Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem5 | Structured version Visualization version GIF version |
Description: There exists a δ as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90: 0 < δ < 1 , p >= δ on 𝑇 ∖ 𝑈. Here 𝐷 is used to represent δ in the paper and 𝑄 to represent 𝑇 ∖ 𝑈 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem5.1 | ⊢ Ⅎ𝑡𝜑 |
stoweidlem5.2 | ⊢ 𝐷 = if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) |
stoweidlem5.3 | ⊢ (𝜑 → 𝑃:𝑇⟶ℝ) |
stoweidlem5.4 | ⊢ (𝜑 → 𝑄 ⊆ 𝑇) |
stoweidlem5.5 | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
stoweidlem5.6 | ⊢ (𝜑 → ∀𝑡 ∈ 𝑄 𝐶 ≤ (𝑃‘𝑡)) |
Ref | Expression |
---|---|
stoweidlem5 | ⊢ (𝜑 → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ 𝑄 𝑑 ≤ (𝑃‘𝑡))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem5.2 | . . 3 ⊢ 𝐷 = if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) | |
2 | stoweidlem5.5 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
3 | halfre 12187 | . . . . 5 ⊢ (1 / 2) ∈ ℝ | |
4 | halfgt0 12189 | . . . . 5 ⊢ 0 < (1 / 2) | |
5 | 3, 4 | elrpii 12733 | . . . 4 ⊢ (1 / 2) ∈ ℝ+ |
6 | ifcl 4504 | . . . 4 ⊢ ((𝐶 ∈ ℝ+ ∧ (1 / 2) ∈ ℝ+) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ+) | |
7 | 2, 5, 6 | sylancl 586 | . . 3 ⊢ (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ+) |
8 | 1, 7 | eqeltrid 2843 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℝ+) |
9 | 8 | rpred 12772 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) |
10 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → (1 / 2) ∈ ℝ) |
11 | 1red 10976 | . . 3 ⊢ (𝜑 → 1 ∈ ℝ) | |
12 | 2 | rpred 12772 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
13 | min2 12924 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ (1 / 2)) | |
14 | 12, 3, 13 | sylancl 586 | . . . 4 ⊢ (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ (1 / 2)) |
15 | 1, 14 | eqbrtrid 5109 | . . 3 ⊢ (𝜑 → 𝐷 ≤ (1 / 2)) |
16 | halflt1 12191 | . . . 4 ⊢ (1 / 2) < 1 | |
17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → (1 / 2) < 1) |
18 | 9, 10, 11, 15, 17 | lelttrd 11133 | . 2 ⊢ (𝜑 → 𝐷 < 1) |
19 | stoweidlem5.1 | . . 3 ⊢ Ⅎ𝑡𝜑 | |
20 | 7 | rpred 12772 | . . . . . . 7 ⊢ (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ) |
21 | 20 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ) |
22 | 12 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → 𝐶 ∈ ℝ) |
23 | stoweidlem5.3 | . . . . . . . 8 ⊢ (𝜑 → 𝑃:𝑇⟶ℝ) | |
24 | 23 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → 𝑃:𝑇⟶ℝ) |
25 | stoweidlem5.4 | . . . . . . . 8 ⊢ (𝜑 → 𝑄 ⊆ 𝑇) | |
26 | 25 | sselda 3921 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → 𝑡 ∈ 𝑇) |
27 | 24, 26 | ffvelrnd 6962 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → (𝑃‘𝑡) ∈ ℝ) |
28 | min1 12923 | . . . . . . . 8 ⊢ ((𝐶 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ 𝐶) | |
29 | 12, 3, 28 | sylancl 586 | . . . . . . 7 ⊢ (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ 𝐶) |
30 | 29 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ 𝐶) |
31 | stoweidlem5.6 | . . . . . . 7 ⊢ (𝜑 → ∀𝑡 ∈ 𝑄 𝐶 ≤ (𝑃‘𝑡)) | |
32 | 31 | r19.21bi 3134 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → 𝐶 ≤ (𝑃‘𝑡)) |
33 | 21, 22, 27, 30, 32 | letrd 11132 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ (𝑃‘𝑡)) |
34 | 1, 33 | eqbrtrid 5109 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → 𝐷 ≤ (𝑃‘𝑡)) |
35 | 34 | ex 413 | . . 3 ⊢ (𝜑 → (𝑡 ∈ 𝑄 → 𝐷 ≤ (𝑃‘𝑡))) |
36 | 19, 35 | ralrimi 3141 | . 2 ⊢ (𝜑 → ∀𝑡 ∈ 𝑄 𝐷 ≤ (𝑃‘𝑡)) |
37 | eleq1 2826 | . . . . 5 ⊢ (𝑑 = 𝐷 → (𝑑 ∈ ℝ+ ↔ 𝐷 ∈ ℝ+)) | |
38 | breq1 5077 | . . . . 5 ⊢ (𝑑 = 𝐷 → (𝑑 < 1 ↔ 𝐷 < 1)) | |
39 | breq1 5077 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (𝑑 ≤ (𝑃‘𝑡) ↔ 𝐷 ≤ (𝑃‘𝑡))) | |
40 | 39 | ralbidv 3112 | . . . . 5 ⊢ (𝑑 = 𝐷 → (∀𝑡 ∈ 𝑄 𝑑 ≤ (𝑃‘𝑡) ↔ ∀𝑡 ∈ 𝑄 𝐷 ≤ (𝑃‘𝑡))) |
41 | 37, 38, 40 | 3anbi123d 1435 | . . . 4 ⊢ (𝑑 = 𝐷 → ((𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ 𝑄 𝑑 ≤ (𝑃‘𝑡)) ↔ (𝐷 ∈ ℝ+ ∧ 𝐷 < 1 ∧ ∀𝑡 ∈ 𝑄 𝐷 ≤ (𝑃‘𝑡)))) |
42 | 41 | spcegv 3536 | . . 3 ⊢ (𝐷 ∈ ℝ+ → ((𝐷 ∈ ℝ+ ∧ 𝐷 < 1 ∧ ∀𝑡 ∈ 𝑄 𝐷 ≤ (𝑃‘𝑡)) → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ 𝑄 𝑑 ≤ (𝑃‘𝑡)))) |
43 | 8, 42 | syl 17 | . 2 ⊢ (𝜑 → ((𝐷 ∈ ℝ+ ∧ 𝐷 < 1 ∧ ∀𝑡 ∈ 𝑄 𝐷 ≤ (𝑃‘𝑡)) → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ 𝑄 𝑑 ≤ (𝑃‘𝑡)))) |
44 | 8, 18, 36, 43 | mp3and 1463 | 1 ⊢ (𝜑 → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ 𝑄 𝑑 ≤ (𝑃‘𝑡))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∃wex 1782 Ⅎwnf 1786 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 ifcif 4459 class class class wbr 5074 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 1c1 10872 < clt 11009 ≤ cle 11010 / cdiv 11632 2c2 12028 ℝ+crp 12730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-2 12036 df-rp 12731 |
This theorem is referenced by: stoweidlem28 43569 |
Copyright terms: Public domain | W3C validator |