Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem19 Structured version   Visualization version   GIF version

Theorem stoweidlem19 41030
Description: If a set of real functions is closed under multiplication and it contains constants, then it is closed under finite exponentiation. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem19.1 𝑡𝐹
stoweidlem19.2 𝑡𝜑
stoweidlem19.3 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem19.4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem19.5 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem19.6 (𝜑𝐹𝐴)
stoweidlem19.7 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
stoweidlem19 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑁)) ∈ 𝐴)
Distinct variable groups:   𝑓,𝑔,𝑡,𝐴   𝑓,𝐹,𝑔   𝑇,𝑓,𝑔,𝑡   𝜑,𝑓,𝑔   𝑡,𝑁   𝑥,𝑡,𝐴   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡)   𝐹(𝑥,𝑡)   𝑁(𝑥,𝑓,𝑔)

Proof of Theorem stoweidlem19
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem19.7 . 2 (𝜑𝑁 ∈ ℕ0)
2 oveq2 6913 . . . . . 6 (𝑛 = 0 → ((𝐹𝑡)↑𝑛) = ((𝐹𝑡)↑0))
32mpteq2dv 4968 . . . . 5 (𝑛 = 0 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) = (𝑡𝑇 ↦ ((𝐹𝑡)↑0)))
43eleq1d 2891 . . . 4 (𝑛 = 0 → ((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝐹𝑡)↑0)) ∈ 𝐴))
54imbi2d 332 . . 3 (𝑛 = 0 → ((𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) ∈ 𝐴) ↔ (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑0)) ∈ 𝐴)))
6 oveq2 6913 . . . . . 6 (𝑛 = 𝑚 → ((𝐹𝑡)↑𝑛) = ((𝐹𝑡)↑𝑚))
76mpteq2dv 4968 . . . . 5 (𝑛 = 𝑚 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) = (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)))
87eleq1d 2891 . . . 4 (𝑛 = 𝑚 → ((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴))
98imbi2d 332 . . 3 (𝑛 = 𝑚 → ((𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) ∈ 𝐴) ↔ (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴)))
10 oveq2 6913 . . . . . 6 (𝑛 = (𝑚 + 1) → ((𝐹𝑡)↑𝑛) = ((𝐹𝑡)↑(𝑚 + 1)))
1110mpteq2dv 4968 . . . . 5 (𝑛 = (𝑚 + 1) → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) = (𝑡𝑇 ↦ ((𝐹𝑡)↑(𝑚 + 1))))
1211eleq1d 2891 . . . 4 (𝑛 = (𝑚 + 1) → ((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝐹𝑡)↑(𝑚 + 1))) ∈ 𝐴))
1312imbi2d 332 . . 3 (𝑛 = (𝑚 + 1) → ((𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) ∈ 𝐴) ↔ (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑(𝑚 + 1))) ∈ 𝐴)))
14 oveq2 6913 . . . . . 6 (𝑛 = 𝑁 → ((𝐹𝑡)↑𝑛) = ((𝐹𝑡)↑𝑁))
1514mpteq2dv 4968 . . . . 5 (𝑛 = 𝑁 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) = (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑁)))
1615eleq1d 2891 . . . 4 (𝑛 = 𝑁 → ((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑁)) ∈ 𝐴))
1716imbi2d 332 . . 3 (𝑛 = 𝑁 → ((𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) ∈ 𝐴) ↔ (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑁)) ∈ 𝐴)))
18 stoweidlem19.2 . . . . 5 𝑡𝜑
19 stoweidlem19.6 . . . . . . . . 9 (𝜑𝐹𝐴)
2019ancli 546 . . . . . . . . 9 (𝜑 → (𝜑𝐹𝐴))
21 eleq1 2894 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓𝐴𝐹𝐴))
2221anbi2d 624 . . . . . . . . . . 11 (𝑓 = 𝐹 → ((𝜑𝑓𝐴) ↔ (𝜑𝐹𝐴)))
23 feq1 6259 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓:𝑇⟶ℝ ↔ 𝐹:𝑇⟶ℝ))
2422, 23imbi12d 336 . . . . . . . . . 10 (𝑓 = 𝐹 → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑𝐹𝐴) → 𝐹:𝑇⟶ℝ)))
25 stoweidlem19.3 . . . . . . . . . 10 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
2624, 25vtoclg 3482 . . . . . . . . 9 (𝐹𝐴 → ((𝜑𝐹𝐴) → 𝐹:𝑇⟶ℝ))
2719, 20, 26sylc 65 . . . . . . . 8 (𝜑𝐹:𝑇⟶ℝ)
2827ffvelrnda 6608 . . . . . . 7 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
29 recn 10342 . . . . . . 7 ((𝐹𝑡) ∈ ℝ → (𝐹𝑡) ∈ ℂ)
30 exp0 13158 . . . . . . 7 ((𝐹𝑡) ∈ ℂ → ((𝐹𝑡)↑0) = 1)
3128, 29, 303syl 18 . . . . . 6 ((𝜑𝑡𝑇) → ((𝐹𝑡)↑0) = 1)
3231eqcomd 2831 . . . . 5 ((𝜑𝑡𝑇) → 1 = ((𝐹𝑡)↑0))
3318, 32mpteq2da 4966 . . . 4 (𝜑 → (𝑡𝑇 ↦ 1) = (𝑡𝑇 ↦ ((𝐹𝑡)↑0)))
34 1re 10356 . . . . 5 1 ∈ ℝ
35 stoweidlem19.5 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
3635stoweidlem4 41015 . . . . 5 ((𝜑 ∧ 1 ∈ ℝ) → (𝑡𝑇 ↦ 1) ∈ 𝐴)
3734, 36mpan2 684 . . . 4 (𝜑 → (𝑡𝑇 ↦ 1) ∈ 𝐴)
3833, 37eqeltrrd 2907 . . 3 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑0)) ∈ 𝐴)
39 simpr 479 . . . . 5 (((𝑚 ∈ ℕ0 ∧ (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴)) ∧ 𝜑) → 𝜑)
40 simpll 785 . . . . 5 (((𝑚 ∈ ℕ0 ∧ (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴)) ∧ 𝜑) → 𝑚 ∈ ℕ0)
41 simplr 787 . . . . . 6 (((𝑚 ∈ ℕ0 ∧ (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴)) ∧ 𝜑) → (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴))
4239, 41mpd 15 . . . . 5 (((𝑚 ∈ ℕ0 ∧ (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴)) ∧ 𝜑) → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴)
43 nfv 2015 . . . . . . . 8 𝑡 𝑚 ∈ ℕ0
44 nfmpt1 4970 . . . . . . . . 9 𝑡(𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))
4544nfel1 2984 . . . . . . . 8 𝑡(𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴
4618, 43, 45nf3an 2006 . . . . . . 7 𝑡(𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴)
47 simpl1 1248 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡𝑇) → 𝜑)
48 simpr 479 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡𝑇) → 𝑡𝑇)
4928recnd 10385 . . . . . . . . 9 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℂ)
5047, 48, 49syl2anc 581 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℂ)
51 simpl2 1250 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡𝑇) → 𝑚 ∈ ℕ0)
5250, 51expp1d 13303 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡𝑇) → ((𝐹𝑡)↑(𝑚 + 1)) = (((𝐹𝑡)↑𝑚) · (𝐹𝑡)))
5346, 52mpteq2da 4966 . . . . . 6 ((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡)↑(𝑚 + 1))) = (𝑡𝑇 ↦ (((𝐹𝑡)↑𝑚) · (𝐹𝑡))))
54283adant2 1167 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ0𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
55 simp2 1173 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ0𝑡𝑇) → 𝑚 ∈ ℕ0)
5654, 55reexpcld 13319 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0𝑡𝑇) → ((𝐹𝑡)↑𝑚) ∈ ℝ)
5747, 51, 48, 56syl3anc 1496 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡𝑇) → ((𝐹𝑡)↑𝑚) ∈ ℝ)
58 eqid 2825 . . . . . . . . . . . 12 (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) = (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))
5958fvmpt2 6538 . . . . . . . . . . 11 ((𝑡𝑇 ∧ ((𝐹𝑡)↑𝑚) ∈ ℝ) → ((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))‘𝑡) = ((𝐹𝑡)↑𝑚))
6059eqcomd 2831 . . . . . . . . . 10 ((𝑡𝑇 ∧ ((𝐹𝑡)↑𝑚) ∈ ℝ) → ((𝐹𝑡)↑𝑚) = ((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))‘𝑡))
6148, 57, 60syl2anc 581 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡𝑇) → ((𝐹𝑡)↑𝑚) = ((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))‘𝑡))
6261oveq1d 6920 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡𝑇) → (((𝐹𝑡)↑𝑚) · (𝐹𝑡)) = (((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))‘𝑡) · (𝐹𝑡)))
6346, 62mpteq2da 4966 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝐹𝑡)↑𝑚) · (𝐹𝑡))) = (𝑡𝑇 ↦ (((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))‘𝑡) · (𝐹𝑡))))
6419adantr 474 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) → 𝐹𝐴)
6544nfeq2 2985 . . . . . . . . . 10 𝑡 𝑓 = (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))
66 stoweidlem19.1 . . . . . . . . . . 11 𝑡𝐹
6766nfeq2 2985 . . . . . . . . . 10 𝑡 𝑔 = 𝐹
68 stoweidlem19.4 . . . . . . . . . 10 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
6965, 67, 68stoweidlem6 41017 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴𝐹𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))‘𝑡) · (𝐹𝑡))) ∈ 𝐴)
7064, 69mpd3an3 1592 . . . . . . . 8 ((𝜑 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))‘𝑡) · (𝐹𝑡))) ∈ 𝐴)
71703adant2 1167 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))‘𝑡) · (𝐹𝑡))) ∈ 𝐴)
7263, 71eqeltrd 2906 . . . . . 6 ((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝐹𝑡)↑𝑚) · (𝐹𝑡))) ∈ 𝐴)
7353, 72eqeltrd 2906 . . . . 5 ((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡)↑(𝑚 + 1))) ∈ 𝐴)
7439, 40, 42, 73syl3anc 1496 . . . 4 (((𝑚 ∈ ℕ0 ∧ (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴)) ∧ 𝜑) → (𝑡𝑇 ↦ ((𝐹𝑡)↑(𝑚 + 1))) ∈ 𝐴)
7574exp31 412 . . 3 (𝑚 ∈ ℕ0 → ((𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) → (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑(𝑚 + 1))) ∈ 𝐴)))
765, 9, 13, 17, 38, 75nn0ind 11800 . 2 (𝑁 ∈ ℕ0 → (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑁)) ∈ 𝐴))
771, 76mpcom 38 1 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑁)) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1113   = wceq 1658  wnf 1884  wcel 2166  wnfc 2956  cmpt 4952  wf 6119  cfv 6123  (class class class)co 6905  cc 10250  cr 10251  0cc0 10252  1c1 10253   + caddc 10255   · cmul 10257  0cn0 11618  cexp 13154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-n0 11619  df-z 11705  df-uz 11969  df-seq 13096  df-exp 13155
This theorem is referenced by:  stoweidlem40  41051
  Copyright terms: Public domain W3C validator