Proof of Theorem stoweidlem22
Step | Hyp | Ref
| Expression |
1 | | stoweidlem22.8 |
. . . 4
⊢
Ⅎ𝑡𝜑 |
2 | | stoweidlem22.9 |
. . . . 5
⊢
Ⅎ𝑡𝐹 |
3 | 2 | nfel1 2920 |
. . . 4
⊢
Ⅎ𝑡 𝐹 ∈ 𝐴 |
4 | | stoweidlem22.10 |
. . . . 5
⊢
Ⅎ𝑡𝐺 |
5 | 4 | nfel1 2920 |
. . . 4
⊢
Ⅎ𝑡 𝐺 ∈ 𝐴 |
6 | 1, 3, 5 | nf3an 1909 |
. . 3
⊢
Ⅎ𝑡(𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) |
7 | | simpr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ 𝑇) |
8 | | simpl1 1193 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → 𝜑) |
9 | | stoweidlem22.2 |
. . . . . . . . . . 11
⊢ 𝐼 = (𝑡 ∈ 𝑇 ↦ -1) |
10 | | neg1rr 11945 |
. . . . . . . . . . . 12
⊢ -1 ∈
ℝ |
11 | | stoweidlem22.7 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) |
12 | 11 | stoweidlem4 43220 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ -1 ∈ ℝ) →
(𝑡 ∈ 𝑇 ↦ -1) ∈ 𝐴) |
13 | 10, 12 | mpan2 691 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ -1) ∈ 𝐴) |
14 | 9, 13 | eqeltrid 2842 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐼 ∈ 𝐴) |
15 | | eleq1 2825 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝐼 → (𝑓 ∈ 𝐴 ↔ 𝐼 ∈ 𝐴)) |
16 | 15 | anbi2d 632 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝐼 → ((𝜑 ∧ 𝑓 ∈ 𝐴) ↔ (𝜑 ∧ 𝐼 ∈ 𝐴))) |
17 | | feq1 6526 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝐼 → (𝑓:𝑇⟶ℝ ↔ 𝐼:𝑇⟶ℝ)) |
18 | 16, 17 | imbi12d 348 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝐼 → (((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ 𝐼 ∈ 𝐴) → 𝐼:𝑇⟶ℝ))) |
19 | | stoweidlem22.4 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) |
20 | 18, 19 | vtoclg 3481 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ 𝐴 → ((𝜑 ∧ 𝐼 ∈ 𝐴) → 𝐼:𝑇⟶ℝ)) |
21 | 20 | anabsi7 671 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐼 ∈ 𝐴) → 𝐼:𝑇⟶ℝ) |
22 | 8, 14, 21 | syl2anc2 588 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → 𝐼:𝑇⟶ℝ) |
23 | 22, 7 | ffvelrnd 6905 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → (𝐼‘𝑡) ∈ ℝ) |
24 | | simpl3 1195 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → 𝐺 ∈ 𝐴) |
25 | | eleq1 2825 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝐺 → (𝑓 ∈ 𝐴 ↔ 𝐺 ∈ 𝐴)) |
26 | 25 | anbi2d 632 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝐺 → ((𝜑 ∧ 𝑓 ∈ 𝐴) ↔ (𝜑 ∧ 𝐺 ∈ 𝐴))) |
27 | | feq1 6526 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝐺 → (𝑓:𝑇⟶ℝ ↔ 𝐺:𝑇⟶ℝ)) |
28 | 26, 27 | imbi12d 348 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝐺 → (((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ 𝐺 ∈ 𝐴) → 𝐺:𝑇⟶ℝ))) |
29 | 28, 19 | vtoclg 3481 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ 𝐴 → ((𝜑 ∧ 𝐺 ∈ 𝐴) → 𝐺:𝑇⟶ℝ)) |
30 | 29 | anabsi7 671 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐺 ∈ 𝐴) → 𝐺:𝑇⟶ℝ) |
31 | 30 | 3adant3 1134 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐺 ∈ 𝐴 ∧ 𝑡 ∈ 𝑇) → 𝐺:𝑇⟶ℝ) |
32 | | simp3 1140 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐺 ∈ 𝐴 ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ 𝑇) |
33 | 31, 32 | ffvelrnd 6905 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐺 ∈ 𝐴 ∧ 𝑡 ∈ 𝑇) → (𝐺‘𝑡) ∈ ℝ) |
34 | 8, 24, 7, 33 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → (𝐺‘𝑡) ∈ ℝ) |
35 | 23, 34 | remulcld 10863 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → ((𝐼‘𝑡) · (𝐺‘𝑡)) ∈ ℝ) |
36 | | stoweidlem22.3 |
. . . . . . . 8
⊢ 𝐿 = (𝑡 ∈ 𝑇 ↦ ((𝐼‘𝑡) · (𝐺‘𝑡))) |
37 | 36 | fvmpt2 6829 |
. . . . . . 7
⊢ ((𝑡 ∈ 𝑇 ∧ ((𝐼‘𝑡) · (𝐺‘𝑡)) ∈ ℝ) → (𝐿‘𝑡) = ((𝐼‘𝑡) · (𝐺‘𝑡))) |
38 | 7, 35, 37 | syl2anc 587 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → (𝐿‘𝑡) = ((𝐼‘𝑡) · (𝐺‘𝑡))) |
39 | 9 | fvmpt2 6829 |
. . . . . . . . 9
⊢ ((𝑡 ∈ 𝑇 ∧ -1 ∈ ℝ) → (𝐼‘𝑡) = -1) |
40 | 10, 39 | mpan2 691 |
. . . . . . . 8
⊢ (𝑡 ∈ 𝑇 → (𝐼‘𝑡) = -1) |
41 | 40 | adantl 485 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → (𝐼‘𝑡) = -1) |
42 | 41 | oveq1d 7228 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → ((𝐼‘𝑡) · (𝐺‘𝑡)) = (-1 · (𝐺‘𝑡))) |
43 | 34 | recnd 10861 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → (𝐺‘𝑡) ∈ ℂ) |
44 | 43 | mulm1d 11284 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → (-1 · (𝐺‘𝑡)) = -(𝐺‘𝑡)) |
45 | 38, 42, 44 | 3eqtrd 2781 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → (𝐿‘𝑡) = -(𝐺‘𝑡)) |
46 | 45 | oveq2d 7229 |
. . . 4
⊢ (((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡) + (𝐿‘𝑡)) = ((𝐹‘𝑡) + -(𝐺‘𝑡))) |
47 | | simpl2 1194 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → 𝐹 ∈ 𝐴) |
48 | | eleq1 2825 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝐹 → (𝑓 ∈ 𝐴 ↔ 𝐹 ∈ 𝐴)) |
49 | 48 | anbi2d 632 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → ((𝜑 ∧ 𝑓 ∈ 𝐴) ↔ (𝜑 ∧ 𝐹 ∈ 𝐴))) |
50 | | feq1 6526 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → (𝑓:𝑇⟶ℝ ↔ 𝐹:𝑇⟶ℝ)) |
51 | 49, 50 | imbi12d 348 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → (((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ 𝐹 ∈ 𝐴) → 𝐹:𝑇⟶ℝ))) |
52 | 51, 19 | vtoclg 3481 |
. . . . . . . . 9
⊢ (𝐹 ∈ 𝐴 → ((𝜑 ∧ 𝐹 ∈ 𝐴) → 𝐹:𝑇⟶ℝ)) |
53 | 52 | anabsi7 671 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴) → 𝐹:𝑇⟶ℝ) |
54 | 8, 47, 53 | syl2anc 587 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → 𝐹:𝑇⟶ℝ) |
55 | 54, 7 | ffvelrnd 6905 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℝ) |
56 | 55 | recnd 10861 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℂ) |
57 | 56, 43 | negsubd 11195 |
. . . 4
⊢ (((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡) + -(𝐺‘𝑡)) = ((𝐹‘𝑡) − (𝐺‘𝑡))) |
58 | 46, 57 | eqtr2d 2778 |
. . 3
⊢ (((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡) − (𝐺‘𝑡)) = ((𝐹‘𝑡) + (𝐿‘𝑡))) |
59 | 6, 58 | mpteq2da 5149 |
. 2
⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − (𝐺‘𝑡))) = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝐿‘𝑡)))) |
60 | 14 | 3ad2ant1 1135 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → 𝐼 ∈ 𝐴) |
61 | | nfmpt1 5153 |
. . . . . . . 8
⊢
Ⅎ𝑡(𝑡 ∈ 𝑇 ↦ -1) |
62 | 9, 61 | nfcxfr 2902 |
. . . . . . 7
⊢
Ⅎ𝑡𝐼 |
63 | 62 | nfeq2 2921 |
. . . . . 6
⊢
Ⅎ𝑡 𝑓 = 𝐼 |
64 | 4 | nfeq2 2921 |
. . . . . 6
⊢
Ⅎ𝑡 𝑔 = 𝐺 |
65 | | stoweidlem22.6 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
66 | 63, 64, 65 | stoweidlem6 43222 |
. . . . 5
⊢ ((𝜑 ∧ 𝐼 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐼‘𝑡) · (𝐺‘𝑡))) ∈ 𝐴) |
67 | 60, 66 | syld3an2 1413 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐼‘𝑡) · (𝐺‘𝑡))) ∈ 𝐴) |
68 | 36, 67 | eqeltrid 2842 |
. . 3
⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → 𝐿 ∈ 𝐴) |
69 | | stoweidlem22.5 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
70 | | nfmpt1 5153 |
. . . . 5
⊢
Ⅎ𝑡(𝑡 ∈ 𝑇 ↦ ((𝐼‘𝑡) · (𝐺‘𝑡))) |
71 | 36, 70 | nfcxfr 2902 |
. . . 4
⊢
Ⅎ𝑡𝐿 |
72 | 69, 2, 71 | stoweidlem8 43224 |
. . 3
⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐿 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝐿‘𝑡))) ∈ 𝐴) |
73 | 68, 72 | syld3an3 1411 |
. 2
⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝐿‘𝑡))) ∈ 𝐴) |
74 | 59, 73 | eqeltrd 2838 |
1
⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − (𝐺‘𝑡))) ∈ 𝐴) |