Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem5 Structured version   Visualization version   GIF version

Theorem stoweidlem5 43546
Description: There exists a δ as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90: 0 < δ < 1 , p >= δ on 𝑇𝑈. Here 𝐷 is used to represent δ in the paper and 𝑄 to represent 𝑇𝑈 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem5.1 𝑡𝜑
stoweidlem5.2 𝐷 = if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2))
stoweidlem5.3 (𝜑𝑃:𝑇⟶ℝ)
stoweidlem5.4 (𝜑𝑄𝑇)
stoweidlem5.5 (𝜑𝐶 ∈ ℝ+)
stoweidlem5.6 (𝜑 → ∀𝑡𝑄 𝐶 ≤ (𝑃𝑡))
Assertion
Ref Expression
stoweidlem5 (𝜑 → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡𝑄 𝑑 ≤ (𝑃𝑡)))
Distinct variable groups:   𝑡,𝑑,𝐷   𝑃,𝑑   𝑄,𝑑
Allowed substitution hints:   𝜑(𝑡,𝑑)   𝐶(𝑡,𝑑)   𝑃(𝑡)   𝑄(𝑡)   𝑇(𝑡,𝑑)

Proof of Theorem stoweidlem5
StepHypRef Expression
1 stoweidlem5.2 . . 3 𝐷 = if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2))
2 stoweidlem5.5 . . . 4 (𝜑𝐶 ∈ ℝ+)
3 halfre 12187 . . . . 5 (1 / 2) ∈ ℝ
4 halfgt0 12189 . . . . 5 0 < (1 / 2)
53, 4elrpii 12733 . . . 4 (1 / 2) ∈ ℝ+
6 ifcl 4504 . . . 4 ((𝐶 ∈ ℝ+ ∧ (1 / 2) ∈ ℝ+) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ+)
72, 5, 6sylancl 586 . . 3 (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ+)
81, 7eqeltrid 2843 . 2 (𝜑𝐷 ∈ ℝ+)
98rpred 12772 . . 3 (𝜑𝐷 ∈ ℝ)
103a1i 11 . . 3 (𝜑 → (1 / 2) ∈ ℝ)
11 1red 10976 . . 3 (𝜑 → 1 ∈ ℝ)
122rpred 12772 . . . . 5 (𝜑𝐶 ∈ ℝ)
13 min2 12924 . . . . 5 ((𝐶 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ (1 / 2))
1412, 3, 13sylancl 586 . . . 4 (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ (1 / 2))
151, 14eqbrtrid 5109 . . 3 (𝜑𝐷 ≤ (1 / 2))
16 halflt1 12191 . . . 4 (1 / 2) < 1
1716a1i 11 . . 3 (𝜑 → (1 / 2) < 1)
189, 10, 11, 15, 17lelttrd 11133 . 2 (𝜑𝐷 < 1)
19 stoweidlem5.1 . . 3 𝑡𝜑
207rpred 12772 . . . . . . 7 (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ)
2120adantr 481 . . . . . 6 ((𝜑𝑡𝑄) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ)
2212adantr 481 . . . . . 6 ((𝜑𝑡𝑄) → 𝐶 ∈ ℝ)
23 stoweidlem5.3 . . . . . . . 8 (𝜑𝑃:𝑇⟶ℝ)
2423adantr 481 . . . . . . 7 ((𝜑𝑡𝑄) → 𝑃:𝑇⟶ℝ)
25 stoweidlem5.4 . . . . . . . 8 (𝜑𝑄𝑇)
2625sselda 3921 . . . . . . 7 ((𝜑𝑡𝑄) → 𝑡𝑇)
2724, 26ffvelrnd 6962 . . . . . 6 ((𝜑𝑡𝑄) → (𝑃𝑡) ∈ ℝ)
28 min1 12923 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ 𝐶)
2912, 3, 28sylancl 586 . . . . . . 7 (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ 𝐶)
3029adantr 481 . . . . . 6 ((𝜑𝑡𝑄) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ 𝐶)
31 stoweidlem5.6 . . . . . . 7 (𝜑 → ∀𝑡𝑄 𝐶 ≤ (𝑃𝑡))
3231r19.21bi 3134 . . . . . 6 ((𝜑𝑡𝑄) → 𝐶 ≤ (𝑃𝑡))
3321, 22, 27, 30, 32letrd 11132 . . . . 5 ((𝜑𝑡𝑄) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ (𝑃𝑡))
341, 33eqbrtrid 5109 . . . 4 ((𝜑𝑡𝑄) → 𝐷 ≤ (𝑃𝑡))
3534ex 413 . . 3 (𝜑 → (𝑡𝑄𝐷 ≤ (𝑃𝑡)))
3619, 35ralrimi 3141 . 2 (𝜑 → ∀𝑡𝑄 𝐷 ≤ (𝑃𝑡))
37 eleq1 2826 . . . . 5 (𝑑 = 𝐷 → (𝑑 ∈ ℝ+𝐷 ∈ ℝ+))
38 breq1 5077 . . . . 5 (𝑑 = 𝐷 → (𝑑 < 1 ↔ 𝐷 < 1))
39 breq1 5077 . . . . . 6 (𝑑 = 𝐷 → (𝑑 ≤ (𝑃𝑡) ↔ 𝐷 ≤ (𝑃𝑡)))
4039ralbidv 3112 . . . . 5 (𝑑 = 𝐷 → (∀𝑡𝑄 𝑑 ≤ (𝑃𝑡) ↔ ∀𝑡𝑄 𝐷 ≤ (𝑃𝑡)))
4137, 38, 403anbi123d 1435 . . . 4 (𝑑 = 𝐷 → ((𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡𝑄 𝑑 ≤ (𝑃𝑡)) ↔ (𝐷 ∈ ℝ+𝐷 < 1 ∧ ∀𝑡𝑄 𝐷 ≤ (𝑃𝑡))))
4241spcegv 3536 . . 3 (𝐷 ∈ ℝ+ → ((𝐷 ∈ ℝ+𝐷 < 1 ∧ ∀𝑡𝑄 𝐷 ≤ (𝑃𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡𝑄 𝑑 ≤ (𝑃𝑡))))
438, 42syl 17 . 2 (𝜑 → ((𝐷 ∈ ℝ+𝐷 < 1 ∧ ∀𝑡𝑄 𝐷 ≤ (𝑃𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡𝑄 𝑑 ≤ (𝑃𝑡))))
448, 18, 36, 43mp3and 1463 1 (𝜑 → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡𝑄 𝑑 ≤ (𝑃𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wex 1782  wnf 1786  wcel 2106  wral 3064  wss 3887  ifcif 4459   class class class wbr 5074  wf 6429  cfv 6433  (class class class)co 7275  cr 10870  1c1 10872   < clt 11009  cle 11010   / cdiv 11632  2c2 12028  +crp 12730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-2 12036  df-rp 12731
This theorem is referenced by:  stoweidlem28  43569
  Copyright terms: Public domain W3C validator