| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem5 | Structured version Visualization version GIF version | ||
| Description: There exists a δ as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90: 0 < δ < 1 , p >= δ on 𝑇 ∖ 𝑈. Here 𝐷 is used to represent δ in the paper and 𝑄 to represent 𝑇 ∖ 𝑈 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| stoweidlem5.1 | ⊢ Ⅎ𝑡𝜑 |
| stoweidlem5.2 | ⊢ 𝐷 = if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) |
| stoweidlem5.3 | ⊢ (𝜑 → 𝑃:𝑇⟶ℝ) |
| stoweidlem5.4 | ⊢ (𝜑 → 𝑄 ⊆ 𝑇) |
| stoweidlem5.5 | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
| stoweidlem5.6 | ⊢ (𝜑 → ∀𝑡 ∈ 𝑄 𝐶 ≤ (𝑃‘𝑡)) |
| Ref | Expression |
|---|---|
| stoweidlem5 | ⊢ (𝜑 → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ 𝑄 𝑑 ≤ (𝑃‘𝑡))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stoweidlem5.2 | . . 3 ⊢ 𝐷 = if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) | |
| 2 | stoweidlem5.5 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
| 3 | halfre 12454 | . . . . 5 ⊢ (1 / 2) ∈ ℝ | |
| 4 | halfgt0 12456 | . . . . 5 ⊢ 0 < (1 / 2) | |
| 5 | 3, 4 | elrpii 13011 | . . . 4 ⊢ (1 / 2) ∈ ℝ+ |
| 6 | ifcl 4546 | . . . 4 ⊢ ((𝐶 ∈ ℝ+ ∧ (1 / 2) ∈ ℝ+) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ+) | |
| 7 | 2, 5, 6 | sylancl 586 | . . 3 ⊢ (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ+) |
| 8 | 1, 7 | eqeltrid 2838 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℝ+) |
| 9 | 8 | rpred 13051 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| 10 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → (1 / 2) ∈ ℝ) |
| 11 | 1red 11236 | . . 3 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 12 | 2 | rpred 13051 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 13 | min2 13206 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ (1 / 2)) | |
| 14 | 12, 3, 13 | sylancl 586 | . . . 4 ⊢ (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ (1 / 2)) |
| 15 | 1, 14 | eqbrtrid 5154 | . . 3 ⊢ (𝜑 → 𝐷 ≤ (1 / 2)) |
| 16 | halflt1 12458 | . . . 4 ⊢ (1 / 2) < 1 | |
| 17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → (1 / 2) < 1) |
| 18 | 9, 10, 11, 15, 17 | lelttrd 11393 | . 2 ⊢ (𝜑 → 𝐷 < 1) |
| 19 | stoweidlem5.1 | . . 3 ⊢ Ⅎ𝑡𝜑 | |
| 20 | 7 | rpred 13051 | . . . . . . 7 ⊢ (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ) |
| 21 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ) |
| 22 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → 𝐶 ∈ ℝ) |
| 23 | stoweidlem5.3 | . . . . . . . 8 ⊢ (𝜑 → 𝑃:𝑇⟶ℝ) | |
| 24 | 23 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → 𝑃:𝑇⟶ℝ) |
| 25 | stoweidlem5.4 | . . . . . . . 8 ⊢ (𝜑 → 𝑄 ⊆ 𝑇) | |
| 26 | 25 | sselda 3958 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → 𝑡 ∈ 𝑇) |
| 27 | 24, 26 | ffvelcdmd 7075 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → (𝑃‘𝑡) ∈ ℝ) |
| 28 | min1 13205 | . . . . . . . 8 ⊢ ((𝐶 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ 𝐶) | |
| 29 | 12, 3, 28 | sylancl 586 | . . . . . . 7 ⊢ (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ 𝐶) |
| 30 | 29 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ 𝐶) |
| 31 | stoweidlem5.6 | . . . . . . 7 ⊢ (𝜑 → ∀𝑡 ∈ 𝑄 𝐶 ≤ (𝑃‘𝑡)) | |
| 32 | 31 | r19.21bi 3234 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → 𝐶 ≤ (𝑃‘𝑡)) |
| 33 | 21, 22, 27, 30, 32 | letrd 11392 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ (𝑃‘𝑡)) |
| 34 | 1, 33 | eqbrtrid 5154 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → 𝐷 ≤ (𝑃‘𝑡)) |
| 35 | 34 | ex 412 | . . 3 ⊢ (𝜑 → (𝑡 ∈ 𝑄 → 𝐷 ≤ (𝑃‘𝑡))) |
| 36 | 19, 35 | ralrimi 3240 | . 2 ⊢ (𝜑 → ∀𝑡 ∈ 𝑄 𝐷 ≤ (𝑃‘𝑡)) |
| 37 | eleq1 2822 | . . . . 5 ⊢ (𝑑 = 𝐷 → (𝑑 ∈ ℝ+ ↔ 𝐷 ∈ ℝ+)) | |
| 38 | breq1 5122 | . . . . 5 ⊢ (𝑑 = 𝐷 → (𝑑 < 1 ↔ 𝐷 < 1)) | |
| 39 | breq1 5122 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (𝑑 ≤ (𝑃‘𝑡) ↔ 𝐷 ≤ (𝑃‘𝑡))) | |
| 40 | 39 | ralbidv 3163 | . . . . 5 ⊢ (𝑑 = 𝐷 → (∀𝑡 ∈ 𝑄 𝑑 ≤ (𝑃‘𝑡) ↔ ∀𝑡 ∈ 𝑄 𝐷 ≤ (𝑃‘𝑡))) |
| 41 | 37, 38, 40 | 3anbi123d 1438 | . . . 4 ⊢ (𝑑 = 𝐷 → ((𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ 𝑄 𝑑 ≤ (𝑃‘𝑡)) ↔ (𝐷 ∈ ℝ+ ∧ 𝐷 < 1 ∧ ∀𝑡 ∈ 𝑄 𝐷 ≤ (𝑃‘𝑡)))) |
| 42 | 41 | spcegv 3576 | . . 3 ⊢ (𝐷 ∈ ℝ+ → ((𝐷 ∈ ℝ+ ∧ 𝐷 < 1 ∧ ∀𝑡 ∈ 𝑄 𝐷 ≤ (𝑃‘𝑡)) → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ 𝑄 𝑑 ≤ (𝑃‘𝑡)))) |
| 43 | 8, 42 | syl 17 | . 2 ⊢ (𝜑 → ((𝐷 ∈ ℝ+ ∧ 𝐷 < 1 ∧ ∀𝑡 ∈ 𝑄 𝐷 ≤ (𝑃‘𝑡)) → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ 𝑄 𝑑 ≤ (𝑃‘𝑡)))) |
| 44 | 8, 18, 36, 43 | mp3and 1466 | 1 ⊢ (𝜑 → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ 𝑄 𝑑 ≤ (𝑃‘𝑡))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 Ⅎwnf 1783 ∈ wcel 2108 ∀wral 3051 ⊆ wss 3926 ifcif 4500 class class class wbr 5119 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 1c1 11130 < clt 11269 ≤ cle 11270 / cdiv 11894 2c2 12295 ℝ+crp 13008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-rp 13009 |
| This theorem is referenced by: stoweidlem28 46057 |
| Copyright terms: Public domain | W3C validator |