Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem32 Structured version   Visualization version   GIF version

Theorem stoweidlem32 40818
Description: If a set A of real functions from a common domain T is a subalgebra and it contains constants, then it is closed under the sum of a finite number of functions, indexed by G and finally scaled by a real Y. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem32.1 𝑡𝜑
stoweidlem32.2 𝑃 = (𝑡𝑇 ↦ (𝑌 · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
stoweidlem32.3 𝐹 = (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
stoweidlem32.4 𝐻 = (𝑡𝑇𝑌)
stoweidlem32.5 (𝜑𝑀 ∈ ℕ)
stoweidlem32.6 (𝜑𝑌 ∈ ℝ)
stoweidlem32.7 (𝜑𝐺:(1...𝑀)⟶𝐴)
stoweidlem32.8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem32.9 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem32.10 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem32.11 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
Assertion
Ref Expression
stoweidlem32 (𝜑𝑃𝐴)
Distinct variable groups:   𝑓,𝑔,𝑖,𝑡,𝐺   𝐴,𝑓,𝑔   𝑓,𝐹,𝑔   𝑇,𝑓,𝑔,𝑖,𝑡   𝜑,𝑓,𝑔,𝑖   𝑔,𝐻   𝑖,𝑀,𝑡   𝑡,𝑌,𝑥   𝑥,𝑇   𝑥,𝐴   𝑥,𝑌   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑡,𝑖)   𝑃(𝑥,𝑡,𝑓,𝑔,𝑖)   𝐹(𝑥,𝑡,𝑖)   𝐺(𝑥)   𝐻(𝑥,𝑡,𝑓,𝑖)   𝑀(𝑥,𝑓,𝑔)   𝑌(𝑓,𝑔,𝑖)

Proof of Theorem stoweidlem32
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem32.2 . . 3 𝑃 = (𝑡𝑇 ↦ (𝑌 · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
2 stoweidlem32.1 . . . 4 𝑡𝜑
3 stoweidlem32.3 . . . . . . . . . . 11 𝐹 = (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
4 fveq2 6375 . . . . . . . . . . . . 13 (𝑡 = 𝑠 → ((𝐺𝑖)‘𝑡) = ((𝐺𝑖)‘𝑠))
54sumeq2sdv 14722 . . . . . . . . . . . 12 (𝑡 = 𝑠 → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡) = Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠))
65cbvmptv 4909 . . . . . . . . . . 11 (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)) = (𝑠𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠))
73, 6eqtri 2787 . . . . . . . . . 10 𝐹 = (𝑠𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠))
87a1i 11 . . . . . . . . 9 ((𝜑𝑡𝑇) → 𝐹 = (𝑠𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠)))
9 fveq2 6375 . . . . . . . . . . 11 (𝑠 = 𝑡 → ((𝐺𝑖)‘𝑠) = ((𝐺𝑖)‘𝑡))
109sumeq2sdv 14722 . . . . . . . . . 10 (𝑠 = 𝑡 → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠) = Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
1110adantl 473 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑠 = 𝑡) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠) = Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
12 simpr 477 . . . . . . . . 9 ((𝜑𝑡𝑇) → 𝑡𝑇)
13 fzfid 12980 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (1...𝑀) ∈ Fin)
14 simpl 474 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → 𝜑)
15 stoweidlem32.7 . . . . . . . . . . . . . 14 (𝜑𝐺:(1...𝑀)⟶𝐴)
1615ffvelrnda 6549 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺𝑖) ∈ 𝐴)
17 eleq1 2832 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝐺𝑖) → (𝑓𝐴 ↔ (𝐺𝑖) ∈ 𝐴))
1817anbi2d 622 . . . . . . . . . . . . . . . 16 (𝑓 = (𝐺𝑖) → ((𝜑𝑓𝐴) ↔ (𝜑 ∧ (𝐺𝑖) ∈ 𝐴)))
19 feq1 6204 . . . . . . . . . . . . . . . 16 (𝑓 = (𝐺𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝐺𝑖):𝑇⟶ℝ))
2018, 19imbi12d 335 . . . . . . . . . . . . . . 15 (𝑓 = (𝐺𝑖) → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝐺𝑖) ∈ 𝐴) → (𝐺𝑖):𝑇⟶ℝ)))
21 stoweidlem32.11 . . . . . . . . . . . . . . 15 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
2220, 21vtoclg 3418 . . . . . . . . . . . . . 14 ((𝐺𝑖) ∈ 𝐴 → ((𝜑 ∧ (𝐺𝑖) ∈ 𝐴) → (𝐺𝑖):𝑇⟶ℝ))
2316, 22syl 17 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝜑 ∧ (𝐺𝑖) ∈ 𝐴) → (𝐺𝑖):𝑇⟶ℝ))
2414, 16, 23mp2and 690 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺𝑖):𝑇⟶ℝ)
2524adantlr 706 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → (𝐺𝑖):𝑇⟶ℝ)
26 simplr 785 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → 𝑡𝑇)
2725, 26ffvelrnd 6550 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑡) ∈ ℝ)
2813, 27fsumrecl 14752 . . . . . . . . 9 ((𝜑𝑡𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡) ∈ ℝ)
298, 11, 12, 28fvmptd 6477 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐹𝑡) = Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
3029, 28eqeltrd 2844 . . . . . . 7 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
3130recnd 10322 . . . . . 6 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℂ)
32 stoweidlem32.4 . . . . . . . . . . 11 𝐻 = (𝑡𝑇𝑌)
33 eqidd 2766 . . . . . . . . . . . 12 (𝑠 = 𝑡𝑌 = 𝑌)
3433cbvmptv 4909 . . . . . . . . . . 11 (𝑠𝑇𝑌) = (𝑡𝑇𝑌)
3532, 34eqtr4i 2790 . . . . . . . . . 10 𝐻 = (𝑠𝑇𝑌)
3635a1i 11 . . . . . . . . 9 ((𝜑𝑡𝑇) → 𝐻 = (𝑠𝑇𝑌))
37 eqidd 2766 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑠 = 𝑡) → 𝑌 = 𝑌)
38 stoweidlem32.6 . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ)
3938adantr 472 . . . . . . . . 9 ((𝜑𝑡𝑇) → 𝑌 ∈ ℝ)
4036, 37, 12, 39fvmptd 6477 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐻𝑡) = 𝑌)
4140, 39eqeltrd 2844 . . . . . . 7 ((𝜑𝑡𝑇) → (𝐻𝑡) ∈ ℝ)
4241recnd 10322 . . . . . 6 ((𝜑𝑡𝑇) → (𝐻𝑡) ∈ ℂ)
4331, 42mulcomd 10315 . . . . 5 ((𝜑𝑡𝑇) → ((𝐹𝑡) · (𝐻𝑡)) = ((𝐻𝑡) · (𝐹𝑡)))
4440, 29oveq12d 6860 . . . . 5 ((𝜑𝑡𝑇) → ((𝐻𝑡) · (𝐹𝑡)) = (𝑌 · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
4543, 44eqtr2d 2800 . . . 4 ((𝜑𝑡𝑇) → (𝑌 · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)) = ((𝐹𝑡) · (𝐻𝑡)))
462, 45mpteq2da 4902 . . 3 (𝜑 → (𝑡𝑇 ↦ (𝑌 · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))) = (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐻𝑡))))
471, 46syl5eq 2811 . 2 (𝜑𝑃 = (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐻𝑡))))
48 stoweidlem32.5 . . . 4 (𝜑𝑀 ∈ ℕ)
49 stoweidlem32.8 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
502, 3, 48, 15, 49, 21stoweidlem20 40806 . . 3 (𝜑𝐹𝐴)
51 stoweidlem32.10 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
5251stoweidlem4 40790 . . . . 5 ((𝜑𝑌 ∈ ℝ) → (𝑡𝑇𝑌) ∈ 𝐴)
5338, 52mpdan 678 . . . 4 (𝜑 → (𝑡𝑇𝑌) ∈ 𝐴)
5432, 53syl5eqel 2848 . . 3 (𝜑𝐻𝐴)
55 nfmpt1 4906 . . . . . 6 𝑡(𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
563, 55nfcxfr 2905 . . . . 5 𝑡𝐹
5756nfeq2 2923 . . . 4 𝑡 𝑓 = 𝐹
58 nfmpt1 4906 . . . . . 6 𝑡(𝑡𝑇𝑌)
5932, 58nfcxfr 2905 . . . . 5 𝑡𝐻
6059nfeq2 2923 . . . 4 𝑡 𝑔 = 𝐻
61 stoweidlem32.9 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
6257, 60, 61stoweidlem6 40792 . . 3 ((𝜑𝐹𝐴𝐻𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐻𝑡))) ∈ 𝐴)
6350, 54, 62mpd3an23 1587 . 2 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐻𝑡))) ∈ 𝐴)
6447, 63eqeltrd 2844 1 (𝜑𝑃𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wnf 1878  wcel 2155  cmpt 4888  wf 6064  cfv 6068  (class class class)co 6842  cr 10188  1c1 10190   + caddc 10192   · cmul 10194  cn 11274  ...cfz 12533  Σcsu 14703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-clim 14506  df-sum 14704
This theorem is referenced by:  stoweidlem44  40830
  Copyright terms: Public domain W3C validator