![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem5 | Structured version Visualization version GIF version |
Description: There exists a δ as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90: 0 < δ < 1 , p >= δ on 𝑇 ∖ 𝑈. Here 𝐷 is used to represent δ in the paper and 𝑄 to represent 𝑇 ∖ 𝑈 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem5.1 | ⊢ Ⅎ𝑡𝜑 |
stoweidlem5.2 | ⊢ 𝐷 = if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) |
stoweidlem5.3 | ⊢ (𝜑 → 𝑃:𝑇⟶ℝ) |
stoweidlem5.4 | ⊢ (𝜑 → 𝑄 ⊆ 𝑇) |
stoweidlem5.5 | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
stoweidlem5.6 | ⊢ (𝜑 → ∀𝑡 ∈ 𝑄 𝐶 ≤ (𝑃‘𝑡)) |
Ref | Expression |
---|---|
stoweidlem5 | ⊢ (𝜑 → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ 𝑄 𝑑 ≤ (𝑃‘𝑡))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem5.2 | . . 3 ⊢ 𝐷 = if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) | |
2 | stoweidlem5.5 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
3 | halfre 12507 | . . . . 5 ⊢ (1 / 2) ∈ ℝ | |
4 | halfgt0 12509 | . . . . 5 ⊢ 0 < (1 / 2) | |
5 | 3, 4 | elrpii 13060 | . . . 4 ⊢ (1 / 2) ∈ ℝ+ |
6 | ifcl 4593 | . . . 4 ⊢ ((𝐶 ∈ ℝ+ ∧ (1 / 2) ∈ ℝ+) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ+) | |
7 | 2, 5, 6 | sylancl 585 | . . 3 ⊢ (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ+) |
8 | 1, 7 | eqeltrid 2848 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℝ+) |
9 | 8 | rpred 13099 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) |
10 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → (1 / 2) ∈ ℝ) |
11 | 1red 11291 | . . 3 ⊢ (𝜑 → 1 ∈ ℝ) | |
12 | 2 | rpred 13099 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
13 | min2 13252 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ (1 / 2)) | |
14 | 12, 3, 13 | sylancl 585 | . . . 4 ⊢ (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ (1 / 2)) |
15 | 1, 14 | eqbrtrid 5201 | . . 3 ⊢ (𝜑 → 𝐷 ≤ (1 / 2)) |
16 | halflt1 12511 | . . . 4 ⊢ (1 / 2) < 1 | |
17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → (1 / 2) < 1) |
18 | 9, 10, 11, 15, 17 | lelttrd 11448 | . 2 ⊢ (𝜑 → 𝐷 < 1) |
19 | stoweidlem5.1 | . . 3 ⊢ Ⅎ𝑡𝜑 | |
20 | 7 | rpred 13099 | . . . . . . 7 ⊢ (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ) |
21 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ) |
22 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → 𝐶 ∈ ℝ) |
23 | stoweidlem5.3 | . . . . . . . 8 ⊢ (𝜑 → 𝑃:𝑇⟶ℝ) | |
24 | 23 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → 𝑃:𝑇⟶ℝ) |
25 | stoweidlem5.4 | . . . . . . . 8 ⊢ (𝜑 → 𝑄 ⊆ 𝑇) | |
26 | 25 | sselda 4008 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → 𝑡 ∈ 𝑇) |
27 | 24, 26 | ffvelcdmd 7119 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → (𝑃‘𝑡) ∈ ℝ) |
28 | min1 13251 | . . . . . . . 8 ⊢ ((𝐶 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ 𝐶) | |
29 | 12, 3, 28 | sylancl 585 | . . . . . . 7 ⊢ (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ 𝐶) |
30 | 29 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ 𝐶) |
31 | stoweidlem5.6 | . . . . . . 7 ⊢ (𝜑 → ∀𝑡 ∈ 𝑄 𝐶 ≤ (𝑃‘𝑡)) | |
32 | 31 | r19.21bi 3257 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → 𝐶 ≤ (𝑃‘𝑡)) |
33 | 21, 22, 27, 30, 32 | letrd 11447 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ (𝑃‘𝑡)) |
34 | 1, 33 | eqbrtrid 5201 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑄) → 𝐷 ≤ (𝑃‘𝑡)) |
35 | 34 | ex 412 | . . 3 ⊢ (𝜑 → (𝑡 ∈ 𝑄 → 𝐷 ≤ (𝑃‘𝑡))) |
36 | 19, 35 | ralrimi 3263 | . 2 ⊢ (𝜑 → ∀𝑡 ∈ 𝑄 𝐷 ≤ (𝑃‘𝑡)) |
37 | eleq1 2832 | . . . . 5 ⊢ (𝑑 = 𝐷 → (𝑑 ∈ ℝ+ ↔ 𝐷 ∈ ℝ+)) | |
38 | breq1 5169 | . . . . 5 ⊢ (𝑑 = 𝐷 → (𝑑 < 1 ↔ 𝐷 < 1)) | |
39 | breq1 5169 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (𝑑 ≤ (𝑃‘𝑡) ↔ 𝐷 ≤ (𝑃‘𝑡))) | |
40 | 39 | ralbidv 3184 | . . . . 5 ⊢ (𝑑 = 𝐷 → (∀𝑡 ∈ 𝑄 𝑑 ≤ (𝑃‘𝑡) ↔ ∀𝑡 ∈ 𝑄 𝐷 ≤ (𝑃‘𝑡))) |
41 | 37, 38, 40 | 3anbi123d 1436 | . . . 4 ⊢ (𝑑 = 𝐷 → ((𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ 𝑄 𝑑 ≤ (𝑃‘𝑡)) ↔ (𝐷 ∈ ℝ+ ∧ 𝐷 < 1 ∧ ∀𝑡 ∈ 𝑄 𝐷 ≤ (𝑃‘𝑡)))) |
42 | 41 | spcegv 3610 | . . 3 ⊢ (𝐷 ∈ ℝ+ → ((𝐷 ∈ ℝ+ ∧ 𝐷 < 1 ∧ ∀𝑡 ∈ 𝑄 𝐷 ≤ (𝑃‘𝑡)) → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ 𝑄 𝑑 ≤ (𝑃‘𝑡)))) |
43 | 8, 42 | syl 17 | . 2 ⊢ (𝜑 → ((𝐷 ∈ ℝ+ ∧ 𝐷 < 1 ∧ ∀𝑡 ∈ 𝑄 𝐷 ≤ (𝑃‘𝑡)) → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ 𝑄 𝑑 ≤ (𝑃‘𝑡)))) |
44 | 8, 18, 36, 43 | mp3and 1464 | 1 ⊢ (𝜑 → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ 𝑄 𝑑 ≤ (𝑃‘𝑡))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∃wex 1777 Ⅎwnf 1781 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 ifcif 4548 class class class wbr 5166 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 1c1 11185 < clt 11324 ≤ cle 11325 / cdiv 11947 2c2 12348 ℝ+crp 13057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-2 12356 df-rp 13058 |
This theorem is referenced by: stoweidlem28 45949 |
Copyright terms: Public domain | W3C validator |