Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem5 Structured version   Visualization version   GIF version

Theorem stoweidlem5 42167
Description: There exists a δ as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90: 0 < δ < 1 , p >= δ on 𝑇𝑈. Here 𝐷 is used to represent δ in the paper and 𝑄 to represent 𝑇𝑈 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem5.1 𝑡𝜑
stoweidlem5.2 𝐷 = if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2))
stoweidlem5.3 (𝜑𝑃:𝑇⟶ℝ)
stoweidlem5.4 (𝜑𝑄𝑇)
stoweidlem5.5 (𝜑𝐶 ∈ ℝ+)
stoweidlem5.6 (𝜑 → ∀𝑡𝑄 𝐶 ≤ (𝑃𝑡))
Assertion
Ref Expression
stoweidlem5 (𝜑 → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡𝑄 𝑑 ≤ (𝑃𝑡)))
Distinct variable groups:   𝑡,𝑑,𝐷   𝑃,𝑑   𝑄,𝑑
Allowed substitution hints:   𝜑(𝑡,𝑑)   𝐶(𝑡,𝑑)   𝑃(𝑡)   𝑄(𝑡)   𝑇(𝑡,𝑑)

Proof of Theorem stoweidlem5
StepHypRef Expression
1 stoweidlem5.2 . . 3 𝐷 = if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2))
2 stoweidlem5.5 . . . 4 (𝜑𝐶 ∈ ℝ+)
3 halfre 11839 . . . . 5 (1 / 2) ∈ ℝ
4 halfgt0 11841 . . . . 5 0 < (1 / 2)
53, 4elrpii 12380 . . . 4 (1 / 2) ∈ ℝ+
6 ifcl 4507 . . . 4 ((𝐶 ∈ ℝ+ ∧ (1 / 2) ∈ ℝ+) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ+)
72, 5, 6sylancl 586 . . 3 (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ+)
81, 7eqeltrid 2914 . 2 (𝜑𝐷 ∈ ℝ+)
98rpred 12419 . . 3 (𝜑𝐷 ∈ ℝ)
103a1i 11 . . 3 (𝜑 → (1 / 2) ∈ ℝ)
11 1red 10630 . . 3 (𝜑 → 1 ∈ ℝ)
122rpred 12419 . . . . 5 (𝜑𝐶 ∈ ℝ)
13 min2 12571 . . . . 5 ((𝐶 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ (1 / 2))
1412, 3, 13sylancl 586 . . . 4 (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ (1 / 2))
151, 14eqbrtrid 5092 . . 3 (𝜑𝐷 ≤ (1 / 2))
16 halflt1 11843 . . . 4 (1 / 2) < 1
1716a1i 11 . . 3 (𝜑 → (1 / 2) < 1)
189, 10, 11, 15, 17lelttrd 10786 . 2 (𝜑𝐷 < 1)
19 stoweidlem5.1 . . 3 𝑡𝜑
207rpred 12419 . . . . . . 7 (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ)
2120adantr 481 . . . . . 6 ((𝜑𝑡𝑄) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ)
2212adantr 481 . . . . . 6 ((𝜑𝑡𝑄) → 𝐶 ∈ ℝ)
23 stoweidlem5.3 . . . . . . . 8 (𝜑𝑃:𝑇⟶ℝ)
2423adantr 481 . . . . . . 7 ((𝜑𝑡𝑄) → 𝑃:𝑇⟶ℝ)
25 stoweidlem5.4 . . . . . . . 8 (𝜑𝑄𝑇)
2625sselda 3964 . . . . . . 7 ((𝜑𝑡𝑄) → 𝑡𝑇)
2724, 26ffvelrnd 6844 . . . . . 6 ((𝜑𝑡𝑄) → (𝑃𝑡) ∈ ℝ)
28 min1 12570 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ 𝐶)
2912, 3, 28sylancl 586 . . . . . . 7 (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ 𝐶)
3029adantr 481 . . . . . 6 ((𝜑𝑡𝑄) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ 𝐶)
31 stoweidlem5.6 . . . . . . 7 (𝜑 → ∀𝑡𝑄 𝐶 ≤ (𝑃𝑡))
3231r19.21bi 3205 . . . . . 6 ((𝜑𝑡𝑄) → 𝐶 ≤ (𝑃𝑡))
3321, 22, 27, 30, 32letrd 10785 . . . . 5 ((𝜑𝑡𝑄) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ (𝑃𝑡))
341, 33eqbrtrid 5092 . . . 4 ((𝜑𝑡𝑄) → 𝐷 ≤ (𝑃𝑡))
3534ex 413 . . 3 (𝜑 → (𝑡𝑄𝐷 ≤ (𝑃𝑡)))
3619, 35ralrimi 3213 . 2 (𝜑 → ∀𝑡𝑄 𝐷 ≤ (𝑃𝑡))
37 eleq1 2897 . . . . 5 (𝑑 = 𝐷 → (𝑑 ∈ ℝ+𝐷 ∈ ℝ+))
38 breq1 5060 . . . . 5 (𝑑 = 𝐷 → (𝑑 < 1 ↔ 𝐷 < 1))
39 breq1 5060 . . . . . 6 (𝑑 = 𝐷 → (𝑑 ≤ (𝑃𝑡) ↔ 𝐷 ≤ (𝑃𝑡)))
4039ralbidv 3194 . . . . 5 (𝑑 = 𝐷 → (∀𝑡𝑄 𝑑 ≤ (𝑃𝑡) ↔ ∀𝑡𝑄 𝐷 ≤ (𝑃𝑡)))
4137, 38, 403anbi123d 1427 . . . 4 (𝑑 = 𝐷 → ((𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡𝑄 𝑑 ≤ (𝑃𝑡)) ↔ (𝐷 ∈ ℝ+𝐷 < 1 ∧ ∀𝑡𝑄 𝐷 ≤ (𝑃𝑡))))
4241spcegv 3594 . . 3 (𝐷 ∈ ℝ+ → ((𝐷 ∈ ℝ+𝐷 < 1 ∧ ∀𝑡𝑄 𝐷 ≤ (𝑃𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡𝑄 𝑑 ≤ (𝑃𝑡))))
438, 42syl 17 . 2 (𝜑 → ((𝐷 ∈ ℝ+𝐷 < 1 ∧ ∀𝑡𝑄 𝐷 ≤ (𝑃𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡𝑄 𝑑 ≤ (𝑃𝑡))))
448, 18, 36, 43mp3and 1455 1 (𝜑 → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡𝑄 𝑑 ≤ (𝑃𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wex 1771  wnf 1775  wcel 2105  wral 3135  wss 3933  ifcif 4463   class class class wbr 5057  wf 6344  cfv 6348  (class class class)co 7145  cr 10524  1c1 10526   < clt 10663  cle 10664   / cdiv 11285  2c2 11680  +crp 12377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-2 11688  df-rp 12378
This theorem is referenced by:  stoweidlem28  42190
  Copyright terms: Public domain W3C validator