Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem22 Structured version   Visualization version   GIF version

Theorem stoweidlem22 46020
Description: If a set of real functions from a common domain is closed under addition, multiplication and it contains constants, then it is closed under subtraction. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem22.8 𝑡𝜑
stoweidlem22.9 𝑡𝐹
stoweidlem22.10 𝑡𝐺
stoweidlem22.1 𝐻 = (𝑡𝑇 ↦ ((𝐹𝑡) − (𝐺𝑡)))
stoweidlem22.2 𝐼 = (𝑡𝑇 ↦ -1)
stoweidlem22.3 𝐿 = (𝑡𝑇 ↦ ((𝐼𝑡) · (𝐺𝑡)))
stoweidlem22.4 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem22.5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem22.6 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem22.7 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
Assertion
Ref Expression
stoweidlem22 ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) − (𝐺𝑡))) ∈ 𝐴)
Distinct variable groups:   𝑓,𝑔,𝑡,𝐴   𝑓,𝐹,𝑔   𝑓,𝐺,𝑔   𝑓,𝐼,𝑔   𝑇,𝑓,𝑔,𝑡   𝜑,𝑓,𝑔   𝑔,𝐿   𝑥,𝑡,𝐴   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡)   𝐹(𝑥,𝑡)   𝐺(𝑥,𝑡)   𝐻(𝑥,𝑡,𝑓,𝑔)   𝐼(𝑥,𝑡)   𝐿(𝑥,𝑡,𝑓)

Proof of Theorem stoweidlem22
StepHypRef Expression
1 stoweidlem22.8 . . . 4 𝑡𝜑
2 stoweidlem22.9 . . . . 5 𝑡𝐹
32nfel1 2908 . . . 4 𝑡 𝐹𝐴
4 stoweidlem22.10 . . . . 5 𝑡𝐺
54nfel1 2908 . . . 4 𝑡 𝐺𝐴
61, 3, 5nf3an 1901 . . 3 𝑡(𝜑𝐹𝐴𝐺𝐴)
7 simpr 484 . . . . . . 7 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → 𝑡𝑇)
8 simpl1 1192 . . . . . . . . . 10 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → 𝜑)
9 stoweidlem22.2 . . . . . . . . . . 11 𝐼 = (𝑡𝑇 ↦ -1)
10 neg1rr 12172 . . . . . . . . . . . 12 -1 ∈ ℝ
11 stoweidlem22.7 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
1211stoweidlem4 46002 . . . . . . . . . . . 12 ((𝜑 ∧ -1 ∈ ℝ) → (𝑡𝑇 ↦ -1) ∈ 𝐴)
1310, 12mpan2 691 . . . . . . . . . . 11 (𝜑 → (𝑡𝑇 ↦ -1) ∈ 𝐴)
149, 13eqeltrid 2832 . . . . . . . . . 10 (𝜑𝐼𝐴)
15 eleq1 2816 . . . . . . . . . . . . . 14 (𝑓 = 𝐼 → (𝑓𝐴𝐼𝐴))
1615anbi2d 630 . . . . . . . . . . . . 13 (𝑓 = 𝐼 → ((𝜑𝑓𝐴) ↔ (𝜑𝐼𝐴)))
17 feq1 6666 . . . . . . . . . . . . 13 (𝑓 = 𝐼 → (𝑓:𝑇⟶ℝ ↔ 𝐼:𝑇⟶ℝ))
1816, 17imbi12d 344 . . . . . . . . . . . 12 (𝑓 = 𝐼 → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑𝐼𝐴) → 𝐼:𝑇⟶ℝ)))
19 stoweidlem22.4 . . . . . . . . . . . 12 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
2018, 19vtoclg 3520 . . . . . . . . . . 11 (𝐼𝐴 → ((𝜑𝐼𝐴) → 𝐼:𝑇⟶ℝ))
2120anabsi7 671 . . . . . . . . . 10 ((𝜑𝐼𝐴) → 𝐼:𝑇⟶ℝ)
228, 14, 21syl2anc2 585 . . . . . . . . 9 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → 𝐼:𝑇⟶ℝ)
2322, 7ffvelcdmd 7057 . . . . . . . 8 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (𝐼𝑡) ∈ ℝ)
24 simpl3 1194 . . . . . . . . 9 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → 𝐺𝐴)
25 eleq1 2816 . . . . . . . . . . . . . . 15 (𝑓 = 𝐺 → (𝑓𝐴𝐺𝐴))
2625anbi2d 630 . . . . . . . . . . . . . 14 (𝑓 = 𝐺 → ((𝜑𝑓𝐴) ↔ (𝜑𝐺𝐴)))
27 feq1 6666 . . . . . . . . . . . . . 14 (𝑓 = 𝐺 → (𝑓:𝑇⟶ℝ ↔ 𝐺:𝑇⟶ℝ))
2826, 27imbi12d 344 . . . . . . . . . . . . 13 (𝑓 = 𝐺 → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑𝐺𝐴) → 𝐺:𝑇⟶ℝ)))
2928, 19vtoclg 3520 . . . . . . . . . . . 12 (𝐺𝐴 → ((𝜑𝐺𝐴) → 𝐺:𝑇⟶ℝ))
3029anabsi7 671 . . . . . . . . . . 11 ((𝜑𝐺𝐴) → 𝐺:𝑇⟶ℝ)
31303adant3 1132 . . . . . . . . . 10 ((𝜑𝐺𝐴𝑡𝑇) → 𝐺:𝑇⟶ℝ)
32 simp3 1138 . . . . . . . . . 10 ((𝜑𝐺𝐴𝑡𝑇) → 𝑡𝑇)
3331, 32ffvelcdmd 7057 . . . . . . . . 9 ((𝜑𝐺𝐴𝑡𝑇) → (𝐺𝑡) ∈ ℝ)
348, 24, 7, 33syl3anc 1373 . . . . . . . 8 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (𝐺𝑡) ∈ ℝ)
3523, 34remulcld 11204 . . . . . . 7 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → ((𝐼𝑡) · (𝐺𝑡)) ∈ ℝ)
36 stoweidlem22.3 . . . . . . . 8 𝐿 = (𝑡𝑇 ↦ ((𝐼𝑡) · (𝐺𝑡)))
3736fvmpt2 6979 . . . . . . 7 ((𝑡𝑇 ∧ ((𝐼𝑡) · (𝐺𝑡)) ∈ ℝ) → (𝐿𝑡) = ((𝐼𝑡) · (𝐺𝑡)))
387, 35, 37syl2anc 584 . . . . . 6 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (𝐿𝑡) = ((𝐼𝑡) · (𝐺𝑡)))
399fvmpt2 6979 . . . . . . . . 9 ((𝑡𝑇 ∧ -1 ∈ ℝ) → (𝐼𝑡) = -1)
4010, 39mpan2 691 . . . . . . . 8 (𝑡𝑇 → (𝐼𝑡) = -1)
4140adantl 481 . . . . . . 7 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (𝐼𝑡) = -1)
4241oveq1d 7402 . . . . . 6 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → ((𝐼𝑡) · (𝐺𝑡)) = (-1 · (𝐺𝑡)))
4334recnd 11202 . . . . . . 7 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (𝐺𝑡) ∈ ℂ)
4443mulm1d 11630 . . . . . 6 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (-1 · (𝐺𝑡)) = -(𝐺𝑡))
4538, 42, 443eqtrd 2768 . . . . 5 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (𝐿𝑡) = -(𝐺𝑡))
4645oveq2d 7403 . . . 4 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → ((𝐹𝑡) + (𝐿𝑡)) = ((𝐹𝑡) + -(𝐺𝑡)))
47 simpl2 1193 . . . . . . . 8 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → 𝐹𝐴)
48 eleq1 2816 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓𝐴𝐹𝐴))
4948anbi2d 630 . . . . . . . . . . 11 (𝑓 = 𝐹 → ((𝜑𝑓𝐴) ↔ (𝜑𝐹𝐴)))
50 feq1 6666 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓:𝑇⟶ℝ ↔ 𝐹:𝑇⟶ℝ))
5149, 50imbi12d 344 . . . . . . . . . 10 (𝑓 = 𝐹 → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑𝐹𝐴) → 𝐹:𝑇⟶ℝ)))
5251, 19vtoclg 3520 . . . . . . . . 9 (𝐹𝐴 → ((𝜑𝐹𝐴) → 𝐹:𝑇⟶ℝ))
5352anabsi7 671 . . . . . . . 8 ((𝜑𝐹𝐴) → 𝐹:𝑇⟶ℝ)
548, 47, 53syl2anc 584 . . . . . . 7 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → 𝐹:𝑇⟶ℝ)
5554, 7ffvelcdmd 7057 . . . . . 6 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
5655recnd 11202 . . . . 5 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℂ)
5756, 43negsubd 11539 . . . 4 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → ((𝐹𝑡) + -(𝐺𝑡)) = ((𝐹𝑡) − (𝐺𝑡)))
5846, 57eqtr2d 2765 . . 3 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → ((𝐹𝑡) − (𝐺𝑡)) = ((𝐹𝑡) + (𝐿𝑡)))
596, 58mpteq2da 5199 . 2 ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) − (𝐺𝑡))) = (𝑡𝑇 ↦ ((𝐹𝑡) + (𝐿𝑡))))
60143ad2ant1 1133 . . . . 5 ((𝜑𝐹𝐴𝐺𝐴) → 𝐼𝐴)
61 nfmpt1 5206 . . . . . . . 8 𝑡(𝑡𝑇 ↦ -1)
629, 61nfcxfr 2889 . . . . . . 7 𝑡𝐼
6362nfeq2 2909 . . . . . 6 𝑡 𝑓 = 𝐼
644nfeq2 2909 . . . . . 6 𝑡 𝑔 = 𝐺
65 stoweidlem22.6 . . . . . 6 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
6663, 64, 65stoweidlem6 46004 . . . . 5 ((𝜑𝐼𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐼𝑡) · (𝐺𝑡))) ∈ 𝐴)
6760, 66syld3an2 1413 . . . 4 ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐼𝑡) · (𝐺𝑡))) ∈ 𝐴)
6836, 67eqeltrid 2832 . . 3 ((𝜑𝐹𝐴𝐺𝐴) → 𝐿𝐴)
69 stoweidlem22.5 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
70 nfmpt1 5206 . . . . 5 𝑡(𝑡𝑇 ↦ ((𝐼𝑡) · (𝐺𝑡)))
7136, 70nfcxfr 2889 . . . 4 𝑡𝐿
7269, 2, 71stoweidlem8 46006 . . 3 ((𝜑𝐹𝐴𝐿𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) + (𝐿𝑡))) ∈ 𝐴)
7368, 72syld3an3 1411 . 2 ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) + (𝐿𝑡))) ∈ 𝐴)
7459, 73eqeltrd 2828 1 ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) − (𝐺𝑡))) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wnfc 2876  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  cr 11067  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405  -cneg 11406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-sub 11407  df-neg 11408
This theorem is referenced by:  stoweidlem33  46031
  Copyright terms: Public domain W3C validator