Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem32 Structured version   Visualization version   GIF version

Theorem stoweidlem32 41873
Description: If a set A of real functions from a common domain T is a subalgebra and it contains constants, then it is closed under the sum of a finite number of functions, indexed by G and finally scaled by a real Y. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem32.1 𝑡𝜑
stoweidlem32.2 𝑃 = (𝑡𝑇 ↦ (𝑌 · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
stoweidlem32.3 𝐹 = (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
stoweidlem32.4 𝐻 = (𝑡𝑇𝑌)
stoweidlem32.5 (𝜑𝑀 ∈ ℕ)
stoweidlem32.6 (𝜑𝑌 ∈ ℝ)
stoweidlem32.7 (𝜑𝐺:(1...𝑀)⟶𝐴)
stoweidlem32.8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem32.9 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem32.10 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem32.11 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
Assertion
Ref Expression
stoweidlem32 (𝜑𝑃𝐴)
Distinct variable groups:   𝑓,𝑔,𝑖,𝑡,𝐺   𝐴,𝑓,𝑔   𝑓,𝐹,𝑔   𝑇,𝑓,𝑔,𝑖,𝑡   𝜑,𝑓,𝑔,𝑖   𝑔,𝐻   𝑖,𝑀,𝑡   𝑡,𝑌,𝑥   𝑥,𝑇   𝑥,𝐴   𝑥,𝑌   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑡,𝑖)   𝑃(𝑥,𝑡,𝑓,𝑔,𝑖)   𝐹(𝑥,𝑡,𝑖)   𝐺(𝑥)   𝐻(𝑥,𝑡,𝑓,𝑖)   𝑀(𝑥,𝑓,𝑔)   𝑌(𝑓,𝑔,𝑖)

Proof of Theorem stoweidlem32
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem32.2 . . 3 𝑃 = (𝑡𝑇 ↦ (𝑌 · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
2 stoweidlem32.1 . . . 4 𝑡𝜑
3 stoweidlem32.3 . . . . . . . . . 10 𝐹 = (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
4 fveq2 6541 . . . . . . . . . . . 12 (𝑡 = 𝑠 → ((𝐺𝑖)‘𝑡) = ((𝐺𝑖)‘𝑠))
54sumeq2sdv 14894 . . . . . . . . . . 11 (𝑡 = 𝑠 → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡) = Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠))
65cbvmptv 5064 . . . . . . . . . 10 (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)) = (𝑠𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠))
73, 6eqtri 2818 . . . . . . . . 9 𝐹 = (𝑠𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠))
8 fveq2 6541 . . . . . . . . . 10 (𝑠 = 𝑡 → ((𝐺𝑖)‘𝑠) = ((𝐺𝑖)‘𝑡))
98sumeq2sdv 14894 . . . . . . . . 9 (𝑠 = 𝑡 → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠) = Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
10 simpr 485 . . . . . . . . 9 ((𝜑𝑡𝑇) → 𝑡𝑇)
11 fzfid 13191 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (1...𝑀) ∈ Fin)
12 simpl 483 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → 𝜑)
13 stoweidlem32.7 . . . . . . . . . . . . . 14 (𝜑𝐺:(1...𝑀)⟶𝐴)
1413ffvelrnda 6719 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺𝑖) ∈ 𝐴)
15 eleq1 2869 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝐺𝑖) → (𝑓𝐴 ↔ (𝐺𝑖) ∈ 𝐴))
1615anbi2d 628 . . . . . . . . . . . . . . . 16 (𝑓 = (𝐺𝑖) → ((𝜑𝑓𝐴) ↔ (𝜑 ∧ (𝐺𝑖) ∈ 𝐴)))
17 feq1 6366 . . . . . . . . . . . . . . . 16 (𝑓 = (𝐺𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝐺𝑖):𝑇⟶ℝ))
1816, 17imbi12d 346 . . . . . . . . . . . . . . 15 (𝑓 = (𝐺𝑖) → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝐺𝑖) ∈ 𝐴) → (𝐺𝑖):𝑇⟶ℝ)))
19 stoweidlem32.11 . . . . . . . . . . . . . . 15 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
2018, 19vtoclg 3509 . . . . . . . . . . . . . 14 ((𝐺𝑖) ∈ 𝐴 → ((𝜑 ∧ (𝐺𝑖) ∈ 𝐴) → (𝐺𝑖):𝑇⟶ℝ))
2114, 20syl 17 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝜑 ∧ (𝐺𝑖) ∈ 𝐴) → (𝐺𝑖):𝑇⟶ℝ))
2212, 14, 21mp2and 695 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺𝑖):𝑇⟶ℝ)
2322adantlr 711 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → (𝐺𝑖):𝑇⟶ℝ)
24 simplr 765 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → 𝑡𝑇)
2523, 24ffvelrnd 6720 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑡) ∈ ℝ)
2611, 25fsumrecl 14924 . . . . . . . . 9 ((𝜑𝑡𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡) ∈ ℝ)
277, 9, 10, 26fvmptd3 6660 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐹𝑡) = Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
2827, 26eqeltrd 2882 . . . . . . 7 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
2928recnd 10518 . . . . . 6 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℂ)
30 stoweidlem32.4 . . . . . . . . . 10 𝐻 = (𝑡𝑇𝑌)
31 eqidd 2795 . . . . . . . . . . 11 (𝑠 = 𝑡𝑌 = 𝑌)
3231cbvmptv 5064 . . . . . . . . . 10 (𝑠𝑇𝑌) = (𝑡𝑇𝑌)
3330, 32eqtr4i 2821 . . . . . . . . 9 𝐻 = (𝑠𝑇𝑌)
34 stoweidlem32.6 . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ)
3534adantr 481 . . . . . . . . 9 ((𝜑𝑡𝑇) → 𝑌 ∈ ℝ)
3633, 31, 10, 35fvmptd3 6660 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐻𝑡) = 𝑌)
3736, 35eqeltrd 2882 . . . . . . 7 ((𝜑𝑡𝑇) → (𝐻𝑡) ∈ ℝ)
3837recnd 10518 . . . . . 6 ((𝜑𝑡𝑇) → (𝐻𝑡) ∈ ℂ)
3929, 38mulcomd 10511 . . . . 5 ((𝜑𝑡𝑇) → ((𝐹𝑡) · (𝐻𝑡)) = ((𝐻𝑡) · (𝐹𝑡)))
4036, 27oveq12d 7037 . . . . 5 ((𝜑𝑡𝑇) → ((𝐻𝑡) · (𝐹𝑡)) = (𝑌 · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
4139, 40eqtr2d 2831 . . . 4 ((𝜑𝑡𝑇) → (𝑌 · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)) = ((𝐹𝑡) · (𝐻𝑡)))
422, 41mpteq2da 5057 . . 3 (𝜑 → (𝑡𝑇 ↦ (𝑌 · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))) = (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐻𝑡))))
431, 42syl5eq 2842 . 2 (𝜑𝑃 = (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐻𝑡))))
44 stoweidlem32.5 . . . 4 (𝜑𝑀 ∈ ℕ)
45 stoweidlem32.8 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
462, 3, 44, 13, 45, 19stoweidlem20 41861 . . 3 (𝜑𝐹𝐴)
47 stoweidlem32.10 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
4847stoweidlem4 41845 . . . . 5 ((𝜑𝑌 ∈ ℝ) → (𝑡𝑇𝑌) ∈ 𝐴)
4934, 48mpdan 683 . . . 4 (𝜑 → (𝑡𝑇𝑌) ∈ 𝐴)
5030, 49syl5eqel 2886 . . 3 (𝜑𝐻𝐴)
51 nfmpt1 5061 . . . . . 6 𝑡(𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
523, 51nfcxfr 2946 . . . . 5 𝑡𝐹
5352nfeq2 2963 . . . 4 𝑡 𝑓 = 𝐹
54 nfmpt1 5061 . . . . . 6 𝑡(𝑡𝑇𝑌)
5530, 54nfcxfr 2946 . . . . 5 𝑡𝐻
5655nfeq2 2963 . . . 4 𝑡 𝑔 = 𝐻
57 stoweidlem32.9 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
5853, 56, 57stoweidlem6 41847 . . 3 ((𝜑𝐹𝐴𝐻𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐻𝑡))) ∈ 𝐴)
5946, 50, 58mpd3an23 1455 . 2 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐻𝑡))) ∈ 𝐴)
6043, 59eqeltrd 2882 1 (𝜑𝑃𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1080   = wceq 1522  wnf 1766  wcel 2080  cmpt 5043  wf 6224  cfv 6228  (class class class)co 7019  cr 10385  1c1 10387   + caddc 10389   · cmul 10391  cn 11488  ...cfz 12742  Σcsu 14876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-13 2343  ax-ext 2768  ax-rep 5084  ax-sep 5097  ax-nul 5104  ax-pow 5160  ax-pr 5224  ax-un 7322  ax-inf2 8953  ax-cnex 10442  ax-resscn 10443  ax-1cn 10444  ax-icn 10445  ax-addcl 10446  ax-addrcl 10447  ax-mulcl 10448  ax-mulrcl 10449  ax-mulcom 10450  ax-addass 10451  ax-mulass 10452  ax-distr 10453  ax-i2m1 10454  ax-1ne0 10455  ax-1rid 10456  ax-rnegex 10457  ax-rrecex 10458  ax-cnre 10459  ax-pre-lttri 10460  ax-pre-lttrn 10461  ax-pre-ltadd 10462  ax-pre-mulgt0 10463  ax-pre-sup 10464
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1763  df-nf 1767  df-sb 2042  df-mo 2575  df-eu 2611  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ne 2984  df-nel 3090  df-ral 3109  df-rex 3110  df-reu 3111  df-rmo 3112  df-rab 3113  df-v 3438  df-sbc 3708  df-csb 3814  df-dif 3864  df-un 3866  df-in 3868  df-ss 3876  df-pss 3878  df-nul 4214  df-if 4384  df-pw 4457  df-sn 4475  df-pr 4477  df-tp 4479  df-op 4481  df-uni 4748  df-int 4785  df-iun 4829  df-br 4965  df-opab 5027  df-mpt 5044  df-tr 5067  df-id 5351  df-eprel 5356  df-po 5365  df-so 5366  df-fr 5405  df-se 5406  df-we 5407  df-xp 5452  df-rel 5453  df-cnv 5454  df-co 5455  df-dm 5456  df-rn 5457  df-res 5458  df-ima 5459  df-pred 6026  df-ord 6072  df-on 6073  df-lim 6074  df-suc 6075  df-iota 6192  df-fun 6230  df-fn 6231  df-f 6232  df-f1 6233  df-fo 6234  df-f1o 6235  df-fv 6236  df-isom 6237  df-riota 6980  df-ov 7022  df-oprab 7023  df-mpo 7024  df-om 7440  df-1st 7548  df-2nd 7549  df-wrecs 7801  df-recs 7863  df-rdg 7901  df-1o 7956  df-oadd 7960  df-er 8142  df-en 8361  df-dom 8362  df-sdom 8363  df-fin 8364  df-sup 8755  df-oi 8823  df-card 9217  df-pnf 10526  df-mnf 10527  df-xr 10528  df-ltxr 10529  df-le 10530  df-sub 10721  df-neg 10722  df-div 11148  df-nn 11489  df-2 11550  df-3 11551  df-n0 11748  df-z 11832  df-uz 12094  df-rp 12240  df-fz 12743  df-fzo 12884  df-seq 13220  df-exp 13280  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-clim 14679  df-sum 14877
This theorem is referenced by:  stoweidlem44  41885
  Copyright terms: Public domain W3C validator