝑓,𝑔)   𝐼(𝑥,𝑡)   𝐿(𝑥,𝑡,𝑓)

Proof of Theorem stoweidlem22
StepHypRef Expression
1 stoweidlem22.8 . . . 4 𝑡𝜑
2 stoweidlem22.9 . . . . 5 𝑡𝐹
32nfel1 2911 . . . 4 𝑡 𝐹𝐴
4 stoweidlem22.10 . . . . 5 𝑡𝐺
54nfel1 2911 . . . 4 𝑡 𝐺𝐴
61, 3, 5nf3an 1902 . . 3 𝑡(𝜑𝐹𝐴𝐺𝐴)
7 simpr 484 . . . . . . 7 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → 𝑡𝑇)
8 simpl1 1192 . . . . . . . . . 10 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → 𝜑)
9 stoweidlem22.2 . . . . . . . . . . 11 𝐼 = (𝑡𝑇 ↦ -1)
10 neg1rr 12111 . . . . . . . . . . . 12 -1 ∈ ℝ
11 stoweidlem22.7 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
1211stoweidlem4 46112 . . . . . . . . . . . 12 ((𝜑 ∧ -1 ∈ ℝ) → (𝑡𝑇 ↦ -1) ∈ 𝐴)
1310, 12mpan2 691 . . . . . . . . . . 11 (𝜑 → (𝑡𝑇 ↦ -1) ∈ 𝐴)
149, 13eqeltrid 2835 . . . . . . . . . 10 (𝜑𝐼𝐴)
15 eleq1 2819 . . . . . . . . . . . . . 14 (𝑓 = 𝐼 → (𝑓𝐴𝐼𝐴))
1615anbi2d 630 . . . . . . . . . . . . 13 (𝑓 = 𝐼 → ((𝜑𝑓𝐴) ↔ (𝜑𝐼𝐴)))
17 feq1 6629 . . . . . . . . . . . . 13 (𝑓 = 𝐼 → (𝑓:𝑇⟶ℝ ↔ 𝐼:𝑇⟶ℝ))
1816, 17imbi12d 344 . . . . . . . . . . . 12 (𝑓 = 𝐼 → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑𝐼𝐴) → 𝐼:𝑇⟶ℝ)))
19 stoweidlem22.4 . . . . . . . . . . . 12 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
2018, 19vtoclg 3507 . . . . . . . . . . 11 (𝐼𝐴 → ((𝜑𝐼𝐴) → 𝐼:𝑇⟶ℝ))
2120anabsi7 671 . . . . . . . . . 10 ((𝜑𝐼𝐴) → 𝐼:𝑇⟶ℝ)
228, 14, 21syl2anc2 585 . . . . . . . . 9 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → 𝐼:𝑇⟶ℝ)
2322, 7ffvelcdmd 7018 . . . . . . . 8 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (𝐼𝑡) ∈ ℝ)
24 simpl3 1194 . . . . . . . . 9 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → 𝐺𝐴)
25 eleq1 2819 . . . . . . . . . . . . . . 15 (𝑓 = 𝐺 → (𝑓𝐴𝐺𝐴))
2625anbi2d 630 . . . . . . . . . . . . . 14 (𝑓 = 𝐺 → ((𝜑𝑓𝐴) ↔ (𝜑𝐺𝐴)))
27 feq1 6629 . . . . . . . . . . . . . 14 (𝑓 = 𝐺 → (𝑓:𝑇⟶ℝ ↔ 𝐺:𝑇⟶ℝ))
2826, 27imbi12d 344 . . . . . . . . . . . . 13 (𝑓 = 𝐺 → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑𝐺𝐴) → 𝐺:𝑇⟶ℝ)))
2928, 19vtoclg 3507 . . . . . . . . . . . 12 (𝐺𝐴 → ((𝜑𝐺𝐴) → 𝐺:𝑇⟶ℝ))
3029anabsi7 671 . . . . . . . . . . 11 ((𝜑𝐺𝐴) → 𝐺:𝑇⟶ℝ)
31303adant3 1132 . . . . . . . . . 10 ((𝜑𝐺𝐴𝑡𝑇) → 𝐺:𝑇⟶ℝ)
32 simp3 1138 . . . . . . . . . 10 ((𝜑𝐺𝐴𝑡𝑇) → 𝑡𝑇)
3331, 32ffvelcdmd 7018 . . . . . . . . 9 ((𝜑𝐺𝐴𝑡𝑇) → (𝐺𝑡) ∈ ℝ)
348, 24, 7, 33syl3anc 1373 . . . . . . . 8 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (𝐺𝑡) ∈ ℝ)
3523, 34remulcld 11142 . . . . . . 7 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → ((𝐼𝑡) · (𝐺𝑡)) ∈ ℝ)
36 stoweidlem22.3 . . . . . . . 8 𝐿 = (𝑡𝑇 ↦ ((𝐼𝑡) · (𝐺𝑡)))
3736fvmpt2 6940 . . . . . . 7 ((𝑡𝑇 ∧ ((𝐼𝑡) · (𝐺𝑡)) ∈ ℝ) → (𝐿𝑡) = ((𝐼𝑡) · (𝐺𝑡)))
387, 35, 37syl2anc 584 . . . . . 6 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (𝐿𝑡) = ((𝐼𝑡) · (𝐺𝑡)))
399fvmpt2 6940 . . . . . . . . 9 ((𝑡𝑇 ∧ -1 ∈ ℝ) → (𝐼𝑡) = -1)
4010, 39mpan2 691 . . . . . . . 8 (𝑡𝑇 → (𝐼𝑡) = -1)
4140adantl 481 . . . . . . 7 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (𝐼𝑡) = -1)
4241oveq1d 7361 . . . . . 6 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → ((𝐼𝑡) · (𝐺𝑡)) = (-1 · (𝐺𝑡)))
4334recnd 11140 . . . . . . 7 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (𝐺𝑡) ∈ ℂ)
4443mulm1d 11569 . . . . . 6 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (-1 · (𝐺𝑡)) = -(𝐺𝑡))
4538, 42, 443eqtrd 2770 . . . . 5 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (𝐿𝑡) = -(𝐺𝑡))
4645oveq2d 7362 . . . 4 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → ((𝐹𝑡) + (𝐿𝑡)) = ((𝐹𝑡) + -(𝐺𝑡)))
47 simpl2 1193 . . . . . . . 8 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → 𝐹𝐴)
48 eleq1 2819 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓𝐴𝐹𝐴))
4948anbi2d 630 . . . . . . . . . . 11 (𝑓 = 𝐹 → ((𝜑𝑓𝐴) ↔ (𝜑𝐹𝐴)))
50 feq1 6629 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓:𝑇⟶ℝ ↔ 𝐹:𝑇⟶ℝ))
5149, 50imbi12d 344 . . . . . . . . . 10 (𝑓 = 𝐹 → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑𝐹𝐴) → 𝐹:𝑇⟶ℝ)))
5251, 19vtoclg 3507 . . . . . . . . 9 (𝐹𝐴 → ((𝜑𝐹𝐴) → 𝐹:𝑇⟶ℝ))
5352anabsi7 671 . . . . . . . 8 ((𝜑𝐹𝐴) → 𝐹:𝑇⟶ℝ)
548, 47, 53syl2anc 584 . . . . . . 7 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → 𝐹:𝑇⟶ℝ)
5554, 7ffvelcdmd 7018 . . . . . 6 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
5655recnd 11140 . . . . 5 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℂ)
5756, 43negsubd 11478 . . . 4 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → ((𝐹𝑡) + -(𝐺𝑡)) = ((𝐹𝑡) − (𝐺𝑡)))
5846, 57eqtr2d 2767 . . 3 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → ((𝐹𝑡) − (𝐺𝑡)) = ((𝐹𝑡) + (𝐿𝑡)))
596, 58mpteq2da 5181 . 2 ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) − (𝐺𝑡))) = (𝑡𝑇 ↦ ((𝐹𝑡) + (𝐿𝑡))))
60143ad2ant1 1133 . . . . 5 ((𝜑𝐹𝐴𝐺𝐴) → 𝐼𝐴)
61 nfmpt1 5188 . . . . . . . 8 𝑡(𝑡𝑇 ↦ -1)
629, 61nfcxfr 2892 . . . . . . 7 𝑡𝐼
6362nfeq2 2912 . . . . . 6 𝑡 𝑓 = 𝐼
644nfeq2 2912 . . . . . 6 𝑡 𝑔 = 𝐺
65 stoweidlem22.6 . . . . . 6 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
6663, 64, 65stoweidlem6 46114 . . . . 5 ((𝜑𝐼𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐼𝑡) · (𝐺𝑡))) ∈ 𝐴)
6760, 66syld3an2 1413 . . . 4 ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐼𝑡) · (𝐺𝑡))) ∈ 𝐴)
6836, 67eqeltrid 2835 . . 3 ((𝜑𝐹𝐴𝐺𝐴) → 𝐿𝐴)
69 stoweidlem22.5 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
70 nfmpt1 5188 . . . . 5 𝑡(𝑡𝑇 ↦ ((𝐼𝑡) · (𝐺𝑡)))
7136, 70nfcxfr 2892 . . . 4 𝑡𝐿
7269, 2, 71stoweidlem8 46116 . . 3 ((𝜑𝐹𝐴𝐿𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) + (𝐿𝑡))) ∈ 𝐴)
7368, 72syld3an3 1411 . 2 ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) + (𝐿𝑡))) ∈ 𝐴)
7459, 73eqeltrd 2831 1 ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) − (𝐺𝑡))) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wnf 1784  wcel 2111  wnfc 2879  cmpt 5170  wf 6477  cfv 6481  (class class class)co 7346  cr 11005  1c1 11007   + caddc 11009   · cmul 11011  cmin 11344  -cneg 11345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-ltxr 11151  df-sub 11346  df-neg 11347
This theorem is referenced by:  stoweidlem33  46141
  Copyright terms: Public domain W3C validator