Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem22 Structured version   Visualization version   GIF version

Theorem stoweidlem22 45943
Description: If a set of real functions from a common domain is closed under addition, multiplication and it contains constants, then it is closed under subtraction. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem22.8 𝑡𝜑
stoweidlem22.9 𝑡𝐹
stoweidlem22.10 𝑡𝐺
stoweidlem22.1 𝐻 = (𝑡𝑇 ↦ ((𝐹𝑡) − (𝐺𝑡)))
stoweidlem22.2 𝐼 = (𝑡𝑇 ↦ -1)
stoweidlem22.3 𝐿 = (𝑡𝑇 ↦ ((𝐼𝑡) · (𝐺𝑡)))
stoweidlem22.4 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem22.5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem22.6 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem22.7 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
Assertion
Ref Expression
stoweidlem22 ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) − (𝐺𝑡))) ∈ 𝐴)
Distinct variable groups:   𝑓,𝑔,𝑡,𝐴   𝑓,𝐹,𝑔   𝑓,𝐺,𝑔   𝑓,𝐼,𝑔   𝑇,𝑓,𝑔,𝑡   𝜑,𝑓,𝑔   𝑔,𝐿   𝑥,𝑡,𝐴   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡)   𝐹(𝑥,𝑡)   𝐺(𝑥,𝑡)   𝐻(𝑥,𝑡,𝑓,𝑔)   𝐼(𝑥,𝑡)   𝐿(𝑥,𝑡,𝑓)

Proof of Theorem stoweidlem22
StepHypRef Expression
1 stoweidlem22.8 . . . 4 𝑡𝜑
2 stoweidlem22.9 . . . . 5 𝑡𝐹
32nfel1 2925 . . . 4 𝑡 𝐹𝐴
4 stoweidlem22.10 . . . . 5 𝑡𝐺
54nfel1 2925 . . . 4 𝑡 𝐺𝐴
61, 3, 5nf3an 1900 . . 3 𝑡(𝜑𝐹𝐴𝐺𝐴)
7 simpr 484 . . . . . . 7 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → 𝑡𝑇)
8 simpl1 1191 . . . . . . . . . 10 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → 𝜑)
9 stoweidlem22.2 . . . . . . . . . . 11 𝐼 = (𝑡𝑇 ↦ -1)
10 neg1rr 12408 . . . . . . . . . . . 12 -1 ∈ ℝ
11 stoweidlem22.7 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
1211stoweidlem4 45925 . . . . . . . . . . . 12 ((𝜑 ∧ -1 ∈ ℝ) → (𝑡𝑇 ↦ -1) ∈ 𝐴)
1310, 12mpan2 690 . . . . . . . . . . 11 (𝜑 → (𝑡𝑇 ↦ -1) ∈ 𝐴)
149, 13eqeltrid 2848 . . . . . . . . . 10 (𝜑𝐼𝐴)
15 eleq1 2832 . . . . . . . . . . . . . 14 (𝑓 = 𝐼 → (𝑓𝐴𝐼𝐴))
1615anbi2d 629 . . . . . . . . . . . . 13 (𝑓 = 𝐼 → ((𝜑𝑓𝐴) ↔ (𝜑𝐼𝐴)))
17 feq1 6728 . . . . . . . . . . . . 13 (𝑓 = 𝐼 → (𝑓:𝑇⟶ℝ ↔ 𝐼:𝑇⟶ℝ))
1816, 17imbi12d 344 . . . . . . . . . . . 12 (𝑓 = 𝐼 → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑𝐼𝐴) → 𝐼:𝑇⟶ℝ)))
19 stoweidlem22.4 . . . . . . . . . . . 12 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
2018, 19vtoclg 3566 . . . . . . . . . . 11 (𝐼𝐴 → ((𝜑𝐼𝐴) → 𝐼:𝑇⟶ℝ))
2120anabsi7 670 . . . . . . . . . 10 ((𝜑𝐼𝐴) → 𝐼:𝑇⟶ℝ)
228, 14, 21syl2anc2 584 . . . . . . . . 9 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → 𝐼:𝑇⟶ℝ)
2322, 7ffvelcdmd 7119 . . . . . . . 8 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (𝐼𝑡) ∈ ℝ)
24 simpl3 1193 . . . . . . . . 9 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → 𝐺𝐴)
25 eleq1 2832 . . . . . . . . . . . . . . 15 (𝑓 = 𝐺 → (𝑓𝐴𝐺𝐴))
2625anbi2d 629 . . . . . . . . . . . . . 14 (𝑓 = 𝐺 → ((𝜑𝑓𝐴) ↔ (𝜑𝐺𝐴)))
27 feq1 6728 . . . . . . . . . . . . . 14 (𝑓 = 𝐺 → (𝑓:𝑇⟶ℝ ↔ 𝐺:𝑇⟶ℝ))
2826, 27imbi12d 344 . . . . . . . . . . . . 13 (𝑓 = 𝐺 → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑𝐺𝐴) → 𝐺:𝑇⟶ℝ)))
2928, 19vtoclg 3566 . . . . . . . . . . . 12 (𝐺𝐴 → ((𝜑𝐺𝐴) → 𝐺:𝑇⟶ℝ))
3029anabsi7 670 . . . . . . . . . . 11 ((𝜑𝐺𝐴) → 𝐺:𝑇⟶ℝ)
31303adant3 1132 . . . . . . . . . 10 ((𝜑𝐺𝐴𝑡𝑇) → 𝐺:𝑇⟶ℝ)
32 simp3 1138 . . . . . . . . . 10 ((𝜑𝐺𝐴𝑡𝑇) → 𝑡𝑇)
3331, 32ffvelcdmd 7119 . . . . . . . . 9 ((𝜑𝐺𝐴𝑡𝑇) → (𝐺𝑡) ∈ ℝ)
348, 24, 7, 33syl3anc 1371 . . . . . . . 8 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (𝐺𝑡) ∈ ℝ)
3523, 34remulcld 11320 . . . . . . 7 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → ((𝐼𝑡) · (𝐺𝑡)) ∈ ℝ)
36 stoweidlem22.3 . . . . . . . 8 𝐿 = (𝑡𝑇 ↦ ((𝐼𝑡) · (𝐺𝑡)))
3736fvmpt2 7040 . . . . . . 7 ((𝑡𝑇 ∧ ((𝐼𝑡) · (𝐺𝑡)) ∈ ℝ) → (𝐿𝑡) = ((𝐼𝑡) · (𝐺𝑡)))
387, 35, 37syl2anc 583 . . . . . 6 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (𝐿𝑡) = ((𝐼𝑡) · (𝐺𝑡)))
399fvmpt2 7040 . . . . . . . . 9 ((𝑡𝑇 ∧ -1 ∈ ℝ) → (𝐼𝑡) = -1)
4010, 39mpan2 690 . . . . . . . 8 (𝑡𝑇 → (𝐼𝑡) = -1)
4140adantl 481 . . . . . . 7 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (𝐼𝑡) = -1)
4241oveq1d 7463 . . . . . 6 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → ((𝐼𝑡) · (𝐺𝑡)) = (-1 · (𝐺𝑡)))
4334recnd 11318 . . . . . . 7 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (𝐺𝑡) ∈ ℂ)
4443mulm1d 11742 . . . . . 6 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (-1 · (𝐺𝑡)) = -(𝐺𝑡))
4538, 42, 443eqtrd 2784 . . . . 5 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (𝐿𝑡) = -(𝐺𝑡))
4645oveq2d 7464 . . . 4 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → ((𝐹𝑡) + (𝐿𝑡)) = ((𝐹𝑡) + -(𝐺𝑡)))
47 simpl2 1192 . . . . . . . 8 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → 𝐹𝐴)
48 eleq1 2832 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓𝐴𝐹𝐴))
4948anbi2d 629 . . . . . . . . . . 11 (𝑓 = 𝐹 → ((𝜑𝑓𝐴) ↔ (𝜑𝐹𝐴)))
50 feq1 6728 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓:𝑇⟶ℝ ↔ 𝐹:𝑇⟶ℝ))
5149, 50imbi12d 344 . . . . . . . . . 10 (𝑓 = 𝐹 → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑𝐹𝐴) → 𝐹:𝑇⟶ℝ)))
5251, 19vtoclg 3566 . . . . . . . . 9 (𝐹𝐴 → ((𝜑𝐹𝐴) → 𝐹:𝑇⟶ℝ))
5352anabsi7 670 . . . . . . . 8 ((𝜑𝐹𝐴) → 𝐹:𝑇⟶ℝ)
548, 47, 53syl2anc 583 . . . . . . 7 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → 𝐹:𝑇⟶ℝ)
5554, 7ffvelcdmd 7119 . . . . . 6 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
5655recnd 11318 . . . . 5 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℂ)
5756, 43negsubd 11653 . . . 4 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → ((𝐹𝑡) + -(𝐺𝑡)) = ((𝐹𝑡) − (𝐺𝑡)))
5846, 57eqtr2d 2781 . . 3 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → ((𝐹𝑡) − (𝐺𝑡)) = ((𝐹𝑡) + (𝐿𝑡)))
596, 58mpteq2da 5264 . 2 ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) − (𝐺𝑡))) = (𝑡𝑇 ↦ ((𝐹𝑡) + (𝐿𝑡))))
60143ad2ant1 1133 . . . . 5 ((𝜑𝐹𝐴𝐺𝐴) → 𝐼𝐴)
61 nfmpt1 5274 . . . . . . . 8 𝑡(𝑡𝑇 ↦ -1)
629, 61nfcxfr 2906 . . . . . . 7 𝑡𝐼
6362nfeq2 2926 . . . . . 6 𝑡 𝑓 = 𝐼
644nfeq2 2926 . . . . . 6 𝑡 𝑔 = 𝐺
65 stoweidlem22.6 . . . . . 6 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
6663, 64, 65stoweidlem6 45927 . . . . 5 ((𝜑𝐼𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐼𝑡) · (𝐺𝑡))) ∈ 𝐴)
6760, 66syld3an2 1411 . . . 4 ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐼𝑡) · (𝐺𝑡))) ∈ 𝐴)
6836, 67eqeltrid 2848 . . 3 ((𝜑𝐹𝐴𝐺𝐴) → 𝐿𝐴)
69 stoweidlem22.5 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
70 nfmpt1 5274 . . . . 5 𝑡(𝑡𝑇 ↦ ((𝐼𝑡) · (𝐺𝑡)))
7136, 70nfcxfr 2906 . . . 4 𝑡𝐿
7269, 2, 71stoweidlem8 45929 . . 3 ((𝜑𝐹𝐴𝐿𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) + (𝐿𝑡))) ∈ 𝐴)
7368, 72syld3an3 1409 . 2 ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) + (𝐿𝑡))) ∈ 𝐴)
7459, 73eqeltrd 2844 1 ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) − (𝐺𝑡))) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wnf 1781  wcel 2108  wnfc 2893  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  cr 11183  1c1 11185   + caddc 11187   · cmul 11189  cmin 11520  -cneg 11521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-sub 11522  df-neg 11523
This theorem is referenced by:  stoweidlem33  45954
  Copyright terms: Public domain W3C validator