Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem41 Structured version   Visualization version   GIF version

Theorem stoweidlem41 44402
Description: This lemma is used to prove that there exists x as in Lemma 1 of [BrosowskiDeutsh] p. 90: 0 <= x(t) <= 1 for all t in T, x(t) < epsilon for all t in V, x(t) > 1 - epsilon for all t in T \ U. Here we prove the very last step of the proof of Lemma 1: "The result follows from taking x = 1 - qn";. Here 𝐸 is used to represent ε in the paper, and 𝑦 to represent qn in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem41.1 𝑡𝜑
stoweidlem41.2 𝑋 = (𝑡𝑇 ↦ (1 − (𝑦𝑡)))
stoweidlem41.3 𝐹 = (𝑡𝑇 ↦ 1)
stoweidlem41.4 𝑉𝑇
stoweidlem41.5 (𝜑𝑦𝐴)
stoweidlem41.6 (𝜑𝑦:𝑇⟶ℝ)
stoweidlem41.7 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem41.8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem41.9 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem41.10 ((𝜑𝑤 ∈ ℝ) → (𝑡𝑇𝑤) ∈ 𝐴)
stoweidlem41.11 (𝜑𝐸 ∈ ℝ+)
stoweidlem41.12 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1))
stoweidlem41.13 (𝜑 → ∀𝑡𝑉 (1 − 𝐸) < (𝑦𝑡))
stoweidlem41.14 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝐸)
Assertion
Ref Expression
stoweidlem41 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝐸 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑥𝑡)))
Distinct variable groups:   𝑓,𝑔,𝑡,𝑦   𝐴,𝑓,𝑔,𝑡   𝑓,𝐹,𝑔   𝑇,𝑓,𝑔,𝑡   𝜑,𝑓,𝑔   𝑤,𝑡,𝐴   𝑥,𝑡,𝐴   𝑤,𝑇   𝜑,𝑤   𝑥,𝐸   𝑥,𝑇   𝑥,𝑈   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑡)   𝐴(𝑦)   𝑇(𝑦)   𝑈(𝑦,𝑤,𝑡,𝑓,𝑔)   𝐸(𝑦,𝑤,𝑡,𝑓,𝑔)   𝐹(𝑥,𝑦,𝑤,𝑡)   𝑉(𝑦,𝑤,𝑡,𝑓,𝑔)   𝑋(𝑦,𝑤,𝑡,𝑓,𝑔)

Proof of Theorem stoweidlem41
StepHypRef Expression
1 stoweidlem41.1 . . . . 5 𝑡𝜑
2 1re 11164 . . . . . . . 8 1 ∈ ℝ
3 stoweidlem41.3 . . . . . . . . 9 𝐹 = (𝑡𝑇 ↦ 1)
43fvmpt2 6964 . . . . . . . 8 ((𝑡𝑇 ∧ 1 ∈ ℝ) → (𝐹𝑡) = 1)
52, 4mpan2 689 . . . . . . 7 (𝑡𝑇 → (𝐹𝑡) = 1)
65adantl 482 . . . . . 6 ((𝜑𝑡𝑇) → (𝐹𝑡) = 1)
76oveq1d 7377 . . . . 5 ((𝜑𝑡𝑇) → ((𝐹𝑡) − (𝑦𝑡)) = (1 − (𝑦𝑡)))
81, 7mpteq2da 5208 . . . 4 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) − (𝑦𝑡))) = (𝑡𝑇 ↦ (1 − (𝑦𝑡))))
9 stoweidlem41.2 . . . 4 𝑋 = (𝑡𝑇 ↦ (1 − (𝑦𝑡)))
108, 9eqtr4di 2789 . . 3 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) − (𝑦𝑡))) = 𝑋)
11 stoweidlem41.10 . . . . . . 7 ((𝜑𝑤 ∈ ℝ) → (𝑡𝑇𝑤) ∈ 𝐴)
1211stoweidlem4 44365 . . . . . 6 ((𝜑 ∧ 1 ∈ ℝ) → (𝑡𝑇 ↦ 1) ∈ 𝐴)
132, 12mpan2 689 . . . . 5 (𝜑 → (𝑡𝑇 ↦ 1) ∈ 𝐴)
143, 13eqeltrid 2836 . . . 4 (𝜑𝐹𝐴)
15 stoweidlem41.5 . . . 4 (𝜑𝑦𝐴)
16 nfmpt1 5218 . . . . . 6 𝑡(𝑡𝑇 ↦ 1)
173, 16nfcxfr 2900 . . . . 5 𝑡𝐹
18 nfcv 2902 . . . . 5 𝑡𝑦
19 stoweidlem41.7 . . . . 5 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
20 stoweidlem41.8 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
21 stoweidlem41.9 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
2217, 18, 1, 19, 20, 21, 11stoweidlem33 44394 . . . 4 ((𝜑𝐹𝐴𝑦𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) − (𝑦𝑡))) ∈ 𝐴)
2314, 15, 22mpd3an23 1463 . . 3 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) − (𝑦𝑡))) ∈ 𝐴)
2410, 23eqeltrrd 2833 . 2 (𝜑𝑋𝐴)
25 stoweidlem41.6 . . . . . . . 8 (𝜑𝑦:𝑇⟶ℝ)
2625ffvelcdmda 7040 . . . . . . 7 ((𝜑𝑡𝑇) → (𝑦𝑡) ∈ ℝ)
27 1red 11165 . . . . . . 7 ((𝜑𝑡𝑇) → 1 ∈ ℝ)
28 0red 11167 . . . . . . 7 ((𝜑𝑡𝑇) → 0 ∈ ℝ)
29 stoweidlem41.12 . . . . . . . . . 10 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1))
3029r19.21bi 3232 . . . . . . . . 9 ((𝜑𝑡𝑇) → (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1))
3130simprd 496 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝑦𝑡) ≤ 1)
32 1m0e1 12283 . . . . . . . 8 (1 − 0) = 1
3331, 32breqtrrdi 5152 . . . . . . 7 ((𝜑𝑡𝑇) → (𝑦𝑡) ≤ (1 − 0))
3426, 27, 28, 33lesubd 11768 . . . . . 6 ((𝜑𝑡𝑇) → 0 ≤ (1 − (𝑦𝑡)))
35 simpr 485 . . . . . . 7 ((𝜑𝑡𝑇) → 𝑡𝑇)
3627, 26resubcld 11592 . . . . . . 7 ((𝜑𝑡𝑇) → (1 − (𝑦𝑡)) ∈ ℝ)
379fvmpt2 6964 . . . . . . 7 ((𝑡𝑇 ∧ (1 − (𝑦𝑡)) ∈ ℝ) → (𝑋𝑡) = (1 − (𝑦𝑡)))
3835, 36, 37syl2anc 584 . . . . . 6 ((𝜑𝑡𝑇) → (𝑋𝑡) = (1 − (𝑦𝑡)))
3934, 38breqtrrd 5138 . . . . 5 ((𝜑𝑡𝑇) → 0 ≤ (𝑋𝑡))
4030simpld 495 . . . . . . . 8 ((𝜑𝑡𝑇) → 0 ≤ (𝑦𝑡))
4128, 26, 27, 40lesub2dd 11781 . . . . . . 7 ((𝜑𝑡𝑇) → (1 − (𝑦𝑡)) ≤ (1 − 0))
4241, 32breqtrdi 5151 . . . . . 6 ((𝜑𝑡𝑇) → (1 − (𝑦𝑡)) ≤ 1)
4338, 42eqbrtrd 5132 . . . . 5 ((𝜑𝑡𝑇) → (𝑋𝑡) ≤ 1)
4439, 43jca 512 . . . 4 ((𝜑𝑡𝑇) → (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1))
4544ex 413 . . 3 (𝜑 → (𝑡𝑇 → (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
461, 45ralrimi 3238 . 2 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1))
47 stoweidlem41.4 . . . . . . 7 𝑉𝑇
4847sseli 3943 . . . . . 6 (𝑡𝑉𝑡𝑇)
4948, 38sylan2 593 . . . . 5 ((𝜑𝑡𝑉) → (𝑋𝑡) = (1 − (𝑦𝑡)))
50 1red 11165 . . . . . 6 ((𝜑𝑡𝑉) → 1 ∈ ℝ)
51 stoweidlem41.11 . . . . . . . 8 (𝜑𝐸 ∈ ℝ+)
5251rpred 12966 . . . . . . 7 (𝜑𝐸 ∈ ℝ)
5352adantr 481 . . . . . 6 ((𝜑𝑡𝑉) → 𝐸 ∈ ℝ)
5448, 26sylan2 593 . . . . . 6 ((𝜑𝑡𝑉) → (𝑦𝑡) ∈ ℝ)
55 stoweidlem41.13 . . . . . . 7 (𝜑 → ∀𝑡𝑉 (1 − 𝐸) < (𝑦𝑡))
5655r19.21bi 3232 . . . . . 6 ((𝜑𝑡𝑉) → (1 − 𝐸) < (𝑦𝑡))
5750, 53, 54, 56ltsub23d 11769 . . . . 5 ((𝜑𝑡𝑉) → (1 − (𝑦𝑡)) < 𝐸)
5849, 57eqbrtrd 5132 . . . 4 ((𝜑𝑡𝑉) → (𝑋𝑡) < 𝐸)
5958ex 413 . . 3 (𝜑 → (𝑡𝑉 → (𝑋𝑡) < 𝐸))
601, 59ralrimi 3238 . 2 (𝜑 → ∀𝑡𝑉 (𝑋𝑡) < 𝐸)
61 eldifi 4091 . . . . . . 7 (𝑡 ∈ (𝑇𝑈) → 𝑡𝑇)
6261, 26sylan2 593 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑦𝑡) ∈ ℝ)
6352adantr 481 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝐸 ∈ ℝ)
64 1red 11165 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 1 ∈ ℝ)
65 stoweidlem41.14 . . . . . . 7 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝐸)
6665r19.21bi 3232 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑦𝑡) < 𝐸)
6762, 63, 64, 66ltsub2dd 11777 . . . . 5 ((𝜑𝑡 ∈ (𝑇𝑈)) → (1 − 𝐸) < (1 − (𝑦𝑡)))
6861, 38sylan2 593 . . . . 5 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑋𝑡) = (1 − (𝑦𝑡)))
6967, 68breqtrrd 5138 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → (1 − 𝐸) < (𝑋𝑡))
7069ex 413 . . 3 (𝜑 → (𝑡 ∈ (𝑇𝑈) → (1 − 𝐸) < (𝑋𝑡)))
711, 70ralrimi 3238 . 2 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑋𝑡))
72 nfmpt1 5218 . . . . . . 7 𝑡(𝑡𝑇 ↦ (1 − (𝑦𝑡)))
739, 72nfcxfr 2900 . . . . . 6 𝑡𝑋
7473nfeq2 2919 . . . . 5 𝑡 𝑥 = 𝑋
75 fveq1 6846 . . . . . . 7 (𝑥 = 𝑋 → (𝑥𝑡) = (𝑋𝑡))
7675breq2d 5122 . . . . . 6 (𝑥 = 𝑋 → (0 ≤ (𝑥𝑡) ↔ 0 ≤ (𝑋𝑡)))
7775breq1d 5120 . . . . . 6 (𝑥 = 𝑋 → ((𝑥𝑡) ≤ 1 ↔ (𝑋𝑡) ≤ 1))
7876, 77anbi12d 631 . . . . 5 (𝑥 = 𝑋 → ((0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ↔ (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
7974, 78ralbid 3254 . . . 4 (𝑥 = 𝑋 → (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
8075breq1d 5120 . . . . 5 (𝑥 = 𝑋 → ((𝑥𝑡) < 𝐸 ↔ (𝑋𝑡) < 𝐸))
8174, 80ralbid 3254 . . . 4 (𝑥 = 𝑋 → (∀𝑡𝑉 (𝑥𝑡) < 𝐸 ↔ ∀𝑡𝑉 (𝑋𝑡) < 𝐸))
8275breq2d 5122 . . . . 5 (𝑥 = 𝑋 → ((1 − 𝐸) < (𝑥𝑡) ↔ (1 − 𝐸) < (𝑋𝑡)))
8374, 82ralbid 3254 . . . 4 (𝑥 = 𝑋 → (∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑥𝑡) ↔ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑋𝑡)))
8479, 81, 833anbi123d 1436 . . 3 (𝑥 = 𝑋 → ((∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝐸 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑥𝑡)) ↔ (∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑋𝑡) < 𝐸 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑋𝑡))))
8584rspcev 3582 . 2 ((𝑋𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑋𝑡) < 𝐸 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑋𝑡))) → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝐸 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑥𝑡)))
8624, 46, 60, 71, 85syl13anc 1372 1 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝐸 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑥𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wnf 1785  wcel 2106  wral 3060  wrex 3069  cdif 3910  wss 3913   class class class wbr 5110  cmpt 5193  wf 6497  cfv 6501  (class class class)co 7362  cr 11059  0cc0 11060  1c1 11061   + caddc 11063   · cmul 11065   < clt 11198  cle 11199  cmin 11394  +crp 12924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-po 5550  df-so 5551  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-rp 12925
This theorem is referenced by:  stoweidlem52  44413
  Copyright terms: Public domain W3C validator