Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem3 Structured version   Visualization version   GIF version

Theorem stoweidlem3 42645
Description: Lemma for stoweid 42705: if 𝐴 is positive and all 𝑀 terms of a finite product are larger than 𝐴, then the finite product is larger than A^M. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem3.1 𝑖𝐹
stoweidlem3.2 𝑖𝜑
stoweidlem3.3 𝑋 = seq1( · , 𝐹)
stoweidlem3.4 (𝜑𝑀 ∈ ℕ)
stoweidlem3.5 (𝜑𝐹:(1...𝑀)⟶ℝ)
stoweidlem3.6 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐴 < (𝐹𝑖))
stoweidlem3.7 (𝜑𝐴 ∈ ℝ+)
Assertion
Ref Expression
stoweidlem3 (𝜑 → (𝐴𝑀) < (𝑋𝑀))
Distinct variable groups:   𝐴,𝑖   𝑖,𝑀
Allowed substitution hints:   𝜑(𝑖)   𝐹(𝑖)   𝑋(𝑖)

Proof of Theorem stoweidlem3
Dummy variables 𝑎 𝑚 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem3.4 . . . 4 (𝜑𝑀 ∈ ℕ)
2 elnnuz 12270 . . . 4 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ‘1))
31, 2sylib 221 . . 3 (𝜑𝑀 ∈ (ℤ‘1))
4 eluzfz2 12910 . . 3 (𝑀 ∈ (ℤ‘1) → 𝑀 ∈ (1...𝑀))
53, 4syl 17 . 2 (𝜑𝑀 ∈ (1...𝑀))
6 oveq2 7143 . . . . 5 (𝑛 = 1 → (𝐴𝑛) = (𝐴↑1))
7 fveq2 6645 . . . . 5 (𝑛 = 1 → (𝑋𝑛) = (𝑋‘1))
86, 7breq12d 5043 . . . 4 (𝑛 = 1 → ((𝐴𝑛) < (𝑋𝑛) ↔ (𝐴↑1) < (𝑋‘1)))
98imbi2d 344 . . 3 (𝑛 = 1 → ((𝜑 → (𝐴𝑛) < (𝑋𝑛)) ↔ (𝜑 → (𝐴↑1) < (𝑋‘1))))
10 oveq2 7143 . . . . 5 (𝑛 = 𝑚 → (𝐴𝑛) = (𝐴𝑚))
11 fveq2 6645 . . . . 5 (𝑛 = 𝑚 → (𝑋𝑛) = (𝑋𝑚))
1210, 11breq12d 5043 . . . 4 (𝑛 = 𝑚 → ((𝐴𝑛) < (𝑋𝑛) ↔ (𝐴𝑚) < (𝑋𝑚)))
1312imbi2d 344 . . 3 (𝑛 = 𝑚 → ((𝜑 → (𝐴𝑛) < (𝑋𝑛)) ↔ (𝜑 → (𝐴𝑚) < (𝑋𝑚))))
14 oveq2 7143 . . . . 5 (𝑛 = (𝑚 + 1) → (𝐴𝑛) = (𝐴↑(𝑚 + 1)))
15 fveq2 6645 . . . . 5 (𝑛 = (𝑚 + 1) → (𝑋𝑛) = (𝑋‘(𝑚 + 1)))
1614, 15breq12d 5043 . . . 4 (𝑛 = (𝑚 + 1) → ((𝐴𝑛) < (𝑋𝑛) ↔ (𝐴↑(𝑚 + 1)) < (𝑋‘(𝑚 + 1))))
1716imbi2d 344 . . 3 (𝑛 = (𝑚 + 1) → ((𝜑 → (𝐴𝑛) < (𝑋𝑛)) ↔ (𝜑 → (𝐴↑(𝑚 + 1)) < (𝑋‘(𝑚 + 1)))))
18 oveq2 7143 . . . . 5 (𝑛 = 𝑀 → (𝐴𝑛) = (𝐴𝑀))
19 fveq2 6645 . . . . 5 (𝑛 = 𝑀 → (𝑋𝑛) = (𝑋𝑀))
2018, 19breq12d 5043 . . . 4 (𝑛 = 𝑀 → ((𝐴𝑛) < (𝑋𝑛) ↔ (𝐴𝑀) < (𝑋𝑀)))
2120imbi2d 344 . . 3 (𝑛 = 𝑀 → ((𝜑 → (𝐴𝑛) < (𝑋𝑛)) ↔ (𝜑 → (𝐴𝑀) < (𝑋𝑀))))
22 1zzd 12001 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
231nnzd 12074 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
2422, 23, 223jca 1125 . . . . . . . 8 (𝜑 → (1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 1 ∈ ℤ))
25 1le1 11257 . . . . . . . . 9 1 ≤ 1
2625a1i 11 . . . . . . . 8 (𝜑 → 1 ≤ 1)
271nnge1d 11673 . . . . . . . 8 (𝜑 → 1 ≤ 𝑀)
2824, 26, 27jca32 519 . . . . . . 7 (𝜑 → ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (1 ≤ 1 ∧ 1 ≤ 𝑀)))
29 elfz2 12892 . . . . . . 7 (1 ∈ (1...𝑀) ↔ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (1 ≤ 1 ∧ 1 ≤ 𝑀)))
3028, 29sylibr 237 . . . . . 6 (𝜑 → 1 ∈ (1...𝑀))
3130ancli 552 . . . . . 6 (𝜑 → (𝜑 ∧ 1 ∈ (1...𝑀)))
32 stoweidlem3.2 . . . . . . . . 9 𝑖𝜑
33 nfv 1915 . . . . . . . . 9 𝑖1 ∈ (1...𝑀)
3432, 33nfan 1900 . . . . . . . 8 𝑖(𝜑 ∧ 1 ∈ (1...𝑀))
35 nfcv 2955 . . . . . . . . 9 𝑖𝐴
36 nfcv 2955 . . . . . . . . 9 𝑖 <
37 stoweidlem3.1 . . . . . . . . . 10 𝑖𝐹
38 nfcv 2955 . . . . . . . . . 10 𝑖1
3937, 38nffv 6655 . . . . . . . . 9 𝑖(𝐹‘1)
4035, 36, 39nfbr 5077 . . . . . . . 8 𝑖 𝐴 < (𝐹‘1)
4134, 40nfim 1897 . . . . . . 7 𝑖((𝜑 ∧ 1 ∈ (1...𝑀)) → 𝐴 < (𝐹‘1))
42 eleq1 2877 . . . . . . . . 9 (𝑖 = 1 → (𝑖 ∈ (1...𝑀) ↔ 1 ∈ (1...𝑀)))
4342anbi2d 631 . . . . . . . 8 (𝑖 = 1 → ((𝜑𝑖 ∈ (1...𝑀)) ↔ (𝜑 ∧ 1 ∈ (1...𝑀))))
44 fveq2 6645 . . . . . . . . 9 (𝑖 = 1 → (𝐹𝑖) = (𝐹‘1))
4544breq2d 5042 . . . . . . . 8 (𝑖 = 1 → (𝐴 < (𝐹𝑖) ↔ 𝐴 < (𝐹‘1)))
4643, 45imbi12d 348 . . . . . . 7 (𝑖 = 1 → (((𝜑𝑖 ∈ (1...𝑀)) → 𝐴 < (𝐹𝑖)) ↔ ((𝜑 ∧ 1 ∈ (1...𝑀)) → 𝐴 < (𝐹‘1))))
47 stoweidlem3.6 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐴 < (𝐹𝑖))
4841, 46, 47vtoclg1f 3514 . . . . . 6 (1 ∈ (1...𝑀) → ((𝜑 ∧ 1 ∈ (1...𝑀)) → 𝐴 < (𝐹‘1)))
4930, 31, 48sylc 65 . . . . 5 (𝜑𝐴 < (𝐹‘1))
50 stoweidlem3.7 . . . . . . 7 (𝜑𝐴 ∈ ℝ+)
5150rpcnd 12421 . . . . . 6 (𝜑𝐴 ∈ ℂ)
5251exp1d 13501 . . . . 5 (𝜑 → (𝐴↑1) = 𝐴)
53 stoweidlem3.3 . . . . . . . 8 𝑋 = seq1( · , 𝐹)
5453fveq1i 6646 . . . . . . 7 (𝑋‘1) = (seq1( · , 𝐹)‘1)
55 1z 12000 . . . . . . . 8 1 ∈ ℤ
56 seq1 13377 . . . . . . . 8 (1 ∈ ℤ → (seq1( · , 𝐹)‘1) = (𝐹‘1))
5755, 56ax-mp 5 . . . . . . 7 (seq1( · , 𝐹)‘1) = (𝐹‘1)
5854, 57eqtri 2821 . . . . . 6 (𝑋‘1) = (𝐹‘1)
5958a1i 11 . . . . 5 (𝜑 → (𝑋‘1) = (𝐹‘1))
6049, 52, 593brtr4d 5062 . . . 4 (𝜑 → (𝐴↑1) < (𝑋‘1))
6160a1i 11 . . 3 (𝑀 ∈ (ℤ‘1) → (𝜑 → (𝐴↑1) < (𝑋‘1)))
62503ad2ant3 1132 . . . . . . . 8 ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴𝑚) < (𝑋𝑚)) ∧ 𝜑) → 𝐴 ∈ ℝ+)
6362rpred 12419 . . . . . . 7 ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴𝑚) < (𝑋𝑚)) ∧ 𝜑) → 𝐴 ∈ ℝ)
64 elfzouz 13037 . . . . . . . . 9 (𝑚 ∈ (1..^𝑀) → 𝑚 ∈ (ℤ‘1))
65 elnnuz 12270 . . . . . . . . . 10 (𝑚 ∈ ℕ ↔ 𝑚 ∈ (ℤ‘1))
66 nnnn0 11892 . . . . . . . . . 10 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
6765, 66sylbir 238 . . . . . . . . 9 (𝑚 ∈ (ℤ‘1) → 𝑚 ∈ ℕ0)
6864, 67syl 17 . . . . . . . 8 (𝑚 ∈ (1..^𝑀) → 𝑚 ∈ ℕ0)
69683ad2ant1 1130 . . . . . . 7 ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴𝑚) < (𝑋𝑚)) ∧ 𝜑) → 𝑚 ∈ ℕ0)
7063, 69reexpcld 13523 . . . . . 6 ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴𝑚) < (𝑋𝑚)) ∧ 𝜑) → (𝐴𝑚) ∈ ℝ)
7153fveq1i 6646 . . . . . . . 8 (𝑋𝑚) = (seq1( · , 𝐹)‘𝑚)
7264adantr 484 . . . . . . . . 9 ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → 𝑚 ∈ (ℤ‘1))
73 nfv 1915 . . . . . . . . . . . . 13 𝑖 𝑚 ∈ (1..^𝑀)
7473, 32nfan 1900 . . . . . . . . . . . 12 𝑖(𝑚 ∈ (1..^𝑀) ∧ 𝜑)
75 nfv 1915 . . . . . . . . . . . 12 𝑖 𝑎 ∈ (1...𝑚)
7674, 75nfan 1900 . . . . . . . . . . 11 𝑖((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑎 ∈ (1...𝑚))
77 nfcv 2955 . . . . . . . . . . . . 13 𝑖𝑎
7837, 77nffv 6655 . . . . . . . . . . . 12 𝑖(𝐹𝑎)
7978nfel1 2971 . . . . . . . . . . 11 𝑖(𝐹𝑎) ∈ ℝ
8076, 79nfim 1897 . . . . . . . . . 10 𝑖(((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑎 ∈ (1...𝑚)) → (𝐹𝑎) ∈ ℝ)
81 eleq1 2877 . . . . . . . . . . . 12 (𝑖 = 𝑎 → (𝑖 ∈ (1...𝑚) ↔ 𝑎 ∈ (1...𝑚)))
8281anbi2d 631 . . . . . . . . . . 11 (𝑖 = 𝑎 → (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) ↔ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑎 ∈ (1...𝑚))))
83 fveq2 6645 . . . . . . . . . . . 12 (𝑖 = 𝑎 → (𝐹𝑖) = (𝐹𝑎))
8483eleq1d 2874 . . . . . . . . . . 11 (𝑖 = 𝑎 → ((𝐹𝑖) ∈ ℝ ↔ (𝐹𝑎) ∈ ℝ))
8582, 84imbi12d 348 . . . . . . . . . 10 (𝑖 = 𝑎 → ((((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → (𝐹𝑖) ∈ ℝ) ↔ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑎 ∈ (1...𝑚)) → (𝐹𝑎) ∈ ℝ)))
86 stoweidlem3.5 . . . . . . . . . . . 12 (𝜑𝐹:(1...𝑀)⟶ℝ)
8786ad2antlr 726 . . . . . . . . . . 11 (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝐹:(1...𝑀)⟶ℝ)
88 1zzd 12001 . . . . . . . . . . . . . 14 (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 1 ∈ ℤ)
8923ad2antlr 726 . . . . . . . . . . . . . 14 (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑀 ∈ ℤ)
90 elfzelz 12902 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1...𝑚) → 𝑖 ∈ ℤ)
9190adantl 485 . . . . . . . . . . . . . 14 (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ∈ ℤ)
9288, 89, 913jca 1125 . . . . . . . . . . . . 13 (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → (1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ))
93 elfzle1 12905 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...𝑚) → 1 ≤ 𝑖)
9493adantl 485 . . . . . . . . . . . . 13 (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 1 ≤ 𝑖)
9590zred 12075 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1...𝑚) → 𝑖 ∈ ℝ)
9695adantl 485 . . . . . . . . . . . . . 14 (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ∈ ℝ)
97 elfzoelz 13033 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (1..^𝑀) → 𝑚 ∈ ℤ)
9897zred 12075 . . . . . . . . . . . . . . 15 (𝑚 ∈ (1..^𝑀) → 𝑚 ∈ ℝ)
9998ad2antrr 725 . . . . . . . . . . . . . 14 (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑚 ∈ ℝ)
1001nnred 11640 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℝ)
101100ad2antlr 726 . . . . . . . . . . . . . 14 (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑀 ∈ ℝ)
102 elfzle2 12906 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1...𝑚) → 𝑖𝑚)
103102adantl 485 . . . . . . . . . . . . . 14 (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖𝑚)
104 elfzoel2 13032 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (1..^𝑀) → 𝑀 ∈ ℤ)
105104zred 12075 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (1..^𝑀) → 𝑀 ∈ ℝ)
106 elfzolt2 13042 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (1..^𝑀) → 𝑚 < 𝑀)
10798, 105, 106ltled 10777 . . . . . . . . . . . . . . 15 (𝑚 ∈ (1..^𝑀) → 𝑚𝑀)
108107ad2antrr 725 . . . . . . . . . . . . . 14 (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑚𝑀)
10996, 99, 101, 103, 108letrd 10786 . . . . . . . . . . . . 13 (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖𝑀)
11092, 94, 109jca32 519 . . . . . . . . . . . 12 (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (1 ≤ 𝑖𝑖𝑀)))
111 elfz2 12892 . . . . . . . . . . . 12 (𝑖 ∈ (1...𝑀) ↔ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (1 ≤ 𝑖𝑖𝑀)))
112110, 111sylibr 237 . . . . . . . . . . 11 (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ∈ (1...𝑀))
11387, 112ffvelrnd 6829 . . . . . . . . . 10 (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → (𝐹𝑖) ∈ ℝ)
11480, 85, 113chvarfv 2240 . . . . . . . . 9 (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑎 ∈ (1...𝑚)) → (𝐹𝑎) ∈ ℝ)
115 remulcl 10611 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑎 · 𝑗) ∈ ℝ)
116115adantl 485 . . . . . . . . 9 (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ (𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (𝑎 · 𝑗) ∈ ℝ)
11772, 114, 116seqcl 13386 . . . . . . . 8 ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → (seq1( · , 𝐹)‘𝑚) ∈ ℝ)
11871, 117eqeltrid 2894 . . . . . . 7 ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → (𝑋𝑚) ∈ ℝ)
1191183adant2 1128 . . . . . 6 ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴𝑚) < (𝑋𝑚)) ∧ 𝜑) → (𝑋𝑚) ∈ ℝ)
120863ad2ant3 1132 . . . . . . 7 ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴𝑚) < (𝑋𝑚)) ∧ 𝜑) → 𝐹:(1...𝑀)⟶ℝ)
121 fzofzp1 13129 . . . . . . . 8 (𝑚 ∈ (1..^𝑀) → (𝑚 + 1) ∈ (1...𝑀))
1221213ad2ant1 1130 . . . . . . 7 ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴𝑚) < (𝑋𝑚)) ∧ 𝜑) → (𝑚 + 1) ∈ (1...𝑀))
123120, 122ffvelrnd 6829 . . . . . 6 ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴𝑚) < (𝑋𝑚)) ∧ 𝜑) → (𝐹‘(𝑚 + 1)) ∈ ℝ)
12450rpge0d 12423 . . . . . . . 8 (𝜑 → 0 ≤ 𝐴)
1251243ad2ant3 1132 . . . . . . 7 ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴𝑚) < (𝑋𝑚)) ∧ 𝜑) → 0 ≤ 𝐴)
12663, 69, 125expge0d 13524 . . . . . 6 ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴𝑚) < (𝑋𝑚)) ∧ 𝜑) → 0 ≤ (𝐴𝑚))
127 simp3 1135 . . . . . . 7 ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴𝑚) < (𝑋𝑚)) ∧ 𝜑) → 𝜑)
128 simp2 1134 . . . . . . 7 ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴𝑚) < (𝑋𝑚)) ∧ 𝜑) → (𝜑 → (𝐴𝑚) < (𝑋𝑚)))
129127, 128mpd 15 . . . . . 6 ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴𝑚) < (𝑋𝑚)) ∧ 𝜑) → (𝐴𝑚) < (𝑋𝑚))
130121adantr 484 . . . . . . . 8 ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → (𝑚 + 1) ∈ (1...𝑀))
131 simpr 488 . . . . . . . . 9 ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → 𝜑)
132131, 130jca 515 . . . . . . . 8 ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → (𝜑 ∧ (𝑚 + 1) ∈ (1...𝑀)))
133 nfv 1915 . . . . . . . . . . 11 𝑖(𝑚 + 1) ∈ (1...𝑀)
13432, 133nfan 1900 . . . . . . . . . 10 𝑖(𝜑 ∧ (𝑚 + 1) ∈ (1...𝑀))
135 nfcv 2955 . . . . . . . . . . . 12 𝑖(𝑚 + 1)
13637, 135nffv 6655 . . . . . . . . . . 11 𝑖(𝐹‘(𝑚 + 1))
13735, 36, 136nfbr 5077 . . . . . . . . . 10 𝑖 𝐴 < (𝐹‘(𝑚 + 1))
138134, 137nfim 1897 . . . . . . . . 9 𝑖((𝜑 ∧ (𝑚 + 1) ∈ (1...𝑀)) → 𝐴 < (𝐹‘(𝑚 + 1)))
139 eleq1 2877 . . . . . . . . . . 11 (𝑖 = (𝑚 + 1) → (𝑖 ∈ (1...𝑀) ↔ (𝑚 + 1) ∈ (1...𝑀)))
140139anbi2d 631 . . . . . . . . . 10 (𝑖 = (𝑚 + 1) → ((𝜑𝑖 ∈ (1...𝑀)) ↔ (𝜑 ∧ (𝑚 + 1) ∈ (1...𝑀))))
141 fveq2 6645 . . . . . . . . . . 11 (𝑖 = (𝑚 + 1) → (𝐹𝑖) = (𝐹‘(𝑚 + 1)))
142141breq2d 5042 . . . . . . . . . 10 (𝑖 = (𝑚 + 1) → (𝐴 < (𝐹𝑖) ↔ 𝐴 < (𝐹‘(𝑚 + 1))))
143140, 142imbi12d 348 . . . . . . . . 9 (𝑖 = (𝑚 + 1) → (((𝜑𝑖 ∈ (1...𝑀)) → 𝐴 < (𝐹𝑖)) ↔ ((𝜑 ∧ (𝑚 + 1) ∈ (1...𝑀)) → 𝐴 < (𝐹‘(𝑚 + 1)))))
144138, 143, 47vtoclg1f 3514 . . . . . . . 8 ((𝑚 + 1) ∈ (1...𝑀) → ((𝜑 ∧ (𝑚 + 1) ∈ (1...𝑀)) → 𝐴 < (𝐹‘(𝑚 + 1))))
145130, 132, 144sylc 65 . . . . . . 7 ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → 𝐴 < (𝐹‘(𝑚 + 1)))
1461453adant2 1128 . . . . . 6 ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴𝑚) < (𝑋𝑚)) ∧ 𝜑) → 𝐴 < (𝐹‘(𝑚 + 1)))
14770, 119, 63, 123, 126, 129, 125, 146ltmul12ad 11570 . . . . 5 ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴𝑚) < (𝑋𝑚)) ∧ 𝜑) → ((𝐴𝑚) · 𝐴) < ((𝑋𝑚) · (𝐹‘(𝑚 + 1))))
148513ad2ant3 1132 . . . . . 6 ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴𝑚) < (𝑋𝑚)) ∧ 𝜑) → 𝐴 ∈ ℂ)
149148, 69expp1d 13507 . . . . 5 ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴𝑚) < (𝑋𝑚)) ∧ 𝜑) → (𝐴↑(𝑚 + 1)) = ((𝐴𝑚) · 𝐴))
15053fveq1i 6646 . . . . . . 7 (𝑋‘(𝑚 + 1)) = (seq1( · , 𝐹)‘(𝑚 + 1))
151150a1i 11 . . . . . 6 ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴𝑚) < (𝑋𝑚)) ∧ 𝜑) → (𝑋‘(𝑚 + 1)) = (seq1( · , 𝐹)‘(𝑚 + 1)))
152643ad2ant1 1130 . . . . . . 7 ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴𝑚) < (𝑋𝑚)) ∧ 𝜑) → 𝑚 ∈ (ℤ‘1))
153 seqp1 13379 . . . . . . 7 (𝑚 ∈ (ℤ‘1) → (seq1( · , 𝐹)‘(𝑚 + 1)) = ((seq1( · , 𝐹)‘𝑚) · (𝐹‘(𝑚 + 1))))
154152, 153syl 17 . . . . . 6 ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴𝑚) < (𝑋𝑚)) ∧ 𝜑) → (seq1( · , 𝐹)‘(𝑚 + 1)) = ((seq1( · , 𝐹)‘𝑚) · (𝐹‘(𝑚 + 1))))
15571a1i 11 . . . . . . . 8 ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴𝑚) < (𝑋𝑚)) ∧ 𝜑) → (𝑋𝑚) = (seq1( · , 𝐹)‘𝑚))
156155eqcomd 2804 . . . . . . 7 ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴𝑚) < (𝑋𝑚)) ∧ 𝜑) → (seq1( · , 𝐹)‘𝑚) = (𝑋𝑚))
157156oveq1d 7150 . . . . . 6 ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴𝑚) < (𝑋𝑚)) ∧ 𝜑) → ((seq1( · , 𝐹)‘𝑚) · (𝐹‘(𝑚 + 1))) = ((𝑋𝑚) · (𝐹‘(𝑚 + 1))))
158151, 154, 1573eqtrd 2837 . . . . 5 ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴𝑚) < (𝑋𝑚)) ∧ 𝜑) → (𝑋‘(𝑚 + 1)) = ((𝑋𝑚) · (𝐹‘(𝑚 + 1))))
159147, 149, 1583brtr4d 5062 . . . 4 ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴𝑚) < (𝑋𝑚)) ∧ 𝜑) → (𝐴↑(𝑚 + 1)) < (𝑋‘(𝑚 + 1)))
1601593exp 1116 . . 3 (𝑚 ∈ (1..^𝑀) → ((𝜑 → (𝐴𝑚) < (𝑋𝑚)) → (𝜑 → (𝐴↑(𝑚 + 1)) < (𝑋‘(𝑚 + 1)))))
1619, 13, 17, 21, 61, 160fzind2 13150 . 2 (𝑀 ∈ (1...𝑀) → (𝜑 → (𝐴𝑀) < (𝑋𝑀)))
1625, 161mpcom 38 1 (𝜑 → (𝐴𝑀) < (𝑋𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wnf 1785  wcel 2111  wnfc 2936   class class class wbr 5030  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cn 11625  0cn0 11885  cz 11969  cuz 12231  +crp 12377  ...cfz 12885  ..^cfzo 13028  seqcseq 13364  cexp 13425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426
This theorem is referenced by:  stoweidlem42  42684
  Copyright terms: Public domain W3C validator