Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem32 Structured version   Visualization version   GIF version

Theorem stoweidlem32 46023
Description: If a set A of real functions from a common domain T is a subalgebra and it contains constants, then it is closed under the sum of a finite number of functions, indexed by G and finally scaled by a real Y. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem32.1 𝑡𝜑
stoweidlem32.2 𝑃 = (𝑡𝑇 ↦ (𝑌 · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
stoweidlem32.3 𝐹 = (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
stoweidlem32.4 𝐻 = (𝑡𝑇𝑌)
stoweidlem32.5 (𝜑𝑀 ∈ ℕ)
stoweidlem32.6 (𝜑𝑌 ∈ ℝ)
stoweidlem32.7 (𝜑𝐺:(1...𝑀)⟶𝐴)
stoweidlem32.8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem32.9 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem32.10 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem32.11 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
Assertion
Ref Expression
stoweidlem32 (𝜑𝑃𝐴)
Distinct variable groups:   𝑓,𝑔,𝑖,𝑡,𝐺   𝐴,𝑓,𝑔   𝑓,𝐹,𝑔   𝑇,𝑓,𝑔,𝑖,𝑡   𝜑,𝑓,𝑔,𝑖   𝑔,𝐻   𝑖,𝑀,𝑡   𝑡,𝑌,𝑥   𝑥,𝑇   𝑥,𝐴   𝑥,𝑌   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑡,𝑖)   𝑃(𝑥,𝑡,𝑓,𝑔,𝑖)   𝐹(𝑥,𝑡,𝑖)   𝐺(𝑥)   𝐻(𝑥,𝑡,𝑓,𝑖)   𝑀(𝑥,𝑓,𝑔)   𝑌(𝑓,𝑔,𝑖)

Proof of Theorem stoweidlem32
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem32.2 . . 3 𝑃 = (𝑡𝑇 ↦ (𝑌 · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
2 stoweidlem32.1 . . . 4 𝑡𝜑
3 stoweidlem32.3 . . . . . . . . . 10 𝐹 = (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
4 fveq2 6822 . . . . . . . . . . . 12 (𝑡 = 𝑠 → ((𝐺𝑖)‘𝑡) = ((𝐺𝑖)‘𝑠))
54sumeq2sdv 15610 . . . . . . . . . . 11 (𝑡 = 𝑠 → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡) = Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠))
65cbvmptv 5196 . . . . . . . . . 10 (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)) = (𝑠𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠))
73, 6eqtri 2752 . . . . . . . . 9 𝐹 = (𝑠𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠))
8 fveq2 6822 . . . . . . . . . 10 (𝑠 = 𝑡 → ((𝐺𝑖)‘𝑠) = ((𝐺𝑖)‘𝑡))
98sumeq2sdv 15610 . . . . . . . . 9 (𝑠 = 𝑡 → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠) = Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
10 simpr 484 . . . . . . . . 9 ((𝜑𝑡𝑇) → 𝑡𝑇)
11 fzfid 13880 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (1...𝑀) ∈ Fin)
12 simpl 482 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → 𝜑)
13 stoweidlem32.7 . . . . . . . . . . . . . 14 (𝜑𝐺:(1...𝑀)⟶𝐴)
1413ffvelcdmda 7018 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺𝑖) ∈ 𝐴)
15 eleq1 2816 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝐺𝑖) → (𝑓𝐴 ↔ (𝐺𝑖) ∈ 𝐴))
1615anbi2d 630 . . . . . . . . . . . . . . . 16 (𝑓 = (𝐺𝑖) → ((𝜑𝑓𝐴) ↔ (𝜑 ∧ (𝐺𝑖) ∈ 𝐴)))
17 feq1 6630 . . . . . . . . . . . . . . . 16 (𝑓 = (𝐺𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝐺𝑖):𝑇⟶ℝ))
1816, 17imbi12d 344 . . . . . . . . . . . . . . 15 (𝑓 = (𝐺𝑖) → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝐺𝑖) ∈ 𝐴) → (𝐺𝑖):𝑇⟶ℝ)))
19 stoweidlem32.11 . . . . . . . . . . . . . . 15 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
2018, 19vtoclg 3509 . . . . . . . . . . . . . 14 ((𝐺𝑖) ∈ 𝐴 → ((𝜑 ∧ (𝐺𝑖) ∈ 𝐴) → (𝐺𝑖):𝑇⟶ℝ))
2114, 20syl 17 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝜑 ∧ (𝐺𝑖) ∈ 𝐴) → (𝐺𝑖):𝑇⟶ℝ))
2212, 14, 21mp2and 699 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺𝑖):𝑇⟶ℝ)
2322adantlr 715 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → (𝐺𝑖):𝑇⟶ℝ)
24 simplr 768 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → 𝑡𝑇)
2523, 24ffvelcdmd 7019 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑡) ∈ ℝ)
2611, 25fsumrecl 15641 . . . . . . . . 9 ((𝜑𝑡𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡) ∈ ℝ)
277, 9, 10, 26fvmptd3 6953 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐹𝑡) = Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
2827, 26eqeltrd 2828 . . . . . . 7 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
2928recnd 11143 . . . . . 6 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℂ)
30 stoweidlem32.4 . . . . . . . . . 10 𝐻 = (𝑡𝑇𝑌)
31 eqidd 2730 . . . . . . . . . . 11 (𝑠 = 𝑡𝑌 = 𝑌)
3231cbvmptv 5196 . . . . . . . . . 10 (𝑠𝑇𝑌) = (𝑡𝑇𝑌)
3330, 32eqtr4i 2755 . . . . . . . . 9 𝐻 = (𝑠𝑇𝑌)
34 stoweidlem32.6 . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ)
3534adantr 480 . . . . . . . . 9 ((𝜑𝑡𝑇) → 𝑌 ∈ ℝ)
3633, 31, 10, 35fvmptd3 6953 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐻𝑡) = 𝑌)
3736, 35eqeltrd 2828 . . . . . . 7 ((𝜑𝑡𝑇) → (𝐻𝑡) ∈ ℝ)
3837recnd 11143 . . . . . 6 ((𝜑𝑡𝑇) → (𝐻𝑡) ∈ ℂ)
3929, 38mulcomd 11136 . . . . 5 ((𝜑𝑡𝑇) → ((𝐹𝑡) · (𝐻𝑡)) = ((𝐻𝑡) · (𝐹𝑡)))
4036, 27oveq12d 7367 . . . . 5 ((𝜑𝑡𝑇) → ((𝐻𝑡) · (𝐹𝑡)) = (𝑌 · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
4139, 40eqtr2d 2765 . . . 4 ((𝜑𝑡𝑇) → (𝑌 · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)) = ((𝐹𝑡) · (𝐻𝑡)))
422, 41mpteq2da 5184 . . 3 (𝜑 → (𝑡𝑇 ↦ (𝑌 · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))) = (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐻𝑡))))
431, 42eqtrid 2776 . 2 (𝜑𝑃 = (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐻𝑡))))
44 stoweidlem32.5 . . . 4 (𝜑𝑀 ∈ ℕ)
45 stoweidlem32.8 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
462, 3, 44, 13, 45, 19stoweidlem20 46011 . . 3 (𝜑𝐹𝐴)
47 stoweidlem32.10 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
4847stoweidlem4 45995 . . . . 5 ((𝜑𝑌 ∈ ℝ) → (𝑡𝑇𝑌) ∈ 𝐴)
4934, 48mpdan 687 . . . 4 (𝜑 → (𝑡𝑇𝑌) ∈ 𝐴)
5030, 49eqeltrid 2832 . . 3 (𝜑𝐻𝐴)
51 nfmpt1 5191 . . . . . 6 𝑡(𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
523, 51nfcxfr 2889 . . . . 5 𝑡𝐹
5352nfeq2 2909 . . . 4 𝑡 𝑓 = 𝐹
54 nfmpt1 5191 . . . . . 6 𝑡(𝑡𝑇𝑌)
5530, 54nfcxfr 2889 . . . . 5 𝑡𝐻
5655nfeq2 2909 . . . 4 𝑡 𝑔 = 𝐻
57 stoweidlem32.9 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
5853, 56, 57stoweidlem6 45997 . . 3 ((𝜑𝐹𝐴𝐻𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐻𝑡))) ∈ 𝐴)
5946, 50, 58mpd3an23 1465 . 2 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐻𝑡))) ∈ 𝐴)
6043, 59eqeltrd 2828 1 (𝜑𝑃𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  cmpt 5173  wf 6478  cfv 6482  (class class class)co 7349  cr 11008  1c1 11010   + caddc 11012   · cmul 11014  cn 12128  ...cfz 13410  Σcsu 15593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594
This theorem is referenced by:  stoweidlem44  46035
  Copyright terms: Public domain W3C validator