Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem19 Structured version   Visualization version   GIF version

Theorem stoweidlem19 45940
Description: If a set of real functions is closed under multiplication and it contains constants, then it is closed under finite exponentiation. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem19.1 𝑡𝐹
stoweidlem19.2 𝑡𝜑
stoweidlem19.3 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem19.4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem19.5 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem19.6 (𝜑𝐹𝐴)
stoweidlem19.7 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
stoweidlem19 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑁)) ∈ 𝐴)
Distinct variable groups:   𝑓,𝑔,𝑡,𝐴   𝑓,𝐹,𝑔   𝑇,𝑓,𝑔,𝑡   𝜑,𝑓,𝑔   𝑡,𝑁   𝑥,𝑡,𝐴   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡)   𝐹(𝑥,𝑡)   𝑁(𝑥,𝑓,𝑔)

Proof of Theorem stoweidlem19
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem19.7 . 2 (𝜑𝑁 ∈ ℕ0)
2 oveq2 7456 . . . . . 6 (𝑛 = 0 → ((𝐹𝑡)↑𝑛) = ((𝐹𝑡)↑0))
32mpteq2dv 5268 . . . . 5 (𝑛 = 0 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) = (𝑡𝑇 ↦ ((𝐹𝑡)↑0)))
43eleq1d 2829 . . . 4 (𝑛 = 0 → ((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝐹𝑡)↑0)) ∈ 𝐴))
54imbi2d 340 . . 3 (𝑛 = 0 → ((𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) ∈ 𝐴) ↔ (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑0)) ∈ 𝐴)))
6 oveq2 7456 . . . . . 6 (𝑛 = 𝑚 → ((𝐹𝑡)↑𝑛) = ((𝐹𝑡)↑𝑚))
76mpteq2dv 5268 . . . . 5 (𝑛 = 𝑚 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) = (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)))
87eleq1d 2829 . . . 4 (𝑛 = 𝑚 → ((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴))
98imbi2d 340 . . 3 (𝑛 = 𝑚 → ((𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) ∈ 𝐴) ↔ (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴)))
10 oveq2 7456 . . . . . 6 (𝑛 = (𝑚 + 1) → ((𝐹𝑡)↑𝑛) = ((𝐹𝑡)↑(𝑚 + 1)))
1110mpteq2dv 5268 . . . . 5 (𝑛 = (𝑚 + 1) → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) = (𝑡𝑇 ↦ ((𝐹𝑡)↑(𝑚 + 1))))
1211eleq1d 2829 . . . 4 (𝑛 = (𝑚 + 1) → ((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝐹𝑡)↑(𝑚 + 1))) ∈ 𝐴))
1312imbi2d 340 . . 3 (𝑛 = (𝑚 + 1) → ((𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) ∈ 𝐴) ↔ (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑(𝑚 + 1))) ∈ 𝐴)))
14 oveq2 7456 . . . . . 6 (𝑛 = 𝑁 → ((𝐹𝑡)↑𝑛) = ((𝐹𝑡)↑𝑁))
1514mpteq2dv 5268 . . . . 5 (𝑛 = 𝑁 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) = (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑁)))
1615eleq1d 2829 . . . 4 (𝑛 = 𝑁 → ((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑁)) ∈ 𝐴))
1716imbi2d 340 . . 3 (𝑛 = 𝑁 → ((𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑛)) ∈ 𝐴) ↔ (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑁)) ∈ 𝐴)))
18 stoweidlem19.2 . . . . 5 𝑡𝜑
19 stoweidlem19.6 . . . . . . . . 9 (𝜑𝐹𝐴)
2019ancli 548 . . . . . . . . 9 (𝜑 → (𝜑𝐹𝐴))
21 eleq1 2832 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓𝐴𝐹𝐴))
2221anbi2d 629 . . . . . . . . . . 11 (𝑓 = 𝐹 → ((𝜑𝑓𝐴) ↔ (𝜑𝐹𝐴)))
23 feq1 6728 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓:𝑇⟶ℝ ↔ 𝐹:𝑇⟶ℝ))
2422, 23imbi12d 344 . . . . . . . . . 10 (𝑓 = 𝐹 → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑𝐹𝐴) → 𝐹:𝑇⟶ℝ)))
25 stoweidlem19.3 . . . . . . . . . 10 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
2624, 25vtoclg 3566 . . . . . . . . 9 (𝐹𝐴 → ((𝜑𝐹𝐴) → 𝐹:𝑇⟶ℝ))
2719, 20, 26sylc 65 . . . . . . . 8 (𝜑𝐹:𝑇⟶ℝ)
2827ffvelcdmda 7118 . . . . . . 7 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
29 recn 11274 . . . . . . 7 ((𝐹𝑡) ∈ ℝ → (𝐹𝑡) ∈ ℂ)
30 exp0 14116 . . . . . . 7 ((𝐹𝑡) ∈ ℂ → ((𝐹𝑡)↑0) = 1)
3128, 29, 303syl 18 . . . . . 6 ((𝜑𝑡𝑇) → ((𝐹𝑡)↑0) = 1)
3231eqcomd 2746 . . . . 5 ((𝜑𝑡𝑇) → 1 = ((𝐹𝑡)↑0))
3318, 32mpteq2da 5264 . . . 4 (𝜑 → (𝑡𝑇 ↦ 1) = (𝑡𝑇 ↦ ((𝐹𝑡)↑0)))
34 1re 11290 . . . . 5 1 ∈ ℝ
35 stoweidlem19.5 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
3635stoweidlem4 45925 . . . . 5 ((𝜑 ∧ 1 ∈ ℝ) → (𝑡𝑇 ↦ 1) ∈ 𝐴)
3734, 36mpan2 690 . . . 4 (𝜑 → (𝑡𝑇 ↦ 1) ∈ 𝐴)
3833, 37eqeltrrd 2845 . . 3 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑0)) ∈ 𝐴)
39 simpr 484 . . . . 5 (((𝑚 ∈ ℕ0 ∧ (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴)) ∧ 𝜑) → 𝜑)
40 simpll 766 . . . . 5 (((𝑚 ∈ ℕ0 ∧ (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴)) ∧ 𝜑) → 𝑚 ∈ ℕ0)
41 simplr 768 . . . . . 6 (((𝑚 ∈ ℕ0 ∧ (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴)) ∧ 𝜑) → (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴))
4239, 41mpd 15 . . . . 5 (((𝑚 ∈ ℕ0 ∧ (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴)) ∧ 𝜑) → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴)
43 nfv 1913 . . . . . . . 8 𝑡 𝑚 ∈ ℕ0
44 nfmpt1 5274 . . . . . . . . 9 𝑡(𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))
4544nfel1 2925 . . . . . . . 8 𝑡(𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴
4618, 43, 45nf3an 1900 . . . . . . 7 𝑡(𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴)
47 simpl1 1191 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡𝑇) → 𝜑)
48 simpr 484 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡𝑇) → 𝑡𝑇)
4928recnd 11318 . . . . . . . . 9 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℂ)
5047, 48, 49syl2anc 583 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℂ)
51 simpl2 1192 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡𝑇) → 𝑚 ∈ ℕ0)
5250, 51expp1d 14197 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡𝑇) → ((𝐹𝑡)↑(𝑚 + 1)) = (((𝐹𝑡)↑𝑚) · (𝐹𝑡)))
5346, 52mpteq2da 5264 . . . . . 6 ((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡)↑(𝑚 + 1))) = (𝑡𝑇 ↦ (((𝐹𝑡)↑𝑚) · (𝐹𝑡))))
54283adant2 1131 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ0𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
55 simp2 1137 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ0𝑡𝑇) → 𝑚 ∈ ℕ0)
5654, 55reexpcld 14213 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0𝑡𝑇) → ((𝐹𝑡)↑𝑚) ∈ ℝ)
5747, 51, 48, 56syl3anc 1371 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡𝑇) → ((𝐹𝑡)↑𝑚) ∈ ℝ)
58 eqid 2740 . . . . . . . . . . . 12 (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) = (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))
5958fvmpt2 7040 . . . . . . . . . . 11 ((𝑡𝑇 ∧ ((𝐹𝑡)↑𝑚) ∈ ℝ) → ((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))‘𝑡) = ((𝐹𝑡)↑𝑚))
6059eqcomd 2746 . . . . . . . . . 10 ((𝑡𝑇 ∧ ((𝐹𝑡)↑𝑚) ∈ ℝ) → ((𝐹𝑡)↑𝑚) = ((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))‘𝑡))
6148, 57, 60syl2anc 583 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡𝑇) → ((𝐹𝑡)↑𝑚) = ((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))‘𝑡))
6261oveq1d 7463 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡𝑇) → (((𝐹𝑡)↑𝑚) · (𝐹𝑡)) = (((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))‘𝑡) · (𝐹𝑡)))
6346, 62mpteq2da 5264 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝐹𝑡)↑𝑚) · (𝐹𝑡))) = (𝑡𝑇 ↦ (((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))‘𝑡) · (𝐹𝑡))))
6419adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) → 𝐹𝐴)
6544nfeq2 2926 . . . . . . . . . 10 𝑡 𝑓 = (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))
66 stoweidlem19.1 . . . . . . . . . . 11 𝑡𝐹
6766nfeq2 2926 . . . . . . . . . 10 𝑡 𝑔 = 𝐹
68 stoweidlem19.4 . . . . . . . . . 10 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
6965, 67, 68stoweidlem6 45927 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴𝐹𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))‘𝑡) · (𝐹𝑡))) ∈ 𝐴)
7064, 69mpd3an3 1462 . . . . . . . 8 ((𝜑 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))‘𝑡) · (𝐹𝑡))) ∈ 𝐴)
71703adant2 1131 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚))‘𝑡) · (𝐹𝑡))) ∈ 𝐴)
7263, 71eqeltrd 2844 . . . . . 6 ((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝐹𝑡)↑𝑚) · (𝐹𝑡))) ∈ 𝐴)
7353, 72eqeltrd 2844 . . . . 5 ((𝜑𝑚 ∈ ℕ0 ∧ (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡)↑(𝑚 + 1))) ∈ 𝐴)
7439, 40, 42, 73syl3anc 1371 . . . 4 (((𝑚 ∈ ℕ0 ∧ (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴)) ∧ 𝜑) → (𝑡𝑇 ↦ ((𝐹𝑡)↑(𝑚 + 1))) ∈ 𝐴)
7574exp31 419 . . 3 (𝑚 ∈ ℕ0 → ((𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑚)) ∈ 𝐴) → (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑(𝑚 + 1))) ∈ 𝐴)))
765, 9, 13, 17, 38, 75nn0ind 12738 . 2 (𝑁 ∈ ℕ0 → (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑁)) ∈ 𝐴))
771, 76mpcom 38 1 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡)↑𝑁)) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wnf 1781  wcel 2108  wnfc 2893  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  0cn0 12553  cexp 14112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-seq 14053  df-exp 14113
This theorem is referenced by:  stoweidlem40  45961
  Copyright terms: Public domain W3C validator