Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem40 Structured version   Visualization version   GIF version

Theorem stoweidlem40 45241
Description: This lemma proves that qn is in the subalgebra, as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90. Q is used to represent qn in the paper, N is used to represent n in the paper, and M is used to represent k^n in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem40.1 𝑡𝑃
stoweidlem40.2 𝑡𝜑
stoweidlem40.3 𝑄 = (𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑁))↑𝑀))
stoweidlem40.4 𝐹 = (𝑡𝑇 ↦ (1 − ((𝑃𝑡)↑𝑁)))
stoweidlem40.5 𝐺 = (𝑡𝑇 ↦ 1)
stoweidlem40.6 𝐻 = (𝑡𝑇 ↦ ((𝑃𝑡)↑𝑁))
stoweidlem40.7 (𝜑𝑃𝐴)
stoweidlem40.8 (𝜑𝑃:𝑇⟶ℝ)
stoweidlem40.9 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem40.10 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem40.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem40.12 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem40.13 (𝜑𝑁 ∈ ℕ)
stoweidlem40.14 (𝜑𝑀 ∈ ℕ)
Assertion
Ref Expression
stoweidlem40 (𝜑𝑄𝐴)
Distinct variable groups:   𝑓,𝑔,𝑡,𝐴   𝑓,𝐹,𝑔   𝑓,𝐺,𝑔   𝑓,𝐻,𝑔   𝑃,𝑓,𝑔   𝑇,𝑓,𝑔,𝑡   𝜑,𝑓,𝑔   𝑥,𝑡,𝐴   𝑡,𝑀   𝑡,𝑁   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡)   𝑃(𝑥,𝑡)   𝑄(𝑥,𝑡,𝑓,𝑔)   𝐹(𝑥,𝑡)   𝐺(𝑥,𝑡)   𝐻(𝑥,𝑡)   𝑀(𝑥,𝑓,𝑔)   𝑁(𝑥,𝑓,𝑔)

Proof of Theorem stoweidlem40
StepHypRef Expression
1 stoweidlem40.3 . . 3 𝑄 = (𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑁))↑𝑀))
2 stoweidlem40.2 . . . 4 𝑡𝜑
3 simpr 484 . . . . . . 7 ((𝜑𝑡𝑇) → 𝑡𝑇)
4 1red 11212 . . . . . . . 8 ((𝜑𝑡𝑇) → 1 ∈ ℝ)
5 stoweidlem40.8 . . . . . . . . . 10 (𝜑𝑃:𝑇⟶ℝ)
65ffvelcdmda 7076 . . . . . . . . 9 ((𝜑𝑡𝑇) → (𝑃𝑡) ∈ ℝ)
7 stoweidlem40.13 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
87nnnn0d 12529 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
98adantr 480 . . . . . . . . 9 ((𝜑𝑡𝑇) → 𝑁 ∈ ℕ0)
106, 9reexpcld 14125 . . . . . . . 8 ((𝜑𝑡𝑇) → ((𝑃𝑡)↑𝑁) ∈ ℝ)
114, 10resubcld 11639 . . . . . . 7 ((𝜑𝑡𝑇) → (1 − ((𝑃𝑡)↑𝑁)) ∈ ℝ)
12 stoweidlem40.4 . . . . . . . 8 𝐹 = (𝑡𝑇 ↦ (1 − ((𝑃𝑡)↑𝑁)))
1312fvmpt2 6999 . . . . . . 7 ((𝑡𝑇 ∧ (1 − ((𝑃𝑡)↑𝑁)) ∈ ℝ) → (𝐹𝑡) = (1 − ((𝑃𝑡)↑𝑁)))
143, 11, 13syl2anc 583 . . . . . 6 ((𝜑𝑡𝑇) → (𝐹𝑡) = (1 − ((𝑃𝑡)↑𝑁)))
1514eqcomd 2730 . . . . 5 ((𝜑𝑡𝑇) → (1 − ((𝑃𝑡)↑𝑁)) = (𝐹𝑡))
1615oveq1d 7416 . . . 4 ((𝜑𝑡𝑇) → ((1 − ((𝑃𝑡)↑𝑁))↑𝑀) = ((𝐹𝑡)↑𝑀))
172, 16mpteq2da 5236 . . 3 (𝜑 → (𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑁))↑𝑀)) = (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑀)))
181, 17eqtrid 2776 . 2 (𝜑𝑄 = (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑀)))
19 nfmpt1 5246 . . . 4 𝑡(𝑡𝑇 ↦ (1 − ((𝑃𝑡)↑𝑁)))
2012, 19nfcxfr 2893 . . 3 𝑡𝐹
21 stoweidlem40.9 . . 3 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
22 stoweidlem40.11 . . 3 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
23 stoweidlem40.12 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
24 1re 11211 . . . . . . . . . 10 1 ∈ ℝ
25 stoweidlem40.5 . . . . . . . . . . 11 𝐺 = (𝑡𝑇 ↦ 1)
2625fvmpt2 6999 . . . . . . . . . 10 ((𝑡𝑇 ∧ 1 ∈ ℝ) → (𝐺𝑡) = 1)
2724, 26mpan2 688 . . . . . . . . 9 (𝑡𝑇 → (𝐺𝑡) = 1)
2827eqcomd 2730 . . . . . . . 8 (𝑡𝑇 → 1 = (𝐺𝑡))
2928adantl 481 . . . . . . 7 ((𝜑𝑡𝑇) → 1 = (𝐺𝑡))
30 stoweidlem40.6 . . . . . . . . . 10 𝐻 = (𝑡𝑇 ↦ ((𝑃𝑡)↑𝑁))
3130fvmpt2 6999 . . . . . . . . 9 ((𝑡𝑇 ∧ ((𝑃𝑡)↑𝑁) ∈ ℝ) → (𝐻𝑡) = ((𝑃𝑡)↑𝑁))
323, 10, 31syl2anc 583 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐻𝑡) = ((𝑃𝑡)↑𝑁))
3332eqcomd 2730 . . . . . . 7 ((𝜑𝑡𝑇) → ((𝑃𝑡)↑𝑁) = (𝐻𝑡))
3429, 33oveq12d 7419 . . . . . 6 ((𝜑𝑡𝑇) → (1 − ((𝑃𝑡)↑𝑁)) = ((𝐺𝑡) − (𝐻𝑡)))
352, 34mpteq2da 5236 . . . . 5 (𝜑 → (𝑡𝑇 ↦ (1 − ((𝑃𝑡)↑𝑁))) = (𝑡𝑇 ↦ ((𝐺𝑡) − (𝐻𝑡))))
3612, 35eqtrid 2776 . . . 4 (𝜑𝐹 = (𝑡𝑇 ↦ ((𝐺𝑡) − (𝐻𝑡))))
3723stoweidlem4 45205 . . . . . . 7 ((𝜑 ∧ 1 ∈ ℝ) → (𝑡𝑇 ↦ 1) ∈ 𝐴)
3824, 37mpan2 688 . . . . . 6 (𝜑 → (𝑡𝑇 ↦ 1) ∈ 𝐴)
3925, 38eqeltrid 2829 . . . . 5 (𝜑𝐺𝐴)
40 stoweidlem40.1 . . . . . . 7 𝑡𝑃
41 stoweidlem40.7 . . . . . . 7 (𝜑𝑃𝐴)
4240, 2, 21, 22, 23, 41, 8stoweidlem19 45220 . . . . . 6 (𝜑 → (𝑡𝑇 ↦ ((𝑃𝑡)↑𝑁)) ∈ 𝐴)
4330, 42eqeltrid 2829 . . . . 5 (𝜑𝐻𝐴)
44 nfmpt1 5246 . . . . . . 7 𝑡(𝑡𝑇 ↦ 1)
4525, 44nfcxfr 2893 . . . . . 6 𝑡𝐺
46 nfmpt1 5246 . . . . . . 7 𝑡(𝑡𝑇 ↦ ((𝑃𝑡)↑𝑁))
4730, 46nfcxfr 2893 . . . . . 6 𝑡𝐻
48 stoweidlem40.10 . . . . . 6 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
4945, 47, 2, 21, 48, 22, 23stoweidlem33 45234 . . . . 5 ((𝜑𝐺𝐴𝐻𝐴) → (𝑡𝑇 ↦ ((𝐺𝑡) − (𝐻𝑡))) ∈ 𝐴)
5039, 43, 49mpd3an23 1459 . . . 4 (𝜑 → (𝑡𝑇 ↦ ((𝐺𝑡) − (𝐻𝑡))) ∈ 𝐴)
5136, 50eqeltrd 2825 . . 3 (𝜑𝐹𝐴)
52 stoweidlem40.14 . . . 4 (𝜑𝑀 ∈ ℕ)
5352nnnn0d 12529 . . 3 (𝜑𝑀 ∈ ℕ0)
5420, 2, 21, 22, 23, 51, 53stoweidlem19 45220 . 2 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑀)) ∈ 𝐴)
5518, 54eqeltrd 2825 1 (𝜑𝑄𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wnf 1777  wcel 2098  wnfc 2875  cmpt 5221  wf 6529  cfv 6533  (class class class)co 7401  cr 11105  1c1 11107   + caddc 11109   · cmul 11111  cmin 11441  cn 12209  0cn0 12469  cexp 14024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-n0 12470  df-z 12556  df-uz 12820  df-seq 13964  df-exp 14025
This theorem is referenced by:  stoweidlem45  45246
  Copyright terms: Public domain W3C validator