Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweid Structured version   Visualization version   GIF version

Theorem stoweid 46101
Description: This theorem proves the Stone-Weierstrass theorem for real-valued functions: let 𝐽 be a compact topology on 𝑇, and 𝐶 be the set of real continuous functions on 𝑇. Assume that 𝐴 is a subalgebra of 𝐶 (closed under addition and multiplication of functions) containing constant functions and discriminating points (if 𝑟 and 𝑡 are distinct points in 𝑇, then there exists a function in 𝐴 such that h(r) is distinct from h(t) ). Then, for any continuous function 𝐹 and for any positive real 𝐸, there exists a function 𝑓 in the subalgebra 𝐴, such that 𝑓 approximates 𝐹 up to 𝐸 (𝐸 represents the usual ε value). As a classical example, given any a, b reals, the closed interval 𝑇 = [𝑎, 𝑏] could be taken, along with the subalgebra 𝐴 of real polynomials on 𝑇, and then use this theorem to easily prove that real polynomials are dense in the standard metric space of continuous functions on [𝑎, 𝑏]. The proof and lemmas are written following [BrosowskiDeutsh] p. 89 (through page 92). Some effort is put in avoiding the use of the axiom of choice. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweid.1 𝑡𝐹
stoweid.2 𝑡𝜑
stoweid.3 𝐾 = (topGen‘ran (,))
stoweid.4 (𝜑𝐽 ∈ Comp)
stoweid.5 𝑇 = 𝐽
stoweid.6 𝐶 = (𝐽 Cn 𝐾)
stoweid.7 (𝜑𝐴𝐶)
stoweid.8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweid.9 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweid.10 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweid.11 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝐴 (𝑟) ≠ (𝑡))
stoweid.12 (𝜑𝐹𝐶)
stoweid.13 (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
stoweid (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
Distinct variable groups:   𝑓,𝑔,𝑡,𝐴   𝑓,,𝑟,𝑥,𝑡,𝐴   𝑓,𝐸,𝑔,𝑡   𝑓,𝐹,𝑔   𝑓,𝐽,𝑟,𝑡   𝑇,𝑓,𝑔,𝑡   𝜑,𝑓,𝑔   ,𝐸,𝑟,𝑥   ,𝐹,𝑟,𝑥   𝑇,,𝑟,𝑥   𝜑,,𝑟,𝑥   𝑡,𝐾
Allowed substitution hints:   𝜑(𝑡)   𝐶(𝑥,𝑡,𝑓,𝑔,,𝑟)   𝐹(𝑡)   𝐽(𝑥,𝑔,)   𝐾(𝑥,𝑓,𝑔,,𝑟)

Proof of Theorem stoweid
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝑇 = ∅) → 𝑇 = ∅)
2 stoweid.10 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
32ralrimiva 3124 . . . . . 6 (𝜑 → ∀𝑥 ∈ ℝ (𝑡𝑇𝑥) ∈ 𝐴)
4 1re 11107 . . . . . 6 1 ∈ ℝ
5 id 22 . . . . . . . . 9 (𝑥 = 1 → 𝑥 = 1)
65mpteq2dv 5180 . . . . . . . 8 (𝑥 = 1 → (𝑡𝑇𝑥) = (𝑡𝑇 ↦ 1))
76eleq1d 2816 . . . . . . 7 (𝑥 = 1 → ((𝑡𝑇𝑥) ∈ 𝐴 ↔ (𝑡𝑇 ↦ 1) ∈ 𝐴))
87rspccv 3569 . . . . . 6 (∀𝑥 ∈ ℝ (𝑡𝑇𝑥) ∈ 𝐴 → (1 ∈ ℝ → (𝑡𝑇 ↦ 1) ∈ 𝐴))
93, 4, 8mpisyl 21 . . . . 5 (𝜑 → (𝑡𝑇 ↦ 1) ∈ 𝐴)
109adantr 480 . . . 4 ((𝜑𝑇 = ∅) → (𝑡𝑇 ↦ 1) ∈ 𝐴)
111, 10stoweidlem9 46047 . . 3 ((𝜑𝑇 = ∅) → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)))
12 stoweid.1 . . . 4 𝑡𝐹
13 nfv 1915 . . . . 5 𝑓𝜑
14 nfv 1915 . . . . 5 𝑓 ¬ 𝑇 = ∅
1513, 14nfan 1900 . . . 4 𝑓(𝜑 ∧ ¬ 𝑇 = ∅)
16 stoweid.2 . . . . 5 𝑡𝜑
17 nfv 1915 . . . . 5 𝑡 ¬ 𝑇 = ∅
1816, 17nfan 1900 . . . 4 𝑡(𝜑 ∧ ¬ 𝑇 = ∅)
19 eqid 2731 . . . 4 (𝑡𝑇 ↦ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < ))) = (𝑡𝑇 ↦ ((𝐹𝑡) − inf(ran 𝐹, ℝ, < )))
20 stoweid.3 . . . 4 𝐾 = (topGen‘ran (,))
21 stoweid.5 . . . 4 𝑇 = 𝐽
22 stoweid.4 . . . . 5 (𝜑𝐽 ∈ Comp)
2322adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑇 = ∅) → 𝐽 ∈ Comp)
24 stoweid.6 . . . 4 𝐶 = (𝐽 Cn 𝐾)
25 stoweid.7 . . . . 5 (𝜑𝐴𝐶)
2625adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑇 = ∅) → 𝐴𝐶)
27 stoweid.8 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
28273adant1r 1178 . . . 4 (((𝜑 ∧ ¬ 𝑇 = ∅) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
29 stoweid.9 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
30293adant1r 1178 . . . 4 (((𝜑 ∧ ¬ 𝑇 = ∅) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
312adantlr 715 . . . 4 (((𝜑 ∧ ¬ 𝑇 = ∅) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
32 stoweid.11 . . . . 5 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝐴 (𝑟) ≠ (𝑡))
3332adantlr 715 . . . 4 (((𝜑 ∧ ¬ 𝑇 = ∅) ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝐴 (𝑟) ≠ (𝑡))
34 stoweid.12 . . . . 5 (𝜑𝐹𝐶)
3534adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑇 = ∅) → 𝐹𝐶)
36 stoweid.13 . . . . . 6 (𝜑𝐸 ∈ ℝ+)
37 4re 12204 . . . . . . . . 9 4 ∈ ℝ
38 4pos 12227 . . . . . . . . 9 0 < 4
3937, 38elrpii 12888 . . . . . . . 8 4 ∈ ℝ+
4039a1i 11 . . . . . . 7 (𝜑 → 4 ∈ ℝ+)
4140rpreccld 12939 . . . . . 6 (𝜑 → (1 / 4) ∈ ℝ+)
4236, 41ifcld 4517 . . . . 5 (𝜑 → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∈ ℝ+)
4342adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑇 = ∅) → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∈ ℝ+)
44 neqne 2936 . . . . 5 𝑇 = ∅ → 𝑇 ≠ ∅)
4544adantl 481 . . . 4 ((𝜑 ∧ ¬ 𝑇 = ∅) → 𝑇 ≠ ∅)
4636rpred 12929 . . . . . . 7 (𝜑𝐸 ∈ ℝ)
47 4ne0 12228 . . . . . . . . 9 4 ≠ 0
4837, 47rereccli 11881 . . . . . . . 8 (1 / 4) ∈ ℝ
4948a1i 11 . . . . . . 7 (𝜑 → (1 / 4) ∈ ℝ)
5046, 49ifcld 4517 . . . . . 6 (𝜑 → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∈ ℝ)
51 3re 12200 . . . . . . . 8 3 ∈ ℝ
52 3ne0 12226 . . . . . . . 8 3 ≠ 0
5351, 52rereccli 11881 . . . . . . 7 (1 / 3) ∈ ℝ
5453a1i 11 . . . . . 6 (𝜑 → (1 / 3) ∈ ℝ)
5536rpxrd 12930 . . . . . . 7 (𝜑𝐸 ∈ ℝ*)
5641rpxrd 12930 . . . . . . 7 (𝜑 → (1 / 4) ∈ ℝ*)
57 xrmin2 13072 . . . . . . 7 ((𝐸 ∈ ℝ* ∧ (1 / 4) ∈ ℝ*) → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ (1 / 4))
5855, 56, 57syl2anc 584 . . . . . 6 (𝜑 → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ (1 / 4))
59 3lt4 12289 . . . . . . . 8 3 < 4
60 3pos 12225 . . . . . . . . 9 0 < 3
6151, 37, 60, 38ltrecii 12033 . . . . . . . 8 (3 < 4 ↔ (1 / 4) < (1 / 3))
6259, 61mpbi 230 . . . . . . 7 (1 / 4) < (1 / 3)
6362a1i 11 . . . . . 6 (𝜑 → (1 / 4) < (1 / 3))
6450, 49, 54, 58, 63lelttrd 11266 . . . . 5 (𝜑 → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) < (1 / 3))
6564adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑇 = ∅) → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) < (1 / 3))
6612, 15, 18, 19, 20, 21, 23, 24, 26, 28, 30, 31, 33, 35, 43, 45, 65stoweidlem62 46100 . . 3 ((𝜑 ∧ ¬ 𝑇 = ∅) → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)))
6711, 66pm2.61dan 812 . 2 (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)))
68 nfv 1915 . . . . 5 𝑡 𝑓𝐴
6916, 68nfan 1900 . . . 4 𝑡(𝜑𝑓𝐴)
70 xrmin1 13071 . . . . . . 7 ((𝐸 ∈ ℝ* ∧ (1 / 4) ∈ ℝ*) → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ 𝐸)
7155, 56, 70syl2anc 584 . . . . . 6 (𝜑 → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ 𝐸)
7271ad2antrr 726 . . . . 5 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ 𝐸)
7325ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝐴𝐶)
74 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝑓𝐴)
7573, 74sseldd 3930 . . . . . . . . . . 11 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝑓𝐶)
7620, 21, 24, 75fcnre 45062 . . . . . . . . . 10 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝑓:𝑇⟶ℝ)
77 simpr 484 . . . . . . . . . 10 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝑡𝑇)
7876, 77jca 511 . . . . . . . . 9 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → (𝑓:𝑇⟶ℝ ∧ 𝑡𝑇))
79 ffvelcdm 7009 . . . . . . . . 9 ((𝑓:𝑇⟶ℝ ∧ 𝑡𝑇) → (𝑓𝑡) ∈ ℝ)
80 recn 11091 . . . . . . . . 9 ((𝑓𝑡) ∈ ℝ → (𝑓𝑡) ∈ ℂ)
8178, 79, 803syl 18 . . . . . . . 8 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → (𝑓𝑡) ∈ ℂ)
8234ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝐹𝐶)
8320, 21, 24, 82fcnre 45062 . . . . . . . . . 10 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝐹:𝑇⟶ℝ)
8483, 77jca 511 . . . . . . . . 9 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → (𝐹:𝑇⟶ℝ ∧ 𝑡𝑇))
85 ffvelcdm 7009 . . . . . . . . 9 ((𝐹:𝑇⟶ℝ ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
86 recn 11091 . . . . . . . . 9 ((𝐹𝑡) ∈ ℝ → (𝐹𝑡) ∈ ℂ)
8784, 85, 863syl 18 . . . . . . . 8 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℂ)
8881, 87subcld 11467 . . . . . . 7 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → ((𝑓𝑡) − (𝐹𝑡)) ∈ ℂ)
8988abscld 15341 . . . . . 6 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → (abs‘((𝑓𝑡) − (𝐹𝑡))) ∈ ℝ)
904, 37, 473pm3.2i 1340 . . . . . . . . 9 (1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0)
91 redivcl 11835 . . . . . . . . 9 ((1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0) → (1 / 4) ∈ ℝ)
9290, 91mp1i 13 . . . . . . . 8 (𝜑 → (1 / 4) ∈ ℝ)
9346, 92ifcld 4517 . . . . . . 7 (𝜑 → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∈ ℝ)
9493ad2antrr 726 . . . . . 6 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∈ ℝ)
9546ad2antrr 726 . . . . . 6 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → 𝐸 ∈ ℝ)
96 ltletr 11200 . . . . . 6 (((abs‘((𝑓𝑡) − (𝐹𝑡))) ∈ ℝ ∧ if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∈ ℝ ∧ 𝐸 ∈ ℝ) → (((abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∧ if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ 𝐸) → (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸))
9789, 94, 95, 96syl3anc 1373 . . . . 5 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → (((abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ∧ if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) ≤ 𝐸) → (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸))
9872, 97mpan2d 694 . . . 4 (((𝜑𝑓𝐴) ∧ 𝑡𝑇) → ((abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) → (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸))
9969, 98ralimdaa 3233 . . 3 ((𝜑𝑓𝐴) → (∀𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) → ∀𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸))
10099reximdva 3145 . 2 (𝜑 → (∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < if(𝐸 ≤ (1 / 4), 𝐸, (1 / 4)) → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸))
10167, 100mpd 15 1 (𝜑 → ∃𝑓𝐴𝑡𝑇 (abs‘((𝑓𝑡) − (𝐹𝑡))) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wnf 1784  wcel 2111  wnfc 2879  wne 2928  wral 3047  wrex 3056  wss 3897  c0 4278  ifcif 4470   cuni 4854   class class class wbr 5086  cmpt 5167  ran crn 5612  wf 6472  cfv 6476  (class class class)co 7341  infcinf 9320  cc 10999  cr 11000  0cc0 11001  1c1 11002   + caddc 11004   · cmul 11006  *cxr 11140   < clt 11141  cle 11142  cmin 11339   / cdiv 11769  3c3 12176  4c4 12177  +crp 12885  (,)cioo 13240  abscabs 15136  topGenctg 17336   Cn ccn 23134  Compccmp 23296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ioc 13245  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-seq 13904  df-exp 13964  df-hash 14233  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-clim 15390  df-rlim 15391  df-sum 15589  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-xrs 17401  df-qtop 17406  df-imas 17407  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19224  df-cmn 19689  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-cn 23137  df-cnp 23138  df-cmp 23297  df-tx 23472  df-hmeo 23665  df-xms 24230  df-ms 24231  df-tms 24232
This theorem is referenced by:  stowei  46102
  Copyright terms: Public domain W3C validator