Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem5 Structured version   Visualization version   GIF version

Theorem stoweidlem5 46020
Description: There exists a δ as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90: 0 < δ < 1 , p >= δ on 𝑇𝑈. Here 𝐷 is used to represent δ in the paper and 𝑄 to represent 𝑇𝑈 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem5.1 𝑡𝜑
stoweidlem5.2 𝐷 = if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2))
stoweidlem5.3 (𝜑𝑃:𝑇⟶ℝ)
stoweidlem5.4 (𝜑𝑄𝑇)
stoweidlem5.5 (𝜑𝐶 ∈ ℝ+)
stoweidlem5.6 (𝜑 → ∀𝑡𝑄 𝐶 ≤ (𝑃𝑡))
Assertion
Ref Expression
stoweidlem5 (𝜑 → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡𝑄 𝑑 ≤ (𝑃𝑡)))
Distinct variable groups:   𝑡,𝑑,𝐷   𝑃,𝑑   𝑄,𝑑
Allowed substitution hints:   𝜑(𝑡,𝑑)   𝐶(𝑡,𝑑)   𝑃(𝑡)   𝑄(𝑡)   𝑇(𝑡,𝑑)

Proof of Theorem stoweidlem5
StepHypRef Expression
1 stoweidlem5.2 . . 3 𝐷 = if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2))
2 stoweidlem5.5 . . . 4 (𝜑𝐶 ∈ ℝ+)
3 halfre 12480 . . . . 5 (1 / 2) ∈ ℝ
4 halfgt0 12482 . . . . 5 0 < (1 / 2)
53, 4elrpii 13037 . . . 4 (1 / 2) ∈ ℝ+
6 ifcl 4571 . . . 4 ((𝐶 ∈ ℝ+ ∧ (1 / 2) ∈ ℝ+) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ+)
72, 5, 6sylancl 586 . . 3 (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ+)
81, 7eqeltrid 2845 . 2 (𝜑𝐷 ∈ ℝ+)
98rpred 13077 . . 3 (𝜑𝐷 ∈ ℝ)
103a1i 11 . . 3 (𝜑 → (1 / 2) ∈ ℝ)
11 1red 11262 . . 3 (𝜑 → 1 ∈ ℝ)
122rpred 13077 . . . . 5 (𝜑𝐶 ∈ ℝ)
13 min2 13232 . . . . 5 ((𝐶 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ (1 / 2))
1412, 3, 13sylancl 586 . . . 4 (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ (1 / 2))
151, 14eqbrtrid 5178 . . 3 (𝜑𝐷 ≤ (1 / 2))
16 halflt1 12484 . . . 4 (1 / 2) < 1
1716a1i 11 . . 3 (𝜑 → (1 / 2) < 1)
189, 10, 11, 15, 17lelttrd 11419 . 2 (𝜑𝐷 < 1)
19 stoweidlem5.1 . . 3 𝑡𝜑
207rpred 13077 . . . . . . 7 (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ)
2120adantr 480 . . . . . 6 ((𝜑𝑡𝑄) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ)
2212adantr 480 . . . . . 6 ((𝜑𝑡𝑄) → 𝐶 ∈ ℝ)
23 stoweidlem5.3 . . . . . . . 8 (𝜑𝑃:𝑇⟶ℝ)
2423adantr 480 . . . . . . 7 ((𝜑𝑡𝑄) → 𝑃:𝑇⟶ℝ)
25 stoweidlem5.4 . . . . . . . 8 (𝜑𝑄𝑇)
2625sselda 3983 . . . . . . 7 ((𝜑𝑡𝑄) → 𝑡𝑇)
2724, 26ffvelcdmd 7105 . . . . . 6 ((𝜑𝑡𝑄) → (𝑃𝑡) ∈ ℝ)
28 min1 13231 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ 𝐶)
2912, 3, 28sylancl 586 . . . . . . 7 (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ 𝐶)
3029adantr 480 . . . . . 6 ((𝜑𝑡𝑄) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ 𝐶)
31 stoweidlem5.6 . . . . . . 7 (𝜑 → ∀𝑡𝑄 𝐶 ≤ (𝑃𝑡))
3231r19.21bi 3251 . . . . . 6 ((𝜑𝑡𝑄) → 𝐶 ≤ (𝑃𝑡))
3321, 22, 27, 30, 32letrd 11418 . . . . 5 ((𝜑𝑡𝑄) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ (𝑃𝑡))
341, 33eqbrtrid 5178 . . . 4 ((𝜑𝑡𝑄) → 𝐷 ≤ (𝑃𝑡))
3534ex 412 . . 3 (𝜑 → (𝑡𝑄𝐷 ≤ (𝑃𝑡)))
3619, 35ralrimi 3257 . 2 (𝜑 → ∀𝑡𝑄 𝐷 ≤ (𝑃𝑡))
37 eleq1 2829 . . . . 5 (𝑑 = 𝐷 → (𝑑 ∈ ℝ+𝐷 ∈ ℝ+))
38 breq1 5146 . . . . 5 (𝑑 = 𝐷 → (𝑑 < 1 ↔ 𝐷 < 1))
39 breq1 5146 . . . . . 6 (𝑑 = 𝐷 → (𝑑 ≤ (𝑃𝑡) ↔ 𝐷 ≤ (𝑃𝑡)))
4039ralbidv 3178 . . . . 5 (𝑑 = 𝐷 → (∀𝑡𝑄 𝑑 ≤ (𝑃𝑡) ↔ ∀𝑡𝑄 𝐷 ≤ (𝑃𝑡)))
4137, 38, 403anbi123d 1438 . . . 4 (𝑑 = 𝐷 → ((𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡𝑄 𝑑 ≤ (𝑃𝑡)) ↔ (𝐷 ∈ ℝ+𝐷 < 1 ∧ ∀𝑡𝑄 𝐷 ≤ (𝑃𝑡))))
4241spcegv 3597 . . 3 (𝐷 ∈ ℝ+ → ((𝐷 ∈ ℝ+𝐷 < 1 ∧ ∀𝑡𝑄 𝐷 ≤ (𝑃𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡𝑄 𝑑 ≤ (𝑃𝑡))))
438, 42syl 17 . 2 (𝜑 → ((𝐷 ∈ ℝ+𝐷 < 1 ∧ ∀𝑡𝑄 𝐷 ≤ (𝑃𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡𝑄 𝑑 ≤ (𝑃𝑡))))
448, 18, 36, 43mp3and 1466 1 (𝜑 → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡𝑄 𝑑 ≤ (𝑃𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wex 1779  wnf 1783  wcel 2108  wral 3061  wss 3951  ifcif 4525   class class class wbr 5143  wf 6557  cfv 6561  (class class class)co 7431  cr 11154  1c1 11156   < clt 11295  cle 11296   / cdiv 11920  2c2 12321  +crp 13034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-2 12329  df-rp 13035
This theorem is referenced by:  stoweidlem28  46043
  Copyright terms: Public domain W3C validator