Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem19 Structured version   Visualization version   GIF version

Theorem stoweidlem19 44508
Description: If a set of real functions is closed under multiplication and it contains constants, then it is closed under finite exponentiation. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem19.1 Ⅎ𝑑𝐹
stoweidlem19.2 β„²π‘‘πœ‘
stoweidlem19.3 ((πœ‘ ∧ 𝑓 ∈ 𝐴) β†’ 𝑓:π‘‡βŸΆβ„)
stoweidlem19.4 ((πœ‘ ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) β†’ (𝑑 ∈ 𝑇 ↦ ((π‘“β€˜π‘‘) Β· (π‘”β€˜π‘‘))) ∈ 𝐴)
stoweidlem19.5 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ (𝑑 ∈ 𝑇 ↦ π‘₯) ∈ 𝐴)
stoweidlem19.6 (πœ‘ β†’ 𝐹 ∈ 𝐴)
stoweidlem19.7 (πœ‘ β†’ 𝑁 ∈ β„•0)
Assertion
Ref Expression
stoweidlem19 (πœ‘ β†’ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)↑𝑁)) ∈ 𝐴)
Distinct variable groups:   𝑓,𝑔,𝑑,𝐴   𝑓,𝐹,𝑔   𝑇,𝑓,𝑔,𝑑   πœ‘,𝑓,𝑔   𝑑,𝑁   π‘₯,𝑑,𝐴   π‘₯,𝑇   πœ‘,π‘₯
Allowed substitution hints:   πœ‘(𝑑)   𝐹(π‘₯,𝑑)   𝑁(π‘₯,𝑓,𝑔)

Proof of Theorem stoweidlem19
Dummy variables π‘š 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem19.7 . 2 (πœ‘ β†’ 𝑁 ∈ β„•0)
2 oveq2 7401 . . . . . 6 (𝑛 = 0 β†’ ((πΉβ€˜π‘‘)↑𝑛) = ((πΉβ€˜π‘‘)↑0))
32mpteq2dv 5243 . . . . 5 (𝑛 = 0 β†’ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)↑𝑛)) = (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)↑0)))
43eleq1d 2817 . . . 4 (𝑛 = 0 β†’ ((𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)↑𝑛)) ∈ 𝐴 ↔ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)↑0)) ∈ 𝐴))
54imbi2d 340 . . 3 (𝑛 = 0 β†’ ((πœ‘ β†’ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)↑𝑛)) ∈ 𝐴) ↔ (πœ‘ β†’ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)↑0)) ∈ 𝐴)))
6 oveq2 7401 . . . . . 6 (𝑛 = π‘š β†’ ((πΉβ€˜π‘‘)↑𝑛) = ((πΉβ€˜π‘‘)β†‘π‘š))
76mpteq2dv 5243 . . . . 5 (𝑛 = π‘š β†’ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)↑𝑛)) = (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š)))
87eleq1d 2817 . . . 4 (𝑛 = π‘š β†’ ((𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)↑𝑛)) ∈ 𝐴 ↔ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š)) ∈ 𝐴))
98imbi2d 340 . . 3 (𝑛 = π‘š β†’ ((πœ‘ β†’ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)↑𝑛)) ∈ 𝐴) ↔ (πœ‘ β†’ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š)) ∈ 𝐴)))
10 oveq2 7401 . . . . . 6 (𝑛 = (π‘š + 1) β†’ ((πΉβ€˜π‘‘)↑𝑛) = ((πΉβ€˜π‘‘)↑(π‘š + 1)))
1110mpteq2dv 5243 . . . . 5 (𝑛 = (π‘š + 1) β†’ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)↑𝑛)) = (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)↑(π‘š + 1))))
1211eleq1d 2817 . . . 4 (𝑛 = (π‘š + 1) β†’ ((𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)↑𝑛)) ∈ 𝐴 ↔ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)↑(π‘š + 1))) ∈ 𝐴))
1312imbi2d 340 . . 3 (𝑛 = (π‘š + 1) β†’ ((πœ‘ β†’ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)↑𝑛)) ∈ 𝐴) ↔ (πœ‘ β†’ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)↑(π‘š + 1))) ∈ 𝐴)))
14 oveq2 7401 . . . . . 6 (𝑛 = 𝑁 β†’ ((πΉβ€˜π‘‘)↑𝑛) = ((πΉβ€˜π‘‘)↑𝑁))
1514mpteq2dv 5243 . . . . 5 (𝑛 = 𝑁 β†’ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)↑𝑛)) = (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)↑𝑁)))
1615eleq1d 2817 . . . 4 (𝑛 = 𝑁 β†’ ((𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)↑𝑛)) ∈ 𝐴 ↔ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)↑𝑁)) ∈ 𝐴))
1716imbi2d 340 . . 3 (𝑛 = 𝑁 β†’ ((πœ‘ β†’ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)↑𝑛)) ∈ 𝐴) ↔ (πœ‘ β†’ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)↑𝑁)) ∈ 𝐴)))
18 stoweidlem19.2 . . . . 5 β„²π‘‘πœ‘
19 stoweidlem19.6 . . . . . . . . 9 (πœ‘ β†’ 𝐹 ∈ 𝐴)
2019ancli 549 . . . . . . . . 9 (πœ‘ β†’ (πœ‘ ∧ 𝐹 ∈ 𝐴))
21 eleq1 2820 . . . . . . . . . . . 12 (𝑓 = 𝐹 β†’ (𝑓 ∈ 𝐴 ↔ 𝐹 ∈ 𝐴))
2221anbi2d 629 . . . . . . . . . . 11 (𝑓 = 𝐹 β†’ ((πœ‘ ∧ 𝑓 ∈ 𝐴) ↔ (πœ‘ ∧ 𝐹 ∈ 𝐴)))
23 feq1 6685 . . . . . . . . . . 11 (𝑓 = 𝐹 β†’ (𝑓:π‘‡βŸΆβ„ ↔ 𝐹:π‘‡βŸΆβ„))
2422, 23imbi12d 344 . . . . . . . . . 10 (𝑓 = 𝐹 β†’ (((πœ‘ ∧ 𝑓 ∈ 𝐴) β†’ 𝑓:π‘‡βŸΆβ„) ↔ ((πœ‘ ∧ 𝐹 ∈ 𝐴) β†’ 𝐹:π‘‡βŸΆβ„)))
25 stoweidlem19.3 . . . . . . . . . 10 ((πœ‘ ∧ 𝑓 ∈ 𝐴) β†’ 𝑓:π‘‡βŸΆβ„)
2624, 25vtoclg 3553 . . . . . . . . 9 (𝐹 ∈ 𝐴 β†’ ((πœ‘ ∧ 𝐹 ∈ 𝐴) β†’ 𝐹:π‘‡βŸΆβ„))
2719, 20, 26sylc 65 . . . . . . . 8 (πœ‘ β†’ 𝐹:π‘‡βŸΆβ„)
2827ffvelcdmda 7071 . . . . . . 7 ((πœ‘ ∧ 𝑑 ∈ 𝑇) β†’ (πΉβ€˜π‘‘) ∈ ℝ)
29 recn 11182 . . . . . . 7 ((πΉβ€˜π‘‘) ∈ ℝ β†’ (πΉβ€˜π‘‘) ∈ β„‚)
30 exp0 14013 . . . . . . 7 ((πΉβ€˜π‘‘) ∈ β„‚ β†’ ((πΉβ€˜π‘‘)↑0) = 1)
3128, 29, 303syl 18 . . . . . 6 ((πœ‘ ∧ 𝑑 ∈ 𝑇) β†’ ((πΉβ€˜π‘‘)↑0) = 1)
3231eqcomd 2737 . . . . 5 ((πœ‘ ∧ 𝑑 ∈ 𝑇) β†’ 1 = ((πΉβ€˜π‘‘)↑0))
3318, 32mpteq2da 5239 . . . 4 (πœ‘ β†’ (𝑑 ∈ 𝑇 ↦ 1) = (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)↑0)))
34 1re 11196 . . . . 5 1 ∈ ℝ
35 stoweidlem19.5 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ (𝑑 ∈ 𝑇 ↦ π‘₯) ∈ 𝐴)
3635stoweidlem4 44493 . . . . 5 ((πœ‘ ∧ 1 ∈ ℝ) β†’ (𝑑 ∈ 𝑇 ↦ 1) ∈ 𝐴)
3734, 36mpan2 689 . . . 4 (πœ‘ β†’ (𝑑 ∈ 𝑇 ↦ 1) ∈ 𝐴)
3833, 37eqeltrrd 2833 . . 3 (πœ‘ β†’ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)↑0)) ∈ 𝐴)
39 simpr 485 . . . . 5 (((π‘š ∈ β„•0 ∧ (πœ‘ β†’ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š)) ∈ 𝐴)) ∧ πœ‘) β†’ πœ‘)
40 simpll 765 . . . . 5 (((π‘š ∈ β„•0 ∧ (πœ‘ β†’ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š)) ∈ 𝐴)) ∧ πœ‘) β†’ π‘š ∈ β„•0)
41 simplr 767 . . . . . 6 (((π‘š ∈ β„•0 ∧ (πœ‘ β†’ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š)) ∈ 𝐴)) ∧ πœ‘) β†’ (πœ‘ β†’ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š)) ∈ 𝐴))
4239, 41mpd 15 . . . . 5 (((π‘š ∈ β„•0 ∧ (πœ‘ β†’ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š)) ∈ 𝐴)) ∧ πœ‘) β†’ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š)) ∈ 𝐴)
43 nfv 1917 . . . . . . . 8 Ⅎ𝑑 π‘š ∈ β„•0
44 nfmpt1 5249 . . . . . . . . 9 Ⅎ𝑑(𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š))
4544nfel1 2918 . . . . . . . 8 Ⅎ𝑑(𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š)) ∈ 𝐴
4618, 43, 45nf3an 1904 . . . . . . 7 Ⅎ𝑑(πœ‘ ∧ π‘š ∈ β„•0 ∧ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š)) ∈ 𝐴)
47 simpl1 1191 . . . . . . . . 9 (((πœ‘ ∧ π‘š ∈ β„•0 ∧ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š)) ∈ 𝐴) ∧ 𝑑 ∈ 𝑇) β†’ πœ‘)
48 simpr 485 . . . . . . . . 9 (((πœ‘ ∧ π‘š ∈ β„•0 ∧ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š)) ∈ 𝐴) ∧ 𝑑 ∈ 𝑇) β†’ 𝑑 ∈ 𝑇)
4928recnd 11224 . . . . . . . . 9 ((πœ‘ ∧ 𝑑 ∈ 𝑇) β†’ (πΉβ€˜π‘‘) ∈ β„‚)
5047, 48, 49syl2anc 584 . . . . . . . 8 (((πœ‘ ∧ π‘š ∈ β„•0 ∧ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š)) ∈ 𝐴) ∧ 𝑑 ∈ 𝑇) β†’ (πΉβ€˜π‘‘) ∈ β„‚)
51 simpl2 1192 . . . . . . . 8 (((πœ‘ ∧ π‘š ∈ β„•0 ∧ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š)) ∈ 𝐴) ∧ 𝑑 ∈ 𝑇) β†’ π‘š ∈ β„•0)
5250, 51expp1d 14094 . . . . . . 7 (((πœ‘ ∧ π‘š ∈ β„•0 ∧ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š)) ∈ 𝐴) ∧ 𝑑 ∈ 𝑇) β†’ ((πΉβ€˜π‘‘)↑(π‘š + 1)) = (((πΉβ€˜π‘‘)β†‘π‘š) Β· (πΉβ€˜π‘‘)))
5346, 52mpteq2da 5239 . . . . . 6 ((πœ‘ ∧ π‘š ∈ β„•0 ∧ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š)) ∈ 𝐴) β†’ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)↑(π‘š + 1))) = (𝑑 ∈ 𝑇 ↦ (((πΉβ€˜π‘‘)β†‘π‘š) Β· (πΉβ€˜π‘‘))))
54283adant2 1131 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘š ∈ β„•0 ∧ 𝑑 ∈ 𝑇) β†’ (πΉβ€˜π‘‘) ∈ ℝ)
55 simp2 1137 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘š ∈ β„•0 ∧ 𝑑 ∈ 𝑇) β†’ π‘š ∈ β„•0)
5654, 55reexpcld 14110 . . . . . . . . . . 11 ((πœ‘ ∧ π‘š ∈ β„•0 ∧ 𝑑 ∈ 𝑇) β†’ ((πΉβ€˜π‘‘)β†‘π‘š) ∈ ℝ)
5747, 51, 48, 56syl3anc 1371 . . . . . . . . . 10 (((πœ‘ ∧ π‘š ∈ β„•0 ∧ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š)) ∈ 𝐴) ∧ 𝑑 ∈ 𝑇) β†’ ((πΉβ€˜π‘‘)β†‘π‘š) ∈ ℝ)
58 eqid 2731 . . . . . . . . . . . 12 (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š)) = (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š))
5958fvmpt2 6995 . . . . . . . . . . 11 ((𝑑 ∈ 𝑇 ∧ ((πΉβ€˜π‘‘)β†‘π‘š) ∈ ℝ) β†’ ((𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š))β€˜π‘‘) = ((πΉβ€˜π‘‘)β†‘π‘š))
6059eqcomd 2737 . . . . . . . . . 10 ((𝑑 ∈ 𝑇 ∧ ((πΉβ€˜π‘‘)β†‘π‘š) ∈ ℝ) β†’ ((πΉβ€˜π‘‘)β†‘π‘š) = ((𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š))β€˜π‘‘))
6148, 57, 60syl2anc 584 . . . . . . . . 9 (((πœ‘ ∧ π‘š ∈ β„•0 ∧ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š)) ∈ 𝐴) ∧ 𝑑 ∈ 𝑇) β†’ ((πΉβ€˜π‘‘)β†‘π‘š) = ((𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š))β€˜π‘‘))
6261oveq1d 7408 . . . . . . . 8 (((πœ‘ ∧ π‘š ∈ β„•0 ∧ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š)) ∈ 𝐴) ∧ 𝑑 ∈ 𝑇) β†’ (((πΉβ€˜π‘‘)β†‘π‘š) Β· (πΉβ€˜π‘‘)) = (((𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š))β€˜π‘‘) Β· (πΉβ€˜π‘‘)))
6346, 62mpteq2da 5239 . . . . . . 7 ((πœ‘ ∧ π‘š ∈ β„•0 ∧ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š)) ∈ 𝐴) β†’ (𝑑 ∈ 𝑇 ↦ (((πΉβ€˜π‘‘)β†‘π‘š) Β· (πΉβ€˜π‘‘))) = (𝑑 ∈ 𝑇 ↦ (((𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š))β€˜π‘‘) Β· (πΉβ€˜π‘‘))))
6419adantr 481 . . . . . . . . 9 ((πœ‘ ∧ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š)) ∈ 𝐴) β†’ 𝐹 ∈ 𝐴)
6544nfeq2 2919 . . . . . . . . . 10 Ⅎ𝑑 𝑓 = (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š))
66 stoweidlem19.1 . . . . . . . . . . 11 Ⅎ𝑑𝐹
6766nfeq2 2919 . . . . . . . . . 10 Ⅎ𝑑 𝑔 = 𝐹
68 stoweidlem19.4 . . . . . . . . . 10 ((πœ‘ ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) β†’ (𝑑 ∈ 𝑇 ↦ ((π‘“β€˜π‘‘) Β· (π‘”β€˜π‘‘))) ∈ 𝐴)
6965, 67, 68stoweidlem6 44495 . . . . . . . . 9 ((πœ‘ ∧ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š)) ∈ 𝐴 ∧ 𝐹 ∈ 𝐴) β†’ (𝑑 ∈ 𝑇 ↦ (((𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š))β€˜π‘‘) Β· (πΉβ€˜π‘‘))) ∈ 𝐴)
7064, 69mpd3an3 1462 . . . . . . . 8 ((πœ‘ ∧ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š)) ∈ 𝐴) β†’ (𝑑 ∈ 𝑇 ↦ (((𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š))β€˜π‘‘) Β· (πΉβ€˜π‘‘))) ∈ 𝐴)
71703adant2 1131 . . . . . . 7 ((πœ‘ ∧ π‘š ∈ β„•0 ∧ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š)) ∈ 𝐴) β†’ (𝑑 ∈ 𝑇 ↦ (((𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š))β€˜π‘‘) Β· (πΉβ€˜π‘‘))) ∈ 𝐴)
7263, 71eqeltrd 2832 . . . . . 6 ((πœ‘ ∧ π‘š ∈ β„•0 ∧ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š)) ∈ 𝐴) β†’ (𝑑 ∈ 𝑇 ↦ (((πΉβ€˜π‘‘)β†‘π‘š) Β· (πΉβ€˜π‘‘))) ∈ 𝐴)
7353, 72eqeltrd 2832 . . . . 5 ((πœ‘ ∧ π‘š ∈ β„•0 ∧ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š)) ∈ 𝐴) β†’ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)↑(π‘š + 1))) ∈ 𝐴)
7439, 40, 42, 73syl3anc 1371 . . . 4 (((π‘š ∈ β„•0 ∧ (πœ‘ β†’ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š)) ∈ 𝐴)) ∧ πœ‘) β†’ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)↑(π‘š + 1))) ∈ 𝐴)
7574exp31 420 . . 3 (π‘š ∈ β„•0 β†’ ((πœ‘ β†’ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)β†‘π‘š)) ∈ 𝐴) β†’ (πœ‘ β†’ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)↑(π‘š + 1))) ∈ 𝐴)))
765, 9, 13, 17, 38, 75nn0ind 12639 . 2 (𝑁 ∈ β„•0 β†’ (πœ‘ β†’ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)↑𝑁)) ∈ 𝐴))
771, 76mpcom 38 1 (πœ‘ β†’ (𝑑 ∈ 𝑇 ↦ ((πΉβ€˜π‘‘)↑𝑁)) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541  β„²wnf 1785   ∈ wcel 2106  β„²wnfc 2882   ↦ cmpt 5224  βŸΆwf 6528  β€˜cfv 6532  (class class class)co 7393  β„‚cc 11090  β„cr 11091  0cc0 11092  1c1 11093   + caddc 11095   Β· cmul 11097  β„•0cn0 12454  β†‘cexp 14009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-n0 12455  df-z 12541  df-uz 12805  df-seq 13949  df-exp 14010
This theorem is referenced by:  stoweidlem40  44529
  Copyright terms: Public domain W3C validator