| Step | Hyp | Ref
| Expression |
| 1 | | stoweidlem19.7 |
. 2
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 2 | | oveq2 7418 |
. . . . . 6
⊢ (𝑛 = 0 → ((𝐹‘𝑡)↑𝑛) = ((𝐹‘𝑡)↑0)) |
| 3 | 2 | mpteq2dv 5220 |
. . . . 5
⊢ (𝑛 = 0 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑛)) = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑0))) |
| 4 | 3 | eleq1d 2820 |
. . . 4
⊢ (𝑛 = 0 → ((𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑛)) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑0)) ∈ 𝐴)) |
| 5 | 4 | imbi2d 340 |
. . 3
⊢ (𝑛 = 0 → ((𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑛)) ∈ 𝐴) ↔ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑0)) ∈ 𝐴))) |
| 6 | | oveq2 7418 |
. . . . . 6
⊢ (𝑛 = 𝑚 → ((𝐹‘𝑡)↑𝑛) = ((𝐹‘𝑡)↑𝑚)) |
| 7 | 6 | mpteq2dv 5220 |
. . . . 5
⊢ (𝑛 = 𝑚 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑛)) = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚))) |
| 8 | 7 | eleq1d 2820 |
. . . 4
⊢ (𝑛 = 𝑚 → ((𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑛)) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴)) |
| 9 | 8 | imbi2d 340 |
. . 3
⊢ (𝑛 = 𝑚 → ((𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑛)) ∈ 𝐴) ↔ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴))) |
| 10 | | oveq2 7418 |
. . . . . 6
⊢ (𝑛 = (𝑚 + 1) → ((𝐹‘𝑡)↑𝑛) = ((𝐹‘𝑡)↑(𝑚 + 1))) |
| 11 | 10 | mpteq2dv 5220 |
. . . . 5
⊢ (𝑛 = (𝑚 + 1) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑛)) = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑(𝑚 + 1)))) |
| 12 | 11 | eleq1d 2820 |
. . . 4
⊢ (𝑛 = (𝑚 + 1) → ((𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑛)) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑(𝑚 + 1))) ∈ 𝐴)) |
| 13 | 12 | imbi2d 340 |
. . 3
⊢ (𝑛 = (𝑚 + 1) → ((𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑛)) ∈ 𝐴) ↔ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑(𝑚 + 1))) ∈ 𝐴))) |
| 14 | | oveq2 7418 |
. . . . . 6
⊢ (𝑛 = 𝑁 → ((𝐹‘𝑡)↑𝑛) = ((𝐹‘𝑡)↑𝑁)) |
| 15 | 14 | mpteq2dv 5220 |
. . . . 5
⊢ (𝑛 = 𝑁 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑛)) = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑁))) |
| 16 | 15 | eleq1d 2820 |
. . . 4
⊢ (𝑛 = 𝑁 → ((𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑛)) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑁)) ∈ 𝐴)) |
| 17 | 16 | imbi2d 340 |
. . 3
⊢ (𝑛 = 𝑁 → ((𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑛)) ∈ 𝐴) ↔ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑁)) ∈ 𝐴))) |
| 18 | | stoweidlem19.2 |
. . . . 5
⊢
Ⅎ𝑡𝜑 |
| 19 | | stoweidlem19.6 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ 𝐴) |
| 20 | 19 | ancli 548 |
. . . . . . . . 9
⊢ (𝜑 → (𝜑 ∧ 𝐹 ∈ 𝐴)) |
| 21 | | eleq1 2823 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝐹 → (𝑓 ∈ 𝐴 ↔ 𝐹 ∈ 𝐴)) |
| 22 | 21 | anbi2d 630 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → ((𝜑 ∧ 𝑓 ∈ 𝐴) ↔ (𝜑 ∧ 𝐹 ∈ 𝐴))) |
| 23 | | feq1 6691 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → (𝑓:𝑇⟶ℝ ↔ 𝐹:𝑇⟶ℝ)) |
| 24 | 22, 23 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → (((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ 𝐹 ∈ 𝐴) → 𝐹:𝑇⟶ℝ))) |
| 25 | | stoweidlem19.3 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) |
| 26 | 24, 25 | vtoclg 3538 |
. . . . . . . . 9
⊢ (𝐹 ∈ 𝐴 → ((𝜑 ∧ 𝐹 ∈ 𝐴) → 𝐹:𝑇⟶ℝ)) |
| 27 | 19, 20, 26 | sylc 65 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝑇⟶ℝ) |
| 28 | 27 | ffvelcdmda 7079 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℝ) |
| 29 | | recn 11224 |
. . . . . . 7
⊢ ((𝐹‘𝑡) ∈ ℝ → (𝐹‘𝑡) ∈ ℂ) |
| 30 | | exp0 14088 |
. . . . . . 7
⊢ ((𝐹‘𝑡) ∈ ℂ → ((𝐹‘𝑡)↑0) = 1) |
| 31 | 28, 29, 30 | 3syl 18 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡)↑0) = 1) |
| 32 | 31 | eqcomd 2742 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 1 = ((𝐹‘𝑡)↑0)) |
| 33 | 18, 32 | mpteq2da 5218 |
. . . 4
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ 1) = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑0))) |
| 34 | | 1re 11240 |
. . . . 5
⊢ 1 ∈
ℝ |
| 35 | | stoweidlem19.5 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) |
| 36 | 35 | stoweidlem4 46000 |
. . . . 5
⊢ ((𝜑 ∧ 1 ∈ ℝ) →
(𝑡 ∈ 𝑇 ↦ 1) ∈ 𝐴) |
| 37 | 34, 36 | mpan2 691 |
. . . 4
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ 1) ∈ 𝐴) |
| 38 | 33, 37 | eqeltrrd 2836 |
. . 3
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑0)) ∈ 𝐴) |
| 39 | | simpr 484 |
. . . . 5
⊢ (((𝑚 ∈ ℕ0
∧ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴)) ∧ 𝜑) → 𝜑) |
| 40 | | simpll 766 |
. . . . 5
⊢ (((𝑚 ∈ ℕ0
∧ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴)) ∧ 𝜑) → 𝑚 ∈ ℕ0) |
| 41 | | simplr 768 |
. . . . . 6
⊢ (((𝑚 ∈ ℕ0
∧ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴)) ∧ 𝜑) → (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴)) |
| 42 | 39, 41 | mpd 15 |
. . . . 5
⊢ (((𝑚 ∈ ℕ0
∧ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴)) ∧ 𝜑) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) |
| 43 | | nfv 1914 |
. . . . . . . 8
⊢
Ⅎ𝑡 𝑚 ∈
ℕ0 |
| 44 | | nfmpt1 5225 |
. . . . . . . . 9
⊢
Ⅎ𝑡(𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) |
| 45 | 44 | nfel1 2916 |
. . . . . . . 8
⊢
Ⅎ𝑡(𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴 |
| 46 | 18, 43, 45 | nf3an 1901 |
. . . . . . 7
⊢
Ⅎ𝑡(𝜑 ∧ 𝑚 ∈ ℕ0 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) |
| 47 | | simpl1 1192 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → 𝜑) |
| 48 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ 𝑇) |
| 49 | 28 | recnd 11268 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℂ) |
| 50 | 47, 48, 49 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℂ) |
| 51 | | simpl2 1193 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → 𝑚 ∈ ℕ0) |
| 52 | 50, 51 | expp1d 14170 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡)↑(𝑚 + 1)) = (((𝐹‘𝑡)↑𝑚) · (𝐹‘𝑡))) |
| 53 | 46, 52 | mpteq2da 5218 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑(𝑚 + 1))) = (𝑡 ∈ 𝑇 ↦ (((𝐹‘𝑡)↑𝑚) · (𝐹‘𝑡)))) |
| 54 | 28 | 3adant2 1131 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℝ) |
| 55 | | simp2 1137 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ 𝑡 ∈ 𝑇) → 𝑚 ∈ ℕ0) |
| 56 | 54, 55 | reexpcld 14186 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡)↑𝑚) ∈ ℝ) |
| 57 | 47, 51, 48, 56 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡)↑𝑚) ∈ ℝ) |
| 58 | | eqid 2736 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) |
| 59 | 58 | fvmpt2 7002 |
. . . . . . . . . . 11
⊢ ((𝑡 ∈ 𝑇 ∧ ((𝐹‘𝑡)↑𝑚) ∈ ℝ) → ((𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚))‘𝑡) = ((𝐹‘𝑡)↑𝑚)) |
| 60 | 59 | eqcomd 2742 |
. . . . . . . . . 10
⊢ ((𝑡 ∈ 𝑇 ∧ ((𝐹‘𝑡)↑𝑚) ∈ ℝ) → ((𝐹‘𝑡)↑𝑚) = ((𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚))‘𝑡)) |
| 61 | 48, 57, 60 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡)↑𝑚) = ((𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚))‘𝑡)) |
| 62 | 61 | oveq1d 7425 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → (((𝐹‘𝑡)↑𝑚) · (𝐹‘𝑡)) = (((𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚))‘𝑡) · (𝐹‘𝑡))) |
| 63 | 46, 62 | mpteq2da 5218 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝐹‘𝑡)↑𝑚) · (𝐹‘𝑡))) = (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚))‘𝑡) · (𝐹‘𝑡)))) |
| 64 | 19 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) → 𝐹 ∈ 𝐴) |
| 65 | 44 | nfeq2 2917 |
. . . . . . . . . 10
⊢
Ⅎ𝑡 𝑓 = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) |
| 66 | | stoweidlem19.1 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡𝐹 |
| 67 | 66 | nfeq2 2917 |
. . . . . . . . . 10
⊢
Ⅎ𝑡 𝑔 = 𝐹 |
| 68 | | stoweidlem19.4 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
| 69 | 65, 67, 68 | stoweidlem6 46002 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚))‘𝑡) · (𝐹‘𝑡))) ∈ 𝐴) |
| 70 | 64, 69 | mpd3an3 1464 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚))‘𝑡) · (𝐹‘𝑡))) ∈ 𝐴) |
| 71 | 70 | 3adant2 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚))‘𝑡) · (𝐹‘𝑡))) ∈ 𝐴) |
| 72 | 63, 71 | eqeltrd 2835 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝐹‘𝑡)↑𝑚) · (𝐹‘𝑡))) ∈ 𝐴) |
| 73 | 53, 72 | eqeltrd 2835 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑(𝑚 + 1))) ∈ 𝐴) |
| 74 | 39, 40, 42, 73 | syl3anc 1373 |
. . . 4
⊢ (((𝑚 ∈ ℕ0
∧ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴)) ∧ 𝜑) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑(𝑚 + 1))) ∈ 𝐴) |
| 75 | 74 | exp31 419 |
. . 3
⊢ (𝑚 ∈ ℕ0
→ ((𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑚)) ∈ 𝐴) → (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑(𝑚 + 1))) ∈ 𝐴))) |
| 76 | 5, 9, 13, 17, 38, 75 | nn0ind 12693 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑁)) ∈ 𝐴)) |
| 77 | 1, 76 | mpcom 38 |
1
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑁)) ∈ 𝐴) |