Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem32 Structured version   Visualization version   GIF version

Theorem stoweidlem32 45953
Description: If a set A of real functions from a common domain T is a subalgebra and it contains constants, then it is closed under the sum of a finite number of functions, indexed by G and finally scaled by a real Y. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem32.1 𝑡𝜑
stoweidlem32.2 𝑃 = (𝑡𝑇 ↦ (𝑌 · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
stoweidlem32.3 𝐹 = (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
stoweidlem32.4 𝐻 = (𝑡𝑇𝑌)
stoweidlem32.5 (𝜑𝑀 ∈ ℕ)
stoweidlem32.6 (𝜑𝑌 ∈ ℝ)
stoweidlem32.7 (𝜑𝐺:(1...𝑀)⟶𝐴)
stoweidlem32.8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem32.9 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem32.10 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem32.11 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
Assertion
Ref Expression
stoweidlem32 (𝜑𝑃𝐴)
Distinct variable groups:   𝑓,𝑔,𝑖,𝑡,𝐺   𝐴,𝑓,𝑔   𝑓,𝐹,𝑔   𝑇,𝑓,𝑔,𝑖,𝑡   𝜑,𝑓,𝑔,𝑖   𝑔,𝐻   𝑖,𝑀,𝑡   𝑡,𝑌,𝑥   𝑥,𝑇   𝑥,𝐴   𝑥,𝑌   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑡,𝑖)   𝑃(𝑥,𝑡,𝑓,𝑔,𝑖)   𝐹(𝑥,𝑡,𝑖)   𝐺(𝑥)   𝐻(𝑥,𝑡,𝑓,𝑖)   𝑀(𝑥,𝑓,𝑔)   𝑌(𝑓,𝑔,𝑖)

Proof of Theorem stoweidlem32
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem32.2 . . 3 𝑃 = (𝑡𝑇 ↦ (𝑌 · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
2 stoweidlem32.1 . . . 4 𝑡𝜑
3 stoweidlem32.3 . . . . . . . . . 10 𝐹 = (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
4 fveq2 6920 . . . . . . . . . . . 12 (𝑡 = 𝑠 → ((𝐺𝑖)‘𝑡) = ((𝐺𝑖)‘𝑠))
54sumeq2sdv 15751 . . . . . . . . . . 11 (𝑡 = 𝑠 → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡) = Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠))
65cbvmptv 5279 . . . . . . . . . 10 (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)) = (𝑠𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠))
73, 6eqtri 2768 . . . . . . . . 9 𝐹 = (𝑠𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠))
8 fveq2 6920 . . . . . . . . . 10 (𝑠 = 𝑡 → ((𝐺𝑖)‘𝑠) = ((𝐺𝑖)‘𝑡))
98sumeq2sdv 15751 . . . . . . . . 9 (𝑠 = 𝑡 → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠) = Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
10 simpr 484 . . . . . . . . 9 ((𝜑𝑡𝑇) → 𝑡𝑇)
11 fzfid 14024 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (1...𝑀) ∈ Fin)
12 simpl 482 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → 𝜑)
13 stoweidlem32.7 . . . . . . . . . . . . . 14 (𝜑𝐺:(1...𝑀)⟶𝐴)
1413ffvelcdmda 7118 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺𝑖) ∈ 𝐴)
15 eleq1 2832 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝐺𝑖) → (𝑓𝐴 ↔ (𝐺𝑖) ∈ 𝐴))
1615anbi2d 629 . . . . . . . . . . . . . . . 16 (𝑓 = (𝐺𝑖) → ((𝜑𝑓𝐴) ↔ (𝜑 ∧ (𝐺𝑖) ∈ 𝐴)))
17 feq1 6728 . . . . . . . . . . . . . . . 16 (𝑓 = (𝐺𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝐺𝑖):𝑇⟶ℝ))
1816, 17imbi12d 344 . . . . . . . . . . . . . . 15 (𝑓 = (𝐺𝑖) → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝐺𝑖) ∈ 𝐴) → (𝐺𝑖):𝑇⟶ℝ)))
19 stoweidlem32.11 . . . . . . . . . . . . . . 15 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
2018, 19vtoclg 3566 . . . . . . . . . . . . . 14 ((𝐺𝑖) ∈ 𝐴 → ((𝜑 ∧ (𝐺𝑖) ∈ 𝐴) → (𝐺𝑖):𝑇⟶ℝ))
2114, 20syl 17 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝜑 ∧ (𝐺𝑖) ∈ 𝐴) → (𝐺𝑖):𝑇⟶ℝ))
2212, 14, 21mp2and 698 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺𝑖):𝑇⟶ℝ)
2322adantlr 714 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → (𝐺𝑖):𝑇⟶ℝ)
24 simplr 768 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → 𝑡𝑇)
2523, 24ffvelcdmd 7119 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑡) ∈ ℝ)
2611, 25fsumrecl 15782 . . . . . . . . 9 ((𝜑𝑡𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡) ∈ ℝ)
277, 9, 10, 26fvmptd3 7052 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐹𝑡) = Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
2827, 26eqeltrd 2844 . . . . . . 7 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
2928recnd 11318 . . . . . 6 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℂ)
30 stoweidlem32.4 . . . . . . . . . 10 𝐻 = (𝑡𝑇𝑌)
31 eqidd 2741 . . . . . . . . . . 11 (𝑠 = 𝑡𝑌 = 𝑌)
3231cbvmptv 5279 . . . . . . . . . 10 (𝑠𝑇𝑌) = (𝑡𝑇𝑌)
3330, 32eqtr4i 2771 . . . . . . . . 9 𝐻 = (𝑠𝑇𝑌)
34 stoweidlem32.6 . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ)
3534adantr 480 . . . . . . . . 9 ((𝜑𝑡𝑇) → 𝑌 ∈ ℝ)
3633, 31, 10, 35fvmptd3 7052 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐻𝑡) = 𝑌)
3736, 35eqeltrd 2844 . . . . . . 7 ((𝜑𝑡𝑇) → (𝐻𝑡) ∈ ℝ)
3837recnd 11318 . . . . . 6 ((𝜑𝑡𝑇) → (𝐻𝑡) ∈ ℂ)
3929, 38mulcomd 11311 . . . . 5 ((𝜑𝑡𝑇) → ((𝐹𝑡) · (𝐻𝑡)) = ((𝐻𝑡) · (𝐹𝑡)))
4036, 27oveq12d 7466 . . . . 5 ((𝜑𝑡𝑇) → ((𝐻𝑡) · (𝐹𝑡)) = (𝑌 · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
4139, 40eqtr2d 2781 . . . 4 ((𝜑𝑡𝑇) → (𝑌 · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)) = ((𝐹𝑡) · (𝐻𝑡)))
422, 41mpteq2da 5264 . . 3 (𝜑 → (𝑡𝑇 ↦ (𝑌 · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))) = (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐻𝑡))))
431, 42eqtrid 2792 . 2 (𝜑𝑃 = (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐻𝑡))))
44 stoweidlem32.5 . . . 4 (𝜑𝑀 ∈ ℕ)
45 stoweidlem32.8 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
462, 3, 44, 13, 45, 19stoweidlem20 45941 . . 3 (𝜑𝐹𝐴)
47 stoweidlem32.10 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
4847stoweidlem4 45925 . . . . 5 ((𝜑𝑌 ∈ ℝ) → (𝑡𝑇𝑌) ∈ 𝐴)
4934, 48mpdan 686 . . . 4 (𝜑 → (𝑡𝑇𝑌) ∈ 𝐴)
5030, 49eqeltrid 2848 . . 3 (𝜑𝐻𝐴)
51 nfmpt1 5274 . . . . . 6 𝑡(𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
523, 51nfcxfr 2906 . . . . 5 𝑡𝐹
5352nfeq2 2926 . . . 4 𝑡 𝑓 = 𝐹
54 nfmpt1 5274 . . . . . 6 𝑡(𝑡𝑇𝑌)
5530, 54nfcxfr 2906 . . . . 5 𝑡𝐻
5655nfeq2 2926 . . . 4 𝑡 𝑔 = 𝐻
57 stoweidlem32.9 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
5853, 56, 57stoweidlem6 45927 . . 3 ((𝜑𝐹𝐴𝐻𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐻𝑡))) ∈ 𝐴)
5946, 50, 58mpd3an23 1463 . 2 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐻𝑡))) ∈ 𝐴)
6043, 59eqeltrd 2844 1 (𝜑𝑃𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wnf 1781  wcel 2108  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  cr 11183  1c1 11185   + caddc 11187   · cmul 11189  cn 12293  ...cfz 13567  Σcsu 15734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735
This theorem is referenced by:  stoweidlem44  45965
  Copyright terms: Public domain W3C validator