Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem19 Structured version   Visualization version   GIF version

Theorem stoweidlem19 46010
Description: If a set of real functions is closed under multiplication and it contains constants, then it is closed under finite exponentiation. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem19.1 𝑡𝐹
stoweidlem19.2 𝑡𝜑
stoweidlem19.3 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem19.4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem19.5 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem19.6 (𝜑𝐹𝐴)
stoweidlem19.7 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
stoweidlem19 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑁)) ∈ 𝐴)
Distinct variable groups:   𝑓,𝑔,𝑡,𝐴   𝑓,𝐹,𝑔   𝑇,𝑓,𝑔,𝑡   𝜑,𝑓,𝑔   𝑡,𝑁   𝑥,𝑡,𝐴   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡)   𝐹(𝑥,𝑡)   𝑁(𝑥,𝑓,𝑔)

Proof of Theorem stoweidlem19
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem19.7 . 2 (𝜑𝑁 ∈ ℕ0)
2 oveq2 7357 . . . . . 6 (𝑛 = 0 → ((𝐹𝑡)↑𝑛) = ((𝐹𝑡)↑0))
32mpteq2dv 5186 . . . . 5 (𝑛 = 0 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) = (𝑡𝑇 ↦ ((𝐹𝑡)↑0)))
43eleq1d 2813 . . . 4 (𝑛 = 0 → ((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝐹𝑡)↑0)) ∈ 𝐴))
54imbi2d 340 . . 3 (𝑛 = 0 → ((𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) ∈ 𝐴) ↔ (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑0)) ∈ 𝐴)))
6 oveq2 7357 . . . . . 6 (𝑛 = 𝑚 → ((𝐹𝑡)↑𝑛) = ((𝐹𝑡)↑𝑚))
76mpteq2dv 5186 . . . . 5 (𝑛 = 𝑚 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) = (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)))
87eleq1d 2813 . . . 4 (𝑛 = 𝑚 → ((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴))
98imbi2d 340 . . 3 (𝑛 = 𝑚 → ((𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) ∈ 𝐴) ↔ (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴)))
10 oveq2 7357 . . . . . 6 (𝑛 = (𝑚 + 1) → ((𝐹𝑡)↑𝑛) = ((𝐹𝑡)↑(𝑚 + 1)))
1110mpteq2dv 5186 . . . . 5 (𝑛 = (𝑚 + 1) → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) = (𝑡𝑇 ↦ ((𝐹𝑡)↑(𝑚 + 1))))
1211eleq1d 2813 . . . 4 (𝑛 = (𝑚 + 1) → ((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝐹𝑡)↑(𝑚 + 1))) ∈ 𝐴))
1312imbi2d 340 . . 3 (𝑛 = (𝑚 + 1) → ((𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) ∈ 𝐴) ↔ (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑(𝑚 + 1))) ∈ 𝐴)))
14 oveq2 7357 . . . . . 6 (𝑛 = 𝑁 → ((𝐹𝑡)↑𝑛) = ((𝐹𝑡)↑𝑁))
1514mpteq2dv 5186 . . . . 5 (𝑛 = 𝑁 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) = (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑁)))
1615eleq1d 2813 . . . 4 (𝑛 = 𝑁 → ((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑁)) ∈ 𝐴))
1716imbi2d 340 . . 3 (𝑛 = 𝑁 → ((𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) ∈ 𝐴) ↔ (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑁)) ∈ 𝐴)))
18 stoweidlem19.2 . . . . 5 𝑡𝜑
19 stoweidlem19.6 . . . . . . . . 9 (𝜑𝐹𝐴)
2019ancli 548 . . . . . . . . 9 (𝜑 → (𝜑𝐹𝐴))
21 eleq1 2816 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓𝐴𝐹𝐴))
2221anbi2d 630 . . . . . . . . . . 11 (𝑓 = 𝐹 → ((𝜑𝑓𝐴) ↔ (𝜑𝐹𝐴)))
23 feq1 6630 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓:𝑇⟶ℝ ↔ 𝐹:𝑇⟶ℝ))
2422, 23imbi12d 344 . . . . . . . . . 10 (𝑓 = 𝐹 → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑𝐹𝐴) → 𝐹:𝑇⟶ℝ)))
25 stoweidlem19.3 . . . . . . . . . 10 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
2624, 25vtoclg 3509 . . . . . . . . 9 (𝐹𝐴 → ((𝜑𝐹𝐴) → 𝐹:𝑇⟶ℝ))
2719, 20, 26sylc 65 . . . . . . . 8 (𝜑𝐹:𝑇⟶ℝ)
2827ffvelcdmda 7018 . . . . . . 7 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
29 recn 11099 . . . . . . 7 ((𝐹𝑡) ∈ ℝ → (𝐹𝑡) ∈ ℂ)
30 exp0 13972 . . . . . . 7 ((𝐹𝑡) ∈ ℂ → ((𝐹𝑡)↑0) = 1)
3128, 29, 303syl 18 . . . . . 6 ((𝜑𝑡𝑇) → ((𝐹𝑡)↑0) = 1)
3231eqcomd 2735 . . . . 5 ((𝜑𝑡𝑇) → 1 = ((𝐹𝑡)↑0))
3318, 32mpteq2da 5184 . . . 4 (𝜑 → (𝑡𝑇 ↦ 1) = (𝑡𝑇 ↦ ((𝐹𝑡)↑0)))
34 1re 11115 . . . . 5 1 ∈ ℝ
35 stoweidlem19.5 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
3635stoweidlem4 45995 . . . . 5 ((𝜑 ∧ 1 ∈ ℝ) → (𝑡𝑇 ↦ 1) ∈ 𝐴)
3734, 36mpan2 691 . . . 4 (𝜑 → (𝑡𝑇 ↦ 1) ∈ 𝐴)
3833, 37eqeltrrd 2829 . . 3 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑0)) ∈ 𝐴)
39 simpr 484 . . . . 5 (((𝑚 ∈ ℕ0 ∧ (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴)) ∧ 𝜑) → 𝜑)
40 simpll 766 . . . . 5 (((𝑚 ∈ ℕ0 ∧ (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴)) ∧ 𝜑) → 𝑚 ∈ ℕ0)
41 simplr 768 . . . . . 6 (((𝑚 ∈ ℕ0 ∧ (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴)) ∧ 𝜑) → (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴))
4239, 41mpd 15 . . . . 5 (((𝑚 ∈ ℕ0 ∧ (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴)) ∧ 𝜑) → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴)
43 nfv 1914 . . . . . . . 8 𝑡 𝑚 ∈ ℕ0
44 nfmpt1 5191 . . . . . . . . 9 𝑡(𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))
4544nfel1 2908 . . . . . . . 8 𝑡(𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴
4618, 43, 45nf3an 1901 . . . . . . 7 𝑡(𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴)
47 simpl1 1192 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡𝑇) → 𝜑)
48 simpr 484 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡𝑇) → 𝑡𝑇)
4928recnd 11143 . . . . . . . . 9 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℂ)
5047, 48, 49syl2anc 584 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℂ)
51 simpl2 1193 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡𝑇) → 𝑚 ∈ ℕ0)
5250, 51expp1d 14054 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡𝑇) → ((𝐹𝑡)↑(𝑚 + 1)) = (((𝐹𝑡)↑𝑚) · (𝐹𝑡)))
5346, 52mpteq2da 5184 . . . . . 6 ((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡)↑(𝑚 + 1))) = (𝑡𝑇 ↦ (((𝐹𝑡)↑𝑚) · (𝐹𝑡))))
54283adant2 1131 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ0𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
55 simp2 1137 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ0𝑡𝑇) → 𝑚 ∈ ℕ0)
5654, 55reexpcld 14070 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0𝑡𝑇) → ((𝐹𝑡)↑𝑚) ∈ ℝ)
5747, 51, 48, 56syl3anc 1373 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡𝑇) → ((𝐹𝑡)↑𝑚) ∈ ℝ)
58 eqid 2729 . . . . . . . . . . . 12 (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) = (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))
5958fvmpt2 6941 . . . . . . . . . . 11 ((𝑡𝑇 ∧ ((𝐹𝑡)↑𝑚) ∈ ℝ) → ((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))‘𝑡) = ((𝐹𝑡)↑𝑚))
6059eqcomd 2735 . . . . . . . . . 10 ((𝑡𝑇 ∧ ((𝐹𝑡)↑𝑚) ∈ ℝ) → ((𝐹𝑡)↑𝑚) = ((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))‘𝑡))
6148, 57, 60syl2anc 584 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡𝑇) → ((𝐹𝑡)↑𝑚) = ((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))‘𝑡))
6261oveq1d 7364 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡𝑇) → (((𝐹𝑡)↑𝑚) · (𝐹𝑡)) = (((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))‘𝑡) · (𝐹𝑡)))
6346, 62mpteq2da 5184 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝐹𝑡)↑𝑚) · (𝐹𝑡))) = (𝑡𝑇 ↦ (((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))‘𝑡) · (𝐹𝑡))))
6419adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) → 𝐹𝐴)
6544nfeq2 2909 . . . . . . . . . 10 𝑡 𝑓 = (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))
66 stoweidlem19.1 . . . . . . . . . . 11 𝑡𝐹
6766nfeq2 2909 . . . . . . . . . 10 𝑡 𝑔 = 𝐹
68 stoweidlem19.4 . . . . . . . . . 10 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
6965, 67, 68stoweidlem6 45997 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴𝐹𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))‘𝑡) · (𝐹𝑡))) ∈ 𝐴)
7064, 69mpd3an3 1464 . . . . . . . 8 ((𝜑 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))‘𝑡) · (𝐹𝑡))) ∈ 𝐴)
71703adant2 1131 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))‘𝑡) · (𝐹𝑡))) ∈ 𝐴)
7263, 71eqeltrd 2828 . . . . . 6 ((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝐹𝑡)↑𝑚) · (𝐹𝑡))) ∈ 𝐴)
7353, 72eqeltrd 2828 . . . . 5 ((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡)↑(𝑚 + 1))) ∈ 𝐴)
7439, 40, 42, 73syl3anc 1373 . . . 4 (((𝑚 ∈ ℕ0 ∧ (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴)) ∧ 𝜑) → (𝑡𝑇 ↦ ((𝐹𝑡)↑(𝑚 + 1))) ∈ 𝐴)
7574exp31 419 . . 3 (𝑚 ∈ ℕ0 → ((𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) → (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑(𝑚 + 1))) ∈ 𝐴)))
765, 9, 13, 17, 38, 75nn0ind 12571 . 2 (𝑁 ∈ ℕ0 → (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑁)) ∈ 𝐴))
771, 76mpcom 38 1 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑁)) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wnfc 2876  cmpt 5173  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  0cn0 12384  cexp 13968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-seq 13909  df-exp 13969
This theorem is referenced by:  stoweidlem40  46031
  Copyright terms: Public domain W3C validator