Step | Hyp | Ref
| Expression |
1 | | stoweidlem19.7 |
. 2
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
2 | | oveq2 7315 |
. . . . . 6
⊢ (𝑛 = 0 → ((𝐹‘𝑡)↑𝑛) = ((𝐹‘𝑡)↑0)) |
3 | 2 | mpteq2dv 5183 |
. . . . 5
⊢ (𝑛 = 0 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑛)) = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑0))) |
4 | 3 | eleq1d 2821 |
. . . 4
⊢ (𝑛 = 0 → ((𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑛)) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑0)) ∈ 𝐴)) |
5 | 4 | imbi2d 341 |
. . 3
⊢ (𝑛 = 0 → ((𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑛)) ∈ 𝐴) ↔ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑0)) ∈ 𝐴))) |
6 | | oveq2 7315 |
. . . . . 6
⊢ (𝑛 = 𝑚 → ((𝐹‘𝑡)↑𝑛) = ((𝐹‘𝑡)↑𝑚)) |
7 | 6 | mpteq2dv 5183 |
. . . . 5
⊢ (𝑛 = 𝑚 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑛)) = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚))) |
8 | 7 | eleq1d 2821 |
. . . 4
⊢ (𝑛 = 𝑚 → ((𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑛)) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴)) |
9 | 8 | imbi2d 341 |
. . 3
⊢ (𝑛 = 𝑚 → ((𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑛)) ∈ 𝐴) ↔ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴))) |
10 | | oveq2 7315 |
. . . . . 6
⊢ (𝑛 = (𝑚 + 1) → ((𝐹‘𝑡)↑𝑛) = ((𝐹‘𝑡)↑(𝑚 + 1))) |
11 | 10 | mpteq2dv 5183 |
. . . . 5
⊢ (𝑛 = (𝑚 + 1) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑛)) = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑(𝑚 + 1)))) |
12 | 11 | eleq1d 2821 |
. . . 4
⊢ (𝑛 = (𝑚 + 1) → ((𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑛)) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑(𝑚 + 1))) ∈ 𝐴)) |
13 | 12 | imbi2d 341 |
. . 3
⊢ (𝑛 = (𝑚 + 1) → ((𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑛)) ∈ 𝐴) ↔ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑(𝑚 + 1))) ∈ 𝐴))) |
14 | | oveq2 7315 |
. . . . . 6
⊢ (𝑛 = 𝑁 → ((𝐹‘𝑡)↑𝑛) = ((𝐹‘𝑡)↑𝑁)) |
15 | 14 | mpteq2dv 5183 |
. . . . 5
⊢ (𝑛 = 𝑁 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑛)) = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑁))) |
16 | 15 | eleq1d 2821 |
. . . 4
⊢ (𝑛 = 𝑁 → ((𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑛)) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑁)) ∈ 𝐴)) |
17 | 16 | imbi2d 341 |
. . 3
⊢ (𝑛 = 𝑁 → ((𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑛)) ∈ 𝐴) ↔ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑁)) ∈ 𝐴))) |
18 | | stoweidlem19.2 |
. . . . 5
⊢
Ⅎ𝑡𝜑 |
19 | | stoweidlem19.6 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ 𝐴) |
20 | 19 | ancli 550 |
. . . . . . . . 9
⊢ (𝜑 → (𝜑 ∧ 𝐹 ∈ 𝐴)) |
21 | | eleq1 2824 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝐹 → (𝑓 ∈ 𝐴 ↔ 𝐹 ∈ 𝐴)) |
22 | 21 | anbi2d 630 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → ((𝜑 ∧ 𝑓 ∈ 𝐴) ↔ (𝜑 ∧ 𝐹 ∈ 𝐴))) |
23 | | feq1 6611 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → (𝑓:𝑇⟶ℝ ↔ 𝐹:𝑇⟶ℝ)) |
24 | 22, 23 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → (((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ 𝐹 ∈ 𝐴) → 𝐹:𝑇⟶ℝ))) |
25 | | stoweidlem19.3 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) |
26 | 24, 25 | vtoclg 3510 |
. . . . . . . . 9
⊢ (𝐹 ∈ 𝐴 → ((𝜑 ∧ 𝐹 ∈ 𝐴) → 𝐹:𝑇⟶ℝ)) |
27 | 19, 20, 26 | sylc 65 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝑇⟶ℝ) |
28 | 27 | ffvelcdmda 6993 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℝ) |
29 | | recn 11007 |
. . . . . . 7
⊢ ((𝐹‘𝑡) ∈ ℝ → (𝐹‘𝑡) ∈ ℂ) |
30 | | exp0 13832 |
. . . . . . 7
⊢ ((𝐹‘𝑡) ∈ ℂ → ((𝐹‘𝑡)↑0) = 1) |
31 | 28, 29, 30 | 3syl 18 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡)↑0) = 1) |
32 | 31 | eqcomd 2742 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 1 = ((𝐹‘𝑡)↑0)) |
33 | 18, 32 | mpteq2da 5179 |
. . . 4
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ 1) = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑0))) |
34 | | 1re 11021 |
. . . . 5
⊢ 1 ∈
ℝ |
35 | | stoweidlem19.5 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) |
36 | 35 | stoweidlem4 43594 |
. . . . 5
⊢ ((𝜑 ∧ 1 ∈ ℝ) →
(𝑡 ∈ 𝑇 ↦ 1) ∈ 𝐴) |
37 | 34, 36 | mpan2 689 |
. . . 4
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ 1) ∈ 𝐴) |
38 | 33, 37 | eqeltrrd 2838 |
. . 3
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑0)) ∈ 𝐴) |
39 | | simpr 486 |
. . . . 5
⊢ (((𝑚 ∈ ℕ0
∧ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴)) ∧ 𝜑) → 𝜑) |
40 | | simpll 765 |
. . . . 5
⊢ (((𝑚 ∈ ℕ0
∧ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴)) ∧ 𝜑) → 𝑚 ∈ ℕ0) |
41 | | simplr 767 |
. . . . . 6
⊢ (((𝑚 ∈ ℕ0
∧ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴)) ∧ 𝜑) → (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴)) |
42 | 39, 41 | mpd 15 |
. . . . 5
⊢ (((𝑚 ∈ ℕ0
∧ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴)) ∧ 𝜑) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) |
43 | | nfv 1915 |
. . . . . . . 8
⊢
Ⅎ𝑡 𝑚 ∈
ℕ0 |
44 | | nfmpt1 5189 |
. . . . . . . . 9
⊢
Ⅎ𝑡(𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) |
45 | 44 | nfel1 2921 |
. . . . . . . 8
⊢
Ⅎ𝑡(𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴 |
46 | 18, 43, 45 | nf3an 1902 |
. . . . . . 7
⊢
Ⅎ𝑡(𝜑 ∧ 𝑚 ∈ ℕ0 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) |
47 | | simpl1 1191 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → 𝜑) |
48 | | simpr 486 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ 𝑇) |
49 | 28 | recnd 11049 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℂ) |
50 | 47, 48, 49 | syl2anc 585 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℂ) |
51 | | simpl2 1192 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → 𝑚 ∈ ℕ0) |
52 | 50, 51 | expp1d 13911 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡)↑(𝑚 + 1)) = (((𝐹‘𝑡)↑𝑚) · (𝐹‘𝑡))) |
53 | 46, 52 | mpteq2da 5179 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑(𝑚 + 1))) = (𝑡 ∈ 𝑇 ↦ (((𝐹‘𝑡)↑𝑚) · (𝐹‘𝑡)))) |
54 | 28 | 3adant2 1131 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℝ) |
55 | | simp2 1137 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ 𝑡 ∈ 𝑇) → 𝑚 ∈ ℕ0) |
56 | 54, 55 | reexpcld 13927 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡)↑𝑚) ∈ ℝ) |
57 | 47, 51, 48, 56 | syl3anc 1371 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡)↑𝑚) ∈ ℝ) |
58 | | eqid 2736 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) |
59 | 58 | fvmpt2 6918 |
. . . . . . . . . . 11
⊢ ((𝑡 ∈ 𝑇 ∧ ((𝐹‘𝑡)↑𝑚) ∈ ℝ) → ((𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚))‘𝑡) = ((𝐹‘𝑡)↑𝑚)) |
60 | 59 | eqcomd 2742 |
. . . . . . . . . 10
⊢ ((𝑡 ∈ 𝑇 ∧ ((𝐹‘𝑡)↑𝑚) ∈ ℝ) → ((𝐹‘𝑡)↑𝑚) = ((𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚))‘𝑡)) |
61 | 48, 57, 60 | syl2anc 585 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡)↑𝑚) = ((𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚))‘𝑡)) |
62 | 61 | oveq1d 7322 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → (((𝐹‘𝑡)↑𝑚) · (𝐹‘𝑡)) = (((𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚))‘𝑡) · (𝐹‘𝑡))) |
63 | 46, 62 | mpteq2da 5179 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝐹‘𝑡)↑𝑚) · (𝐹‘𝑡))) = (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚))‘𝑡) · (𝐹‘𝑡)))) |
64 | 19 | adantr 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) → 𝐹 ∈ 𝐴) |
65 | 44 | nfeq2 2922 |
. . . . . . . . . 10
⊢
Ⅎ𝑡 𝑓 = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) |
66 | | stoweidlem19.1 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡𝐹 |
67 | 66 | nfeq2 2922 |
. . . . . . . . . 10
⊢
Ⅎ𝑡 𝑔 = 𝐹 |
68 | | stoweidlem19.4 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
69 | 65, 67, 68 | stoweidlem6 43596 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚))‘𝑡) · (𝐹‘𝑡))) ∈ 𝐴) |
70 | 64, 69 | mpd3an3 1462 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚))‘𝑡) · (𝐹‘𝑡))) ∈ 𝐴) |
71 | 70 | 3adant2 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚))‘𝑡) · (𝐹‘𝑡))) ∈ 𝐴) |
72 | 63, 71 | eqeltrd 2837 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝐹‘𝑡)↑𝑚) · (𝐹‘𝑡))) ∈ 𝐴) |
73 | 53, 72 | eqeltrd 2837 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑(𝑚 + 1))) ∈ 𝐴) |
74 | 39, 40, 42, 73 | syl3anc 1371 |
. . . 4
⊢ (((𝑚 ∈ ℕ0
∧ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴)) ∧ 𝜑) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑(𝑚 + 1))) ∈ 𝐴) |
75 | 74 | exp31 421 |
. . 3
⊢ (𝑚 ∈ ℕ0
→ ((𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) → (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑(𝑚 + 1))) ∈ 𝐴))) |
76 | 5, 9, 13, 17, 38, 75 | nn0ind 12461 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑁)) ∈ 𝐴)) |
77 | 1, 76 | mpcom 38 |
1
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑁)) ∈ 𝐴) |