Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem41 Structured version   Visualization version   GIF version

Theorem stoweidlem41 40989
Description: This lemma is used to prove that there exists x as in Lemma 1 of [BrosowskiDeutsh] p. 90: 0 <= x(t) <= 1 for all t in T, x(t) < epsilon for all t in V, x(t) > 1 - epsilon for all t in T \ U. Here we prove the very last step of the proof of Lemma 1: "The result follows from taking x = 1 - qn";. Here 𝐸 is used to represent ε in the paper, and 𝑦 to represent qn in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem41.1 𝑡𝜑
stoweidlem41.2 𝑋 = (𝑡𝑇 ↦ (1 − (𝑦𝑡)))
stoweidlem41.3 𝐹 = (𝑡𝑇 ↦ 1)
stoweidlem41.4 𝑉𝑇
stoweidlem41.5 (𝜑𝑦𝐴)
stoweidlem41.6 (𝜑𝑦:𝑇⟶ℝ)
stoweidlem41.7 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem41.8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem41.9 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem41.10 ((𝜑𝑤 ∈ ℝ) → (𝑡𝑇𝑤) ∈ 𝐴)
stoweidlem41.11 (𝜑𝐸 ∈ ℝ+)
stoweidlem41.12 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1))
stoweidlem41.13 (𝜑 → ∀𝑡𝑉 (1 − 𝐸) < (𝑦𝑡))
stoweidlem41.14 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝐸)
Assertion
Ref Expression
stoweidlem41 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝐸 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑥𝑡)))
Distinct variable groups:   𝑓,𝑔,𝑡,𝑦   𝐴,𝑓,𝑔,𝑡   𝑓,𝐹,𝑔   𝑇,𝑓,𝑔,𝑡   𝜑,𝑓,𝑔   𝑤,𝑡,𝐴   𝑥,𝑡,𝐴   𝑤,𝑇   𝜑,𝑤   𝑥,𝐸   𝑥,𝑇   𝑥,𝑈   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑡)   𝐴(𝑦)   𝑇(𝑦)   𝑈(𝑦,𝑤,𝑡,𝑓,𝑔)   𝐸(𝑦,𝑤,𝑡,𝑓,𝑔)   𝐹(𝑥,𝑦,𝑤,𝑡)   𝑉(𝑦,𝑤,𝑡,𝑓,𝑔)   𝑋(𝑦,𝑤,𝑡,𝑓,𝑔)

Proof of Theorem stoweidlem41
StepHypRef Expression
1 stoweidlem41.1 . . . . 5 𝑡𝜑
2 1re 10326 . . . . . . . 8 1 ∈ ℝ
3 stoweidlem41.3 . . . . . . . . 9 𝐹 = (𝑡𝑇 ↦ 1)
43fvmpt2 6514 . . . . . . . 8 ((𝑡𝑇 ∧ 1 ∈ ℝ) → (𝐹𝑡) = 1)
52, 4mpan2 683 . . . . . . 7 (𝑡𝑇 → (𝐹𝑡) = 1)
65adantl 474 . . . . . 6 ((𝜑𝑡𝑇) → (𝐹𝑡) = 1)
76oveq1d 6891 . . . . 5 ((𝜑𝑡𝑇) → ((𝐹𝑡) − (𝑦𝑡)) = (1 − (𝑦𝑡)))
81, 7mpteq2da 4934 . . . 4 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) − (𝑦𝑡))) = (𝑡𝑇 ↦ (1 − (𝑦𝑡))))
9 stoweidlem41.2 . . . 4 𝑋 = (𝑡𝑇 ↦ (1 − (𝑦𝑡)))
108, 9syl6eqr 2849 . . 3 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) − (𝑦𝑡))) = 𝑋)
11 stoweidlem41.10 . . . . . . 7 ((𝜑𝑤 ∈ ℝ) → (𝑡𝑇𝑤) ∈ 𝐴)
1211stoweidlem4 40952 . . . . . 6 ((𝜑 ∧ 1 ∈ ℝ) → (𝑡𝑇 ↦ 1) ∈ 𝐴)
132, 12mpan2 683 . . . . 5 (𝜑 → (𝑡𝑇 ↦ 1) ∈ 𝐴)
143, 13syl5eqel 2880 . . . 4 (𝜑𝐹𝐴)
15 stoweidlem41.5 . . . 4 (𝜑𝑦𝐴)
16 nfmpt1 4938 . . . . . 6 𝑡(𝑡𝑇 ↦ 1)
173, 16nfcxfr 2937 . . . . 5 𝑡𝐹
18 nfcv 2939 . . . . 5 𝑡𝑦
19 stoweidlem41.7 . . . . 5 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
20 stoweidlem41.8 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
21 stoweidlem41.9 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
2217, 18, 1, 19, 20, 21, 11stoweidlem33 40981 . . . 4 ((𝜑𝐹𝐴𝑦𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) − (𝑦𝑡))) ∈ 𝐴)
2314, 15, 22mpd3an23 1588 . . 3 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) − (𝑦𝑡))) ∈ 𝐴)
2410, 23eqeltrrd 2877 . 2 (𝜑𝑋𝐴)
25 stoweidlem41.6 . . . . . . . 8 (𝜑𝑦:𝑇⟶ℝ)
2625ffvelrnda 6583 . . . . . . 7 ((𝜑𝑡𝑇) → (𝑦𝑡) ∈ ℝ)
27 1red 10327 . . . . . . 7 ((𝜑𝑡𝑇) → 1 ∈ ℝ)
28 0red 10330 . . . . . . 7 ((𝜑𝑡𝑇) → 0 ∈ ℝ)
29 stoweidlem41.12 . . . . . . . . . 10 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1))
3029r19.21bi 3111 . . . . . . . . 9 ((𝜑𝑡𝑇) → (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1))
3130simprd 490 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝑦𝑡) ≤ 1)
32 1m0e1 11437 . . . . . . . 8 (1 − 0) = 1
3331, 32syl6breqr 4883 . . . . . . 7 ((𝜑𝑡𝑇) → (𝑦𝑡) ≤ (1 − 0))
3426, 27, 28, 33lesubd 10921 . . . . . 6 ((𝜑𝑡𝑇) → 0 ≤ (1 − (𝑦𝑡)))
35 simpr 478 . . . . . . 7 ((𝜑𝑡𝑇) → 𝑡𝑇)
3627, 26resubcld 10748 . . . . . . 7 ((𝜑𝑡𝑇) → (1 − (𝑦𝑡)) ∈ ℝ)
379fvmpt2 6514 . . . . . . 7 ((𝑡𝑇 ∧ (1 − (𝑦𝑡)) ∈ ℝ) → (𝑋𝑡) = (1 − (𝑦𝑡)))
3835, 36, 37syl2anc 580 . . . . . 6 ((𝜑𝑡𝑇) → (𝑋𝑡) = (1 − (𝑦𝑡)))
3934, 38breqtrrd 4869 . . . . 5 ((𝜑𝑡𝑇) → 0 ≤ (𝑋𝑡))
4030simpld 489 . . . . . . . 8 ((𝜑𝑡𝑇) → 0 ≤ (𝑦𝑡))
4128, 26, 27, 40lesub2dd 10934 . . . . . . 7 ((𝜑𝑡𝑇) → (1 − (𝑦𝑡)) ≤ (1 − 0))
4241, 32syl6breq 4882 . . . . . 6 ((𝜑𝑡𝑇) → (1 − (𝑦𝑡)) ≤ 1)
4338, 42eqbrtrd 4863 . . . . 5 ((𝜑𝑡𝑇) → (𝑋𝑡) ≤ 1)
4439, 43jca 508 . . . 4 ((𝜑𝑡𝑇) → (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1))
4544ex 402 . . 3 (𝜑 → (𝑡𝑇 → (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
461, 45ralrimi 3136 . 2 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1))
47 stoweidlem41.4 . . . . . . 7 𝑉𝑇
4847sseli 3792 . . . . . 6 (𝑡𝑉𝑡𝑇)
4948, 38sylan2 587 . . . . 5 ((𝜑𝑡𝑉) → (𝑋𝑡) = (1 − (𝑦𝑡)))
50 1red 10327 . . . . . 6 ((𝜑𝑡𝑉) → 1 ∈ ℝ)
51 stoweidlem41.11 . . . . . . . 8 (𝜑𝐸 ∈ ℝ+)
5251rpred 12113 . . . . . . 7 (𝜑𝐸 ∈ ℝ)
5352adantr 473 . . . . . 6 ((𝜑𝑡𝑉) → 𝐸 ∈ ℝ)
5448, 26sylan2 587 . . . . . 6 ((𝜑𝑡𝑉) → (𝑦𝑡) ∈ ℝ)
55 stoweidlem41.13 . . . . . . 7 (𝜑 → ∀𝑡𝑉 (1 − 𝐸) < (𝑦𝑡))
5655r19.21bi 3111 . . . . . 6 ((𝜑𝑡𝑉) → (1 − 𝐸) < (𝑦𝑡))
5750, 53, 54, 56ltsub23d 10922 . . . . 5 ((𝜑𝑡𝑉) → (1 − (𝑦𝑡)) < 𝐸)
5849, 57eqbrtrd 4863 . . . 4 ((𝜑𝑡𝑉) → (𝑋𝑡) < 𝐸)
5958ex 402 . . 3 (𝜑 → (𝑡𝑉 → (𝑋𝑡) < 𝐸))
601, 59ralrimi 3136 . 2 (𝜑 → ∀𝑡𝑉 (𝑋𝑡) < 𝐸)
61 eldifi 3928 . . . . . . 7 (𝑡 ∈ (𝑇𝑈) → 𝑡𝑇)
6261, 26sylan2 587 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑦𝑡) ∈ ℝ)
6352adantr 473 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝐸 ∈ ℝ)
64 1red 10327 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 1 ∈ ℝ)
65 stoweidlem41.14 . . . . . . 7 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝐸)
6665r19.21bi 3111 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑦𝑡) < 𝐸)
6762, 63, 64, 66ltsub2dd 10930 . . . . 5 ((𝜑𝑡 ∈ (𝑇𝑈)) → (1 − 𝐸) < (1 − (𝑦𝑡)))
6861, 38sylan2 587 . . . . 5 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑋𝑡) = (1 − (𝑦𝑡)))
6967, 68breqtrrd 4869 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → (1 − 𝐸) < (𝑋𝑡))
7069ex 402 . . 3 (𝜑 → (𝑡 ∈ (𝑇𝑈) → (1 − 𝐸) < (𝑋𝑡)))
711, 70ralrimi 3136 . 2 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑋𝑡))
72 nfmpt1 4938 . . . . . . 7 𝑡(𝑡𝑇 ↦ (1 − (𝑦𝑡)))
739, 72nfcxfr 2937 . . . . . 6 𝑡𝑋
7473nfeq2 2955 . . . . 5 𝑡 𝑥 = 𝑋
75 fveq1 6408 . . . . . . 7 (𝑥 = 𝑋 → (𝑥𝑡) = (𝑋𝑡))
7675breq2d 4853 . . . . . 6 (𝑥 = 𝑋 → (0 ≤ (𝑥𝑡) ↔ 0 ≤ (𝑋𝑡)))
7775breq1d 4851 . . . . . 6 (𝑥 = 𝑋 → ((𝑥𝑡) ≤ 1 ↔ (𝑋𝑡) ≤ 1))
7876, 77anbi12d 625 . . . . 5 (𝑥 = 𝑋 → ((0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ↔ (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
7974, 78ralbid 3162 . . . 4 (𝑥 = 𝑋 → (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
8075breq1d 4851 . . . . 5 (𝑥 = 𝑋 → ((𝑥𝑡) < 𝐸 ↔ (𝑋𝑡) < 𝐸))
8174, 80ralbid 3162 . . . 4 (𝑥 = 𝑋 → (∀𝑡𝑉 (𝑥𝑡) < 𝐸 ↔ ∀𝑡𝑉 (𝑋𝑡) < 𝐸))
8275breq2d 4853 . . . . 5 (𝑥 = 𝑋 → ((1 − 𝐸) < (𝑥𝑡) ↔ (1 − 𝐸) < (𝑋𝑡)))
8374, 82ralbid 3162 . . . 4 (𝑥 = 𝑋 → (∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑥𝑡) ↔ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑋𝑡)))
8479, 81, 833anbi123d 1561 . . 3 (𝑥 = 𝑋 → ((∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝐸 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑥𝑡)) ↔ (∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑋𝑡) < 𝐸 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑋𝑡))))
8584rspcev 3495 . 2 ((𝑋𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑋𝑡) < 𝐸 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑋𝑡))) → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝐸 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑥𝑡)))
8624, 46, 60, 71, 85syl13anc 1492 1 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝐸 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑥𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  w3a 1108   = wceq 1653  wnf 1879  wcel 2157  wral 3087  wrex 3088  cdif 3764  wss 3767   class class class wbr 4841  cmpt 4920  wf 6095  cfv 6099  (class class class)co 6876  cr 10221  0cc0 10222  1c1 10223   + caddc 10225   · cmul 10227   < clt 10361  cle 10362  cmin 10554  +crp 12070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-op 4373  df-uni 4627  df-br 4842  df-opab 4904  df-mpt 4921  df-id 5218  df-po 5231  df-so 5232  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-er 7980  df-en 8194  df-dom 8195  df-sdom 8196  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-rp 12071
This theorem is referenced by:  stoweidlem52  41000
  Copyright terms: Public domain W3C validator