Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweid Structured version   Visualization version   GIF version

Theorem stoweid 46078
Description: This theorem proves the Stone-Weierstrass theorem for real-valued functions: let 𝐽 be a compact topology on 𝑇, and 𝐶 be the set of real continuous functions on 𝑇. Assume that 𝐴 is a subalgebra of 𝐶 (closed under addition and multiplication of functions) containing constant functions and discriminating points (if 𝑟 and 𝑡 are distinct points in 𝑇, then there exists a function in 𝐴 such that h(r) is distinct from h(t) ). Then, for any continuous function 𝐹 and for any positive real 𝐸, there exists a function 𝑓 in the subalgebra 𝐴, such that 𝑓 approximates 𝐹 up to 𝐸 (𝐸 represents the usual ε value). As a classical example, given any a, b reals, the closed interval 𝑇 = [𝑎, 𝑏] could be taken, along with the subalgebra 𝐴 of real polynomials on 𝑇, and then use this theorem to easily prove that real polynomials are dense in the standard metric space of continuous functions on [𝑎, 𝑏]. The proof and lemmas are written following [BrosowskiDeutsh] p. 89 (through page 92). Some effort is put in avoiding the use of the axiom of choice. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweid.1 𝑡𝐹
stoweid.2 𝑡𝜑
stoweid.3 𝐾 = (topGen‘ran (,))
stoweid.4 (𝜑𝐽 ∈ Comp)
stoweid.5 𝑇 = 𝐽
stoweid.6 𝐶 = (𝐽 Cn 𝐾)
stoweid.7 (𝜑𝐴𝐶)
stoweid.8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweid.9 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweid.10 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweid.11 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝐴 (𝑟) ≠ (𝑡))
stoweid.12 (𝜑𝐹𝐶)
stoweid.13 (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
stoweid (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
Distinct variable groups:   𝑓,𝑔,𝑡,𝐴   𝑓,,𝑟,𝑥,𝑡,𝐴   𝑓,𝐸,𝑔,𝑡   𝑓,𝐹,𝑔   𝑓,𝐽,𝑟,𝑡   𝑇,𝑓,𝑔,𝑡   𝜑,𝑓,𝑔   ,𝐸,𝑟,𝑥   ,𝐹,𝑟,𝑥   𝑇,,𝑟,𝑥   𝜑,,𝑟,𝑥   𝑡,𝐾
Allowed substitution hints:   𝜑(𝑡)   𝐶(𝑥,𝑡,𝑓,𝑔,,𝑟)   𝐹(𝑡)   𝐽(𝑥,𝑔,)   𝐾(𝑥,𝑓,𝑔,,𝑟)

Proof of Theorem stoweid
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝑇 = ∅) → 𝑇 = ∅)
2 stoweid.10 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
32ralrimiva 3146 . . . . . 6 (𝜑 → ∀𝑥 ∈ ℝ (𝑡𝑇𝑥) ∈ 𝐴)
4 1re 11261 . . . . . 6 1 ∈ ℝ
5 id 22 . . . . . . . . 9 (𝑥 = 1 → 𝑥 = 1)
65mpteq2dv 5244 . . . . . . . 8 (𝑥 = 1 → (𝑡𝑇𝑥) = (𝑡𝑇 ↦ 1))
76eleq1d 2826 . . . . . . 7 (𝑥 = 1 → ((𝑡𝑇𝑥) ∈ 𝐴 ↔ (𝑡𝑇 ↦ 1) ∈ 𝐴))
87rspccv 3619 . . . . . 6 (∀𝑥 ∈ ℝ (𝑡𝑇𝑥) ∈ 𝐴 → (1 ∈ ℝ → (𝑡𝑇 ↦ 1) ∈ 𝐴))
93, 4, 8mpisyl 21 . . . . 5 (𝜑 → (𝑡𝑇 ↦ 1) ∈ 𝐴)
109adantr 480 . . . 4 ((𝜑𝑇 = ∅) → (𝑡𝑇 ↦ 1) ∈ 𝐴)
111, 10stoweidlem9 46024 . . 3 ((𝜑𝑇 = ∅) → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)))
12 stoweid.1 . . . 4 𝑡𝐹
13 nfv 1914 . . . . 5 𝑓𝜑
14 nfv 1914 . . . . 5 𝑓 ¬ 𝑇 = ∅
1513, 14nfan 1899 . . . 4 𝑓(𝜑 ∧ ¬ 𝑇 = ∅)
16 stoweid.2 . . . . 5 𝑡𝜑
17 nfv 1914 . . . . 5 𝑡 ¬ 𝑇 = ∅
1816, 17nfan 1899 . . . 4 𝑡(𝜑 ∧ ¬ 𝑇 = ∅)
19 eqid 2737 . . . 4 (𝑡𝑇 ↦ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < ))) = (𝑡𝑇 ↦ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
20 stoweid.3 . . . 4 𝐾 = (topGen‘ran (,))
21 stoweid.5 . . . 4 𝑇 = 𝐽
22 stoweid.4 . . . . 5 (𝜑𝐽 ∈ Comp)
2322adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑇 = ∅) → 𝐽 ∈ Comp)
24 stoweid.6 . . . 4 𝐶 = (𝐽 Cn 𝐾)
25 stoweid.7 . . . . 5 (𝜑𝐴𝐶)
2625adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑇 = ∅) → 𝐴𝐶)
27 stoweid.8 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
28273adant1r 1178 . . . 4 (((𝜑 ∧ ¬ 𝑇 = ∅) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
29 stoweid.9 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
30293adant1r 1178 . . . 4 (((𝜑 ∧ ¬ 𝑇 = ∅) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
312adantlr 715 . . . 4 (((𝜑 ∧ ¬ 𝑇 = ∅) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
32 stoweid.11 . . . . 5 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝐴 (𝑟) ≠ (𝑡))
3332adantlr 715 . . . 4 (((𝜑 ∧ ¬ 𝑇 = ∅) ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝐴 (𝑟) ≠ (𝑡))
34 stoweid.12 . . . . 5 (𝜑𝐹𝐶)
3534adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑇 = ∅) → 𝐹𝐶)
36 stoweid.13 . . . . . 6 (𝜑𝐸 ∈ ℝ+)
37 4re 12350 . . . . . . . . 9 4 ∈ ℝ
38 4pos 12373 . . . . . . . . 9 0 < 4
3937, 38elrpii 13037 . . . . . . . 8 4 ∈ ℝ+
4039a1i 11 . . . . . . 7 (𝜑 → 4 ∈ ℝ+)
4140rpreccld 13087 . . . . . 6 (𝜑 → (1 / 4) ∈ ℝ+)
4236, 41ifcld 4572 . . . . 5 (𝜑 → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∈ ℝ+)
4342adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑇 = ∅) → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∈ ℝ+)
44 neqne 2948 . . . . 5 𝑇 = ∅ → 𝑇 ≠ ∅)
4544adantl 481 . . . 4 ((𝜑 ∧ ¬ 𝑇 = ∅) → 𝑇 ≠ ∅)
4636rpred 13077 . . . . . . 7 (𝜑𝐸 ∈ ℝ)
47 4ne0 12374 . . . . . . . . 9 4 ≠ 0
4837, 47rereccli 12032 . . . . . . . 8 (1 / 4) ∈ ℝ
4948a1i 11 . . . . . . 7 (𝜑 → (1 / 4) ∈ ℝ)
5046, 49ifcld 4572 . . . . . 6 (𝜑 → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∈ ℝ)
51 3re 12346 . . . . . . . 8 3 ∈ ℝ
52 3ne0 12372 . . . . . . . 8 3 ≠ 0
5351, 52rereccli 12032 . . . . . . 7 (1 / 3) ∈ ℝ
5453a1i 11 . . . . . 6 (𝜑 → (1 / 3) ∈ ℝ)
5536rpxrd 13078 . . . . . . 7 (𝜑𝐸 ∈ ℝ*)
5641rpxrd 13078 . . . . . . 7 (𝜑 → (1 / 4) ∈ ℝ*)
57 xrmin2 13220 . . . . . . 7 ((𝐸 ∈ ℝ* ∧ (1 / 4) ∈ ℝ*) → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ (1 / 4))
5855, 56, 57syl2anc 584 . . . . . 6 (𝜑 → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ (1 / 4))
59 3lt4 12440 . . . . . . . 8 3 < 4
60 3pos 12371 . . . . . . . . 9 0 < 3
6151, 37, 60, 38ltrecii 12184 . . . . . . . 8 (3 < 4 ↔ (1 / 4) < (1 / 3))
6259, 61mpbi 230 . . . . . . 7 (1 / 4) < (1 / 3)
6362a1i 11 . . . . . 6 (𝜑 → (1 / 4) < (1 / 3))
6450, 49, 54, 58, 63lelttrd 11419 . . . . 5 (𝜑 → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) < (1 / 3))
6564adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑇 = ∅) → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) < (1 / 3))
6612, 15, 18, 19, 20, 21, 23, 24, 26, 28, 30, 31, 33, 35, 43, 45, 65stoweidlem62 46077 . . 3 ((𝜑 ∧ ¬ 𝑇 = ∅) → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)))
6711, 66pm2.61dan 813 . 2 (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)))
68 nfv 1914 . . . . 5 𝑡 𝑓𝐴
6916, 68nfan 1899 . . . 4 𝑡(𝜑𝑓𝐴)
70 xrmin1 13219 . . . . . . 7 ((𝐸 ∈ ℝ* ∧ (1 / 4) ∈ ℝ*) → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ 𝐸)
7155, 56, 70syl2anc 584 . . . . . 6 (𝜑 → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ 𝐸)
7271ad2antrr 726 . . . . 5 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ 𝐸)
7325ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝐴𝐶)
74 simplr 769 . . . . . . . . . . . 12 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝑓𝐴)
7573, 74sseldd 3984 . . . . . . . . . . 11 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝑓𝐶)
7620, 21, 24, 75fcnre 45030 . . . . . . . . . 10 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝑓:𝑇⟶ℝ)
77 simpr 484 . . . . . . . . . 10 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝑡𝑇)
7876, 77jca 511 . . . . . . . . 9 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → (𝑓:𝑇⟶ℝ ∧ 𝑡𝑇))
79 ffvelcdm 7101 . . . . . . . . 9 ((𝑓:𝑇⟶ℝ ∧ 𝑡𝑇) → (𝑓𝑡) ∈ ℝ)
80 recn 11245 . . . . . . . . 9 ((𝑓𝑡) ∈ ℝ → (𝑓𝑡) ∈ ℂ)
8178, 79, 803syl 18 . . . . . . . 8 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → (𝑓𝑡) ∈ ℂ)
8234ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝐹𝐶)
8320, 21, 24, 82fcnre 45030 . . . . . . . . . 10 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝐹:𝑇⟶ℝ)
8483, 77jca 511 . . . . . . . . 9 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → (𝐹:𝑇⟶ℝ ∧ 𝑡𝑇))
85 ffvelcdm 7101 . . . . . . . . 9 ((𝐹:𝑇⟶ℝ ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
86 recn 11245 . . . . . . . . 9 ((𝐹𝑡) ∈ ℝ → (𝐹𝑡) ∈ ℂ)
8784, 85, 863syl 18 . . . . . . . 8 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℂ)
8881, 87subcld 11620 . . . . . . 7 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → ((𝑓𝑡) − (𝐹𝑡)) ∈ ℂ)
8988abscld 15475 . . . . . 6 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → (abs‘((𝑓𝑡) − (𝐹𝑡))) ∈ ℝ)
904, 37, 473pm3.2i 1340 . . . . . . . . 9 (1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0)
91 redivcl 11986 . . . . . . . . 9 ((1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0) → (1 / 4) ∈ ℝ)
9290, 91mp1i 13 . . . . . . . 8 (𝜑 → (1 / 4) ∈ ℝ)
9346, 92ifcld 4572 . . . . . . 7 (𝜑 → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∈ ℝ)
9493ad2antrr 726 . . . . . 6 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∈ ℝ)
9546ad2antrr 726 . . . . . 6 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝐸 ∈ ℝ)
96 ltletr 11353 . . . . . 6 (((abs‘((𝑓𝑡) − (𝐹𝑡))) ∈ ℝ ∧ if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∈ ℝ ∧ 𝐸 ∈ ℝ) → (((abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∧ if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ 𝐸) → (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸))
9789, 94, 95, 96syl3anc 1373 . . . . 5 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → (((abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∧ if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ 𝐸) → (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸))
9872, 97mpan2d 694 . . . 4 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → ((abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) → (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸))
9969, 98ralimdaa 3260 . . 3 ((𝜑𝑓𝐴) → (∀𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) → ∀𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸))
10099reximdva 3168 . 2 (𝜑 → (∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸))
10167, 100mpd 15 1 (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1540  wnf 1783  wcel 2108  wnfc 2890  wne 2940  wral 3061  wrex 3070  wss 3951  c0 4333  ifcif 4525   cuni 4907   class class class wbr 5143  cmpt 5225  ran crn 5686  wf 6557  cfv 6561  (class class class)co 7431  infcinf 9481  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  *cxr 11294   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  3c3 12322  4c4 12323  +crp 13034  (,)cioo 13387  abscabs 15273  topGenctg 17482   Cn ccn 23232  Compccmp 23394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-cn 23235  df-cnp 23236  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-xms 24330  df-ms 24331  df-tms 24332
This theorem is referenced by:  stowei  46079
  Copyright terms: Public domain W3C validator