Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweid Structured version   Visualization version   GIF version

Theorem stoweid 46061
Description: This theorem proves the Stone-Weierstrass theorem for real-valued functions: let 𝐽 be a compact topology on 𝑇, and 𝐶 be the set of real continuous functions on 𝑇. Assume that 𝐴 is a subalgebra of 𝐶 (closed under addition and multiplication of functions) containing constant functions and discriminating points (if 𝑟 and 𝑡 are distinct points in 𝑇, then there exists a function in 𝐴 such that h(r) is distinct from h(t) ). Then, for any continuous function 𝐹 and for any positive real 𝐸, there exists a function 𝑓 in the subalgebra 𝐴, such that 𝑓 approximates 𝐹 up to 𝐸 (𝐸 represents the usual ε value). As a classical example, given any a, b reals, the closed interval 𝑇 = [𝑎, 𝑏] could be taken, along with the subalgebra 𝐴 of real polynomials on 𝑇, and then use this theorem to easily prove that real polynomials are dense in the standard metric space of continuous functions on [𝑎, 𝑏]. The proof and lemmas are written following [BrosowskiDeutsh] p. 89 (through page 92). Some effort is put in avoiding the use of the axiom of choice. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweid.1 𝑡𝐹
stoweid.2 𝑡𝜑
stoweid.3 𝐾 = (topGen‘ran (,))
stoweid.4 (𝜑𝐽 ∈ Comp)
stoweid.5 𝑇 = 𝐽
stoweid.6 𝐶 = (𝐽 Cn 𝐾)
stoweid.7 (𝜑𝐴𝐶)
stoweid.8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweid.9 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweid.10 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweid.11 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝐴 (𝑟) ≠ (𝑡))
stoweid.12 (𝜑𝐹𝐶)
stoweid.13 (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
stoweid (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
Distinct variable groups:   𝑓,𝑔,𝑡,𝐴   𝑓,,𝑟,𝑥,𝑡,𝐴   𝑓,𝐸,𝑔,𝑡   𝑓,𝐹,𝑔   𝑓,𝐽,𝑟,𝑡   𝑇,𝑓,𝑔,𝑡   𝜑,𝑓,𝑔   ,𝐸,𝑟,𝑥   ,𝐹,𝑟,𝑥   𝑇,,𝑟,𝑥   𝜑,,𝑟,𝑥   𝑡,𝐾
Allowed substitution hints:   𝜑(𝑡)   𝐶(𝑥,𝑡,𝑓,𝑔,,𝑟)   𝐹(𝑡)   𝐽(𝑥,𝑔,)   𝐾(𝑥,𝑓,𝑔,,𝑟)

Proof of Theorem stoweid
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝑇 = ∅) → 𝑇 = ∅)
2 stoweid.10 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
32ralrimiva 3125 . . . . . 6 (𝜑 → ∀𝑥 ∈ ℝ (𝑡𝑇𝑥) ∈ 𝐴)
4 1re 11174 . . . . . 6 1 ∈ ℝ
5 id 22 . . . . . . . . 9 (𝑥 = 1 → 𝑥 = 1)
65mpteq2dv 5201 . . . . . . . 8 (𝑥 = 1 → (𝑡𝑇𝑥) = (𝑡𝑇 ↦ 1))
76eleq1d 2813 . . . . . . 7 (𝑥 = 1 → ((𝑡𝑇𝑥) ∈ 𝐴 ↔ (𝑡𝑇 ↦ 1) ∈ 𝐴))
87rspccv 3585 . . . . . 6 (∀𝑥 ∈ ℝ (𝑡𝑇𝑥) ∈ 𝐴 → (1 ∈ ℝ → (𝑡𝑇 ↦ 1) ∈ 𝐴))
93, 4, 8mpisyl 21 . . . . 5 (𝜑 → (𝑡𝑇 ↦ 1) ∈ 𝐴)
109adantr 480 . . . 4 ((𝜑𝑇 = ∅) → (𝑡𝑇 ↦ 1) ∈ 𝐴)
111, 10stoweidlem9 46007 . . 3 ((𝜑𝑇 = ∅) → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)))
12 stoweid.1 . . . 4 𝑡𝐹
13 nfv 1914 . . . . 5 𝑓𝜑
14 nfv 1914 . . . . 5 𝑓 ¬ 𝑇 = ∅
1513, 14nfan 1899 . . . 4 𝑓(𝜑 ∧ ¬ 𝑇 = ∅)
16 stoweid.2 . . . . 5 𝑡𝜑
17 nfv 1914 . . . . 5 𝑡 ¬ 𝑇 = ∅
1816, 17nfan 1899 . . . 4 𝑡(𝜑 ∧ ¬ 𝑇 = ∅)
19 eqid 2729 . . . 4 (𝑡𝑇 ↦ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < ))) = (𝑡𝑇 ↦ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
20 stoweid.3 . . . 4 𝐾 = (topGen‘ran (,))
21 stoweid.5 . . . 4 𝑇 = 𝐽
22 stoweid.4 . . . . 5 (𝜑𝐽 ∈ Comp)
2322adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑇 = ∅) → 𝐽 ∈ Comp)
24 stoweid.6 . . . 4 𝐶 = (𝐽 Cn 𝐾)
25 stoweid.7 . . . . 5 (𝜑𝐴𝐶)
2625adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑇 = ∅) → 𝐴𝐶)
27 stoweid.8 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
28273adant1r 1178 . . . 4 (((𝜑 ∧ ¬ 𝑇 = ∅) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
29 stoweid.9 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
30293adant1r 1178 . . . 4 (((𝜑 ∧ ¬ 𝑇 = ∅) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
312adantlr 715 . . . 4 (((𝜑 ∧ ¬ 𝑇 = ∅) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
32 stoweid.11 . . . . 5 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝐴 (𝑟) ≠ (𝑡))
3332adantlr 715 . . . 4 (((𝜑 ∧ ¬ 𝑇 = ∅) ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝐴 (𝑟) ≠ (𝑡))
34 stoweid.12 . . . . 5 (𝜑𝐹𝐶)
3534adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑇 = ∅) → 𝐹𝐶)
36 stoweid.13 . . . . . 6 (𝜑𝐸 ∈ ℝ+)
37 4re 12270 . . . . . . . . 9 4 ∈ ℝ
38 4pos 12293 . . . . . . . . 9 0 < 4
3937, 38elrpii 12954 . . . . . . . 8 4 ∈ ℝ+
4039a1i 11 . . . . . . 7 (𝜑 → 4 ∈ ℝ+)
4140rpreccld 13005 . . . . . 6 (𝜑 → (1 / 4) ∈ ℝ+)
4236, 41ifcld 4535 . . . . 5 (𝜑 → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∈ ℝ+)
4342adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑇 = ∅) → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∈ ℝ+)
44 neqne 2933 . . . . 5 𝑇 = ∅ → 𝑇 ≠ ∅)
4544adantl 481 . . . 4 ((𝜑 ∧ ¬ 𝑇 = ∅) → 𝑇 ≠ ∅)
4636rpred 12995 . . . . . . 7 (𝜑𝐸 ∈ ℝ)
47 4ne0 12294 . . . . . . . . 9 4 ≠ 0
4837, 47rereccli 11947 . . . . . . . 8 (1 / 4) ∈ ℝ
4948a1i 11 . . . . . . 7 (𝜑 → (1 / 4) ∈ ℝ)
5046, 49ifcld 4535 . . . . . 6 (𝜑 → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∈ ℝ)
51 3re 12266 . . . . . . . 8 3 ∈ ℝ
52 3ne0 12292 . . . . . . . 8 3 ≠ 0
5351, 52rereccli 11947 . . . . . . 7 (1 / 3) ∈ ℝ
5453a1i 11 . . . . . 6 (𝜑 → (1 / 3) ∈ ℝ)
5536rpxrd 12996 . . . . . . 7 (𝜑𝐸 ∈ ℝ*)
5641rpxrd 12996 . . . . . . 7 (𝜑 → (1 / 4) ∈ ℝ*)
57 xrmin2 13138 . . . . . . 7 ((𝐸 ∈ ℝ* ∧ (1 / 4) ∈ ℝ*) → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ (1 / 4))
5855, 56, 57syl2anc 584 . . . . . 6 (𝜑 → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ (1 / 4))
59 3lt4 12355 . . . . . . . 8 3 < 4
60 3pos 12291 . . . . . . . . 9 0 < 3
6151, 37, 60, 38ltrecii 12099 . . . . . . . 8 (3 < 4 ↔ (1 / 4) < (1 / 3))
6259, 61mpbi 230 . . . . . . 7 (1 / 4) < (1 / 3)
6362a1i 11 . . . . . 6 (𝜑 → (1 / 4) < (1 / 3))
6450, 49, 54, 58, 63lelttrd 11332 . . . . 5 (𝜑 → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) < (1 / 3))
6564adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑇 = ∅) → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) < (1 / 3))
6612, 15, 18, 19, 20, 21, 23, 24, 26, 28, 30, 31, 33, 35, 43, 45, 65stoweidlem62 46060 . . 3 ((𝜑 ∧ ¬ 𝑇 = ∅) → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)))
6711, 66pm2.61dan 812 . 2 (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)))
68 nfv 1914 . . . . 5 𝑡 𝑓𝐴
6916, 68nfan 1899 . . . 4 𝑡(𝜑𝑓𝐴)
70 xrmin1 13137 . . . . . . 7 ((𝐸 ∈ ℝ* ∧ (1 / 4) ∈ ℝ*) → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ 𝐸)
7155, 56, 70syl2anc 584 . . . . . 6 (𝜑 → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ 𝐸)
7271ad2antrr 726 . . . . 5 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ 𝐸)
7325ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝐴𝐶)
74 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝑓𝐴)
7573, 74sseldd 3947 . . . . . . . . . . 11 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝑓𝐶)
7620, 21, 24, 75fcnre 45019 . . . . . . . . . 10 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝑓:𝑇⟶ℝ)
77 simpr 484 . . . . . . . . . 10 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝑡𝑇)
7876, 77jca 511 . . . . . . . . 9 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → (𝑓:𝑇⟶ℝ ∧ 𝑡𝑇))
79 ffvelcdm 7053 . . . . . . . . 9 ((𝑓:𝑇⟶ℝ ∧ 𝑡𝑇) → (𝑓𝑡) ∈ ℝ)
80 recn 11158 . . . . . . . . 9 ((𝑓𝑡) ∈ ℝ → (𝑓𝑡) ∈ ℂ)
8178, 79, 803syl 18 . . . . . . . 8 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → (𝑓𝑡) ∈ ℂ)
8234ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝐹𝐶)
8320, 21, 24, 82fcnre 45019 . . . . . . . . . 10 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝐹:𝑇⟶ℝ)
8483, 77jca 511 . . . . . . . . 9 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → (𝐹:𝑇⟶ℝ ∧ 𝑡𝑇))
85 ffvelcdm 7053 . . . . . . . . 9 ((𝐹:𝑇⟶ℝ ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
86 recn 11158 . . . . . . . . 9 ((𝐹𝑡) ∈ ℝ → (𝐹𝑡) ∈ ℂ)
8784, 85, 863syl 18 . . . . . . . 8 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℂ)
8881, 87subcld 11533 . . . . . . 7 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → ((𝑓𝑡) − (𝐹𝑡)) ∈ ℂ)
8988abscld 15405 . . . . . 6 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → (abs‘((𝑓𝑡) − (𝐹𝑡))) ∈ ℝ)
904, 37, 473pm3.2i 1340 . . . . . . . . 9 (1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0)
91 redivcl 11901 . . . . . . . . 9 ((1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0) → (1 / 4) ∈ ℝ)
9290, 91mp1i 13 . . . . . . . 8 (𝜑 → (1 / 4) ∈ ℝ)
9346, 92ifcld 4535 . . . . . . 7 (𝜑 → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∈ ℝ)
9493ad2antrr 726 . . . . . 6 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∈ ℝ)
9546ad2antrr 726 . . . . . 6 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝐸 ∈ ℝ)
96 ltletr 11266 . . . . . 6 (((abs‘((𝑓𝑡) − (𝐹𝑡))) ∈ ℝ ∧ if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∈ ℝ ∧ 𝐸 ∈ ℝ) → (((abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∧ if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ 𝐸) → (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸))
9789, 94, 95, 96syl3anc 1373 . . . . 5 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → (((abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∧ if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ 𝐸) → (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸))
9872, 97mpan2d 694 . . . 4 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → ((abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) → (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸))
9969, 98ralimdaa 3238 . . 3 ((𝜑𝑓𝐴) → (∀𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) → ∀𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸))
10099reximdva 3146 . 2 (𝜑 → (∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸))
10167, 100mpd 15 1 (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wnfc 2876  wne 2925  wral 3044  wrex 3053  wss 3914  c0 4296  ifcif 4488   cuni 4871   class class class wbr 5107  cmpt 5188  ran crn 5639  wf 6507  cfv 6511  (class class class)co 7387  infcinf 9392  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  *cxr 11207   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  3c3 12242  4c4 12243  +crp 12951  (,)cioo 13306  abscabs 15200  topGenctg 17400   Cn ccn 23111  Compccmp 23273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-cn 23114  df-cnp 23115  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-xms 24208  df-ms 24209  df-tms 24210
This theorem is referenced by:  stowei  46062
  Copyright terms: Public domain W3C validator