| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | stoweidlem3.4 | . . . 4
⊢ (𝜑 → 𝑀 ∈ ℕ) | 
| 2 |  | elnnuz 12923 | . . . 4
⊢ (𝑀 ∈ ℕ ↔ 𝑀 ∈
(ℤ≥‘1)) | 
| 3 | 1, 2 | sylib 218 | . . 3
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘1)) | 
| 4 |  | eluzfz2 13573 | . . 3
⊢ (𝑀 ∈
(ℤ≥‘1) → 𝑀 ∈ (1...𝑀)) | 
| 5 | 3, 4 | syl 17 | . 2
⊢ (𝜑 → 𝑀 ∈ (1...𝑀)) | 
| 6 |  | oveq2 7440 | . . . . 5
⊢ (𝑛 = 1 → (𝐴↑𝑛) = (𝐴↑1)) | 
| 7 |  | fveq2 6905 | . . . . 5
⊢ (𝑛 = 1 → (𝑋‘𝑛) = (𝑋‘1)) | 
| 8 | 6, 7 | breq12d 5155 | . . . 4
⊢ (𝑛 = 1 → ((𝐴↑𝑛) < (𝑋‘𝑛) ↔ (𝐴↑1) < (𝑋‘1))) | 
| 9 | 8 | imbi2d 340 | . . 3
⊢ (𝑛 = 1 → ((𝜑 → (𝐴↑𝑛) < (𝑋‘𝑛)) ↔ (𝜑 → (𝐴↑1) < (𝑋‘1)))) | 
| 10 |  | oveq2 7440 | . . . . 5
⊢ (𝑛 = 𝑚 → (𝐴↑𝑛) = (𝐴↑𝑚)) | 
| 11 |  | fveq2 6905 | . . . . 5
⊢ (𝑛 = 𝑚 → (𝑋‘𝑛) = (𝑋‘𝑚)) | 
| 12 | 10, 11 | breq12d 5155 | . . . 4
⊢ (𝑛 = 𝑚 → ((𝐴↑𝑛) < (𝑋‘𝑛) ↔ (𝐴↑𝑚) < (𝑋‘𝑚))) | 
| 13 | 12 | imbi2d 340 | . . 3
⊢ (𝑛 = 𝑚 → ((𝜑 → (𝐴↑𝑛) < (𝑋‘𝑛)) ↔ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)))) | 
| 14 |  | oveq2 7440 | . . . . 5
⊢ (𝑛 = (𝑚 + 1) → (𝐴↑𝑛) = (𝐴↑(𝑚 + 1))) | 
| 15 |  | fveq2 6905 | . . . . 5
⊢ (𝑛 = (𝑚 + 1) → (𝑋‘𝑛) = (𝑋‘(𝑚 + 1))) | 
| 16 | 14, 15 | breq12d 5155 | . . . 4
⊢ (𝑛 = (𝑚 + 1) → ((𝐴↑𝑛) < (𝑋‘𝑛) ↔ (𝐴↑(𝑚 + 1)) < (𝑋‘(𝑚 + 1)))) | 
| 17 | 16 | imbi2d 340 | . . 3
⊢ (𝑛 = (𝑚 + 1) → ((𝜑 → (𝐴↑𝑛) < (𝑋‘𝑛)) ↔ (𝜑 → (𝐴↑(𝑚 + 1)) < (𝑋‘(𝑚 + 1))))) | 
| 18 |  | oveq2 7440 | . . . . 5
⊢ (𝑛 = 𝑀 → (𝐴↑𝑛) = (𝐴↑𝑀)) | 
| 19 |  | fveq2 6905 | . . . . 5
⊢ (𝑛 = 𝑀 → (𝑋‘𝑛) = (𝑋‘𝑀)) | 
| 20 | 18, 19 | breq12d 5155 | . . . 4
⊢ (𝑛 = 𝑀 → ((𝐴↑𝑛) < (𝑋‘𝑛) ↔ (𝐴↑𝑀) < (𝑋‘𝑀))) | 
| 21 | 20 | imbi2d 340 | . . 3
⊢ (𝑛 = 𝑀 → ((𝜑 → (𝐴↑𝑛) < (𝑋‘𝑛)) ↔ (𝜑 → (𝐴↑𝑀) < (𝑋‘𝑀)))) | 
| 22 |  | 1zzd 12650 | . . . . . . 7
⊢ (𝜑 → 1 ∈
ℤ) | 
| 23 | 1 | nnzd 12642 | . . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 24 |  | 1le1 11892 | . . . . . . . 8
⊢ 1 ≤
1 | 
| 25 | 24 | a1i 11 | . . . . . . 7
⊢ (𝜑 → 1 ≤ 1) | 
| 26 | 1 | nnge1d 12315 | . . . . . . 7
⊢ (𝜑 → 1 ≤ 𝑀) | 
| 27 | 22, 23, 22, 25, 26 | elfzd 13556 | . . . . . 6
⊢ (𝜑 → 1 ∈ (1...𝑀)) | 
| 28 | 27 | ancli 548 | . . . . . 6
⊢ (𝜑 → (𝜑 ∧ 1 ∈ (1...𝑀))) | 
| 29 |  | stoweidlem3.2 | . . . . . . . . 9
⊢
Ⅎ𝑖𝜑 | 
| 30 |  | nfv 1913 | . . . . . . . . 9
⊢
Ⅎ𝑖1 ∈
(1...𝑀) | 
| 31 | 29, 30 | nfan 1898 | . . . . . . . 8
⊢
Ⅎ𝑖(𝜑 ∧ 1 ∈ (1...𝑀)) | 
| 32 |  | nfcv 2904 | . . . . . . . . 9
⊢
Ⅎ𝑖𝐴 | 
| 33 |  | nfcv 2904 | . . . . . . . . 9
⊢
Ⅎ𝑖
< | 
| 34 |  | stoweidlem3.1 | . . . . . . . . . 10
⊢
Ⅎ𝑖𝐹 | 
| 35 |  | nfcv 2904 | . . . . . . . . . 10
⊢
Ⅎ𝑖1 | 
| 36 | 34, 35 | nffv 6915 | . . . . . . . . 9
⊢
Ⅎ𝑖(𝐹‘1) | 
| 37 | 32, 33, 36 | nfbr 5189 | . . . . . . . 8
⊢
Ⅎ𝑖 𝐴 < (𝐹‘1) | 
| 38 | 31, 37 | nfim 1895 | . . . . . . 7
⊢
Ⅎ𝑖((𝜑 ∧ 1 ∈ (1...𝑀)) → 𝐴 < (𝐹‘1)) | 
| 39 |  | eleq1 2828 | . . . . . . . . 9
⊢ (𝑖 = 1 → (𝑖 ∈ (1...𝑀) ↔ 1 ∈ (1...𝑀))) | 
| 40 | 39 | anbi2d 630 | . . . . . . . 8
⊢ (𝑖 = 1 → ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ↔ (𝜑 ∧ 1 ∈ (1...𝑀)))) | 
| 41 |  | fveq2 6905 | . . . . . . . . 9
⊢ (𝑖 = 1 → (𝐹‘𝑖) = (𝐹‘1)) | 
| 42 | 41 | breq2d 5154 | . . . . . . . 8
⊢ (𝑖 = 1 → (𝐴 < (𝐹‘𝑖) ↔ 𝐴 < (𝐹‘1))) | 
| 43 | 40, 42 | imbi12d 344 | . . . . . . 7
⊢ (𝑖 = 1 → (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝐴 < (𝐹‘𝑖)) ↔ ((𝜑 ∧ 1 ∈ (1...𝑀)) → 𝐴 < (𝐹‘1)))) | 
| 44 |  | stoweidlem3.6 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝐴 < (𝐹‘𝑖)) | 
| 45 | 38, 43, 44 | vtoclg1f 3569 | . . . . . 6
⊢ (1 ∈
(1...𝑀) → ((𝜑 ∧ 1 ∈ (1...𝑀)) → 𝐴 < (𝐹‘1))) | 
| 46 | 27, 28, 45 | sylc 65 | . . . . 5
⊢ (𝜑 → 𝐴 < (𝐹‘1)) | 
| 47 |  | stoweidlem3.7 | . . . . . . 7
⊢ (𝜑 → 𝐴 ∈
ℝ+) | 
| 48 | 47 | rpcnd 13080 | . . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℂ) | 
| 49 | 48 | exp1d 14182 | . . . . 5
⊢ (𝜑 → (𝐴↑1) = 𝐴) | 
| 50 |  | stoweidlem3.3 | . . . . . . . 8
⊢ 𝑋 = seq1( · , 𝐹) | 
| 51 | 50 | fveq1i 6906 | . . . . . . 7
⊢ (𝑋‘1) = (seq1( · ,
𝐹)‘1) | 
| 52 |  | 1z 12649 | . . . . . . . 8
⊢ 1 ∈
ℤ | 
| 53 |  | seq1 14056 | . . . . . . . 8
⊢ (1 ∈
ℤ → (seq1( · , 𝐹)‘1) = (𝐹‘1)) | 
| 54 | 52, 53 | ax-mp 5 | . . . . . . 7
⊢ (seq1(
· , 𝐹)‘1) =
(𝐹‘1) | 
| 55 | 51, 54 | eqtri 2764 | . . . . . 6
⊢ (𝑋‘1) = (𝐹‘1) | 
| 56 | 55 | a1i 11 | . . . . 5
⊢ (𝜑 → (𝑋‘1) = (𝐹‘1)) | 
| 57 | 46, 49, 56 | 3brtr4d 5174 | . . . 4
⊢ (𝜑 → (𝐴↑1) < (𝑋‘1)) | 
| 58 | 57 | a1i 11 | . . 3
⊢ (𝑀 ∈
(ℤ≥‘1) → (𝜑 → (𝐴↑1) < (𝑋‘1))) | 
| 59 | 47 | 3ad2ant3 1135 | . . . . . . . 8
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 𝐴 ∈
ℝ+) | 
| 60 | 59 | rpred 13078 | . . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 𝐴 ∈ ℝ) | 
| 61 |  | elfzouz 13704 | . . . . . . . . 9
⊢ (𝑚 ∈ (1..^𝑀) → 𝑚 ∈
(ℤ≥‘1)) | 
| 62 |  | elnnuz 12923 | . . . . . . . . . 10
⊢ (𝑚 ∈ ℕ ↔ 𝑚 ∈
(ℤ≥‘1)) | 
| 63 |  | nnnn0 12535 | . . . . . . . . . 10
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℕ0) | 
| 64 | 62, 63 | sylbir 235 | . . . . . . . . 9
⊢ (𝑚 ∈
(ℤ≥‘1) → 𝑚 ∈ ℕ0) | 
| 65 | 61, 64 | syl 17 | . . . . . . . 8
⊢ (𝑚 ∈ (1..^𝑀) → 𝑚 ∈ ℕ0) | 
| 66 | 65 | 3ad2ant1 1133 | . . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 𝑚 ∈ ℕ0) | 
| 67 | 60, 66 | reexpcld 14204 | . . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝐴↑𝑚) ∈ ℝ) | 
| 68 | 50 | fveq1i 6906 | . . . . . . . 8
⊢ (𝑋‘𝑚) = (seq1( · , 𝐹)‘𝑚) | 
| 69 | 61 | adantr 480 | . . . . . . . . 9
⊢ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → 𝑚 ∈
(ℤ≥‘1)) | 
| 70 |  | nfv 1913 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑖 𝑚 ∈ (1..^𝑀) | 
| 71 | 70, 29 | nfan 1898 | . . . . . . . . . . . 12
⊢
Ⅎ𝑖(𝑚 ∈ (1..^𝑀) ∧ 𝜑) | 
| 72 |  | nfv 1913 | . . . . . . . . . . . 12
⊢
Ⅎ𝑖 𝑎 ∈ (1...𝑚) | 
| 73 | 71, 72 | nfan 1898 | . . . . . . . . . . 11
⊢
Ⅎ𝑖((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑎 ∈ (1...𝑚)) | 
| 74 |  | nfcv 2904 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑖𝑎 | 
| 75 | 34, 74 | nffv 6915 | . . . . . . . . . . . 12
⊢
Ⅎ𝑖(𝐹‘𝑎) | 
| 76 | 75 | nfel1 2921 | . . . . . . . . . . 11
⊢
Ⅎ𝑖(𝐹‘𝑎) ∈ ℝ | 
| 77 | 73, 76 | nfim 1895 | . . . . . . . . . 10
⊢
Ⅎ𝑖(((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑎 ∈ (1...𝑚)) → (𝐹‘𝑎) ∈ ℝ) | 
| 78 |  | eleq1 2828 | . . . . . . . . . . . 12
⊢ (𝑖 = 𝑎 → (𝑖 ∈ (1...𝑚) ↔ 𝑎 ∈ (1...𝑚))) | 
| 79 | 78 | anbi2d 630 | . . . . . . . . . . 11
⊢ (𝑖 = 𝑎 → (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) ↔ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑎 ∈ (1...𝑚)))) | 
| 80 |  | fveq2 6905 | . . . . . . . . . . . 12
⊢ (𝑖 = 𝑎 → (𝐹‘𝑖) = (𝐹‘𝑎)) | 
| 81 | 80 | eleq1d 2825 | . . . . . . . . . . 11
⊢ (𝑖 = 𝑎 → ((𝐹‘𝑖) ∈ ℝ ↔ (𝐹‘𝑎) ∈ ℝ)) | 
| 82 | 79, 81 | imbi12d 344 | . . . . . . . . . 10
⊢ (𝑖 = 𝑎 → ((((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → (𝐹‘𝑖) ∈ ℝ) ↔ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑎 ∈ (1...𝑚)) → (𝐹‘𝑎) ∈ ℝ))) | 
| 83 |  | stoweidlem3.5 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:(1...𝑀)⟶ℝ) | 
| 84 | 83 | ad2antlr 727 | . . . . . . . . . . 11
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝐹:(1...𝑀)⟶ℝ) | 
| 85 |  | 1zzd 12650 | . . . . . . . . . . . 12
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 1 ∈ ℤ) | 
| 86 | 23 | ad2antlr 727 | . . . . . . . . . . . 12
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑀 ∈ ℤ) | 
| 87 |  | elfzelz 13565 | . . . . . . . . . . . . 13
⊢ (𝑖 ∈ (1...𝑚) → 𝑖 ∈ ℤ) | 
| 88 | 87 | adantl 481 | . . . . . . . . . . . 12
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ∈ ℤ) | 
| 89 |  | elfzle1 13568 | . . . . . . . . . . . . 13
⊢ (𝑖 ∈ (1...𝑚) → 1 ≤ 𝑖) | 
| 90 | 89 | adantl 481 | . . . . . . . . . . . 12
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 1 ≤ 𝑖) | 
| 91 | 87 | zred 12724 | . . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (1...𝑚) → 𝑖 ∈ ℝ) | 
| 92 | 91 | adantl 481 | . . . . . . . . . . . . 13
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ∈ ℝ) | 
| 93 |  | elfzoelz 13700 | . . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ (1..^𝑀) → 𝑚 ∈ ℤ) | 
| 94 | 93 | zred 12724 | . . . . . . . . . . . . . 14
⊢ (𝑚 ∈ (1..^𝑀) → 𝑚 ∈ ℝ) | 
| 95 | 94 | ad2antrr 726 | . . . . . . . . . . . . 13
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑚 ∈ ℝ) | 
| 96 | 1 | nnred 12282 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ ℝ) | 
| 97 | 96 | ad2antlr 727 | . . . . . . . . . . . . 13
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑀 ∈ ℝ) | 
| 98 |  | elfzle2 13569 | . . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (1...𝑚) → 𝑖 ≤ 𝑚) | 
| 99 | 98 | adantl 481 | . . . . . . . . . . . . 13
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ≤ 𝑚) | 
| 100 |  | elfzoel2 13699 | . . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ (1..^𝑀) → 𝑀 ∈ ℤ) | 
| 101 | 100 | zred 12724 | . . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ (1..^𝑀) → 𝑀 ∈ ℝ) | 
| 102 |  | elfzolt2 13709 | . . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ (1..^𝑀) → 𝑚 < 𝑀) | 
| 103 | 94, 101, 102 | ltled 11410 | . . . . . . . . . . . . . 14
⊢ (𝑚 ∈ (1..^𝑀) → 𝑚 ≤ 𝑀) | 
| 104 | 103 | ad2antrr 726 | . . . . . . . . . . . . 13
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑚 ≤ 𝑀) | 
| 105 | 92, 95, 97, 99, 104 | letrd 11419 | . . . . . . . . . . . 12
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ≤ 𝑀) | 
| 106 | 85, 86, 88, 90, 105 | elfzd 13556 | . . . . . . . . . . 11
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ∈ (1...𝑀)) | 
| 107 | 84, 106 | ffvelcdmd 7104 | . . . . . . . . . 10
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → (𝐹‘𝑖) ∈ ℝ) | 
| 108 | 77, 82, 107 | chvarfv 2239 | . . . . . . . . 9
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑎 ∈ (1...𝑚)) → (𝐹‘𝑎) ∈ ℝ) | 
| 109 |  | remulcl 11241 | . . . . . . . . . 10
⊢ ((𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑎 · 𝑗) ∈ ℝ) | 
| 110 | 109 | adantl 481 | . . . . . . . . 9
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ (𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (𝑎 · 𝑗) ∈ ℝ) | 
| 111 | 69, 108, 110 | seqcl 14064 | . . . . . . . 8
⊢ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → (seq1( · , 𝐹)‘𝑚) ∈ ℝ) | 
| 112 | 68, 111 | eqeltrid 2844 | . . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → (𝑋‘𝑚) ∈ ℝ) | 
| 113 | 112 | 3adant2 1131 | . . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝑋‘𝑚) ∈ ℝ) | 
| 114 | 83 | 3ad2ant3 1135 | . . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 𝐹:(1...𝑀)⟶ℝ) | 
| 115 |  | fzofzp1 13804 | . . . . . . . 8
⊢ (𝑚 ∈ (1..^𝑀) → (𝑚 + 1) ∈ (1...𝑀)) | 
| 116 | 115 | 3ad2ant1 1133 | . . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝑚 + 1) ∈ (1...𝑀)) | 
| 117 | 114, 116 | ffvelcdmd 7104 | . . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝐹‘(𝑚 + 1)) ∈ ℝ) | 
| 118 | 47 | rpge0d 13082 | . . . . . . . 8
⊢ (𝜑 → 0 ≤ 𝐴) | 
| 119 | 118 | 3ad2ant3 1135 | . . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 0 ≤ 𝐴) | 
| 120 | 60, 66, 119 | expge0d 14205 | . . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 0 ≤ (𝐴↑𝑚)) | 
| 121 |  | simp3 1138 | . . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 𝜑) | 
| 122 |  | simp2 1137 | . . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚))) | 
| 123 | 121, 122 | mpd 15 | . . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝐴↑𝑚) < (𝑋‘𝑚)) | 
| 124 | 115 | adantr 480 | . . . . . . . 8
⊢ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → (𝑚 + 1) ∈ (1...𝑀)) | 
| 125 |  | simpr 484 | . . . . . . . . 9
⊢ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → 𝜑) | 
| 126 | 125, 124 | jca 511 | . . . . . . . 8
⊢ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → (𝜑 ∧ (𝑚 + 1) ∈ (1...𝑀))) | 
| 127 |  | nfv 1913 | . . . . . . . . . . 11
⊢
Ⅎ𝑖(𝑚 + 1) ∈ (1...𝑀) | 
| 128 | 29, 127 | nfan 1898 | . . . . . . . . . 10
⊢
Ⅎ𝑖(𝜑 ∧ (𝑚 + 1) ∈ (1...𝑀)) | 
| 129 |  | nfcv 2904 | . . . . . . . . . . . 12
⊢
Ⅎ𝑖(𝑚 + 1) | 
| 130 | 34, 129 | nffv 6915 | . . . . . . . . . . 11
⊢
Ⅎ𝑖(𝐹‘(𝑚 + 1)) | 
| 131 | 32, 33, 130 | nfbr 5189 | . . . . . . . . . 10
⊢
Ⅎ𝑖 𝐴 < (𝐹‘(𝑚 + 1)) | 
| 132 | 128, 131 | nfim 1895 | . . . . . . . . 9
⊢
Ⅎ𝑖((𝜑 ∧ (𝑚 + 1) ∈ (1...𝑀)) → 𝐴 < (𝐹‘(𝑚 + 1))) | 
| 133 |  | eleq1 2828 | . . . . . . . . . . 11
⊢ (𝑖 = (𝑚 + 1) → (𝑖 ∈ (1...𝑀) ↔ (𝑚 + 1) ∈ (1...𝑀))) | 
| 134 | 133 | anbi2d 630 | . . . . . . . . . 10
⊢ (𝑖 = (𝑚 + 1) → ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ↔ (𝜑 ∧ (𝑚 + 1) ∈ (1...𝑀)))) | 
| 135 |  | fveq2 6905 | . . . . . . . . . . 11
⊢ (𝑖 = (𝑚 + 1) → (𝐹‘𝑖) = (𝐹‘(𝑚 + 1))) | 
| 136 | 135 | breq2d 5154 | . . . . . . . . . 10
⊢ (𝑖 = (𝑚 + 1) → (𝐴 < (𝐹‘𝑖) ↔ 𝐴 < (𝐹‘(𝑚 + 1)))) | 
| 137 | 134, 136 | imbi12d 344 | . . . . . . . . 9
⊢ (𝑖 = (𝑚 + 1) → (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝐴 < (𝐹‘𝑖)) ↔ ((𝜑 ∧ (𝑚 + 1) ∈ (1...𝑀)) → 𝐴 < (𝐹‘(𝑚 + 1))))) | 
| 138 | 132, 137,
44 | vtoclg1f 3569 | . . . . . . . 8
⊢ ((𝑚 + 1) ∈ (1...𝑀) → ((𝜑 ∧ (𝑚 + 1) ∈ (1...𝑀)) → 𝐴 < (𝐹‘(𝑚 + 1)))) | 
| 139 | 124, 126,
138 | sylc 65 | . . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → 𝐴 < (𝐹‘(𝑚 + 1))) | 
| 140 | 139 | 3adant2 1131 | . . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 𝐴 < (𝐹‘(𝑚 + 1))) | 
| 141 | 67, 113, 60, 117, 120, 123, 119, 140 | ltmul12ad 12210 | . . . . 5
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → ((𝐴↑𝑚) · 𝐴) < ((𝑋‘𝑚) · (𝐹‘(𝑚 + 1)))) | 
| 142 | 48 | 3ad2ant3 1135 | . . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 𝐴 ∈ ℂ) | 
| 143 | 142, 66 | expp1d 14188 | . . . . 5
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝐴↑(𝑚 + 1)) = ((𝐴↑𝑚) · 𝐴)) | 
| 144 | 50 | fveq1i 6906 | . . . . . . 7
⊢ (𝑋‘(𝑚 + 1)) = (seq1( · , 𝐹)‘(𝑚 + 1)) | 
| 145 | 144 | a1i 11 | . . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝑋‘(𝑚 + 1)) = (seq1( · , 𝐹)‘(𝑚 + 1))) | 
| 146 | 61 | 3ad2ant1 1133 | . . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 𝑚 ∈
(ℤ≥‘1)) | 
| 147 |  | seqp1 14058 | . . . . . . 7
⊢ (𝑚 ∈
(ℤ≥‘1) → (seq1( · , 𝐹)‘(𝑚 + 1)) = ((seq1( · , 𝐹)‘𝑚) · (𝐹‘(𝑚 + 1)))) | 
| 148 | 146, 147 | syl 17 | . . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (seq1( · , 𝐹)‘(𝑚 + 1)) = ((seq1( · , 𝐹)‘𝑚) · (𝐹‘(𝑚 + 1)))) | 
| 149 | 68 | a1i 11 | . . . . . . . 8
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝑋‘𝑚) = (seq1( · , 𝐹)‘𝑚)) | 
| 150 | 149 | eqcomd 2742 | . . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (seq1( · , 𝐹)‘𝑚) = (𝑋‘𝑚)) | 
| 151 | 150 | oveq1d 7447 | . . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → ((seq1( · , 𝐹)‘𝑚) · (𝐹‘(𝑚 + 1))) = ((𝑋‘𝑚) · (𝐹‘(𝑚 + 1)))) | 
| 152 | 145, 148,
151 | 3eqtrd 2780 | . . . . 5
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝑋‘(𝑚 + 1)) = ((𝑋‘𝑚) · (𝐹‘(𝑚 + 1)))) | 
| 153 | 141, 143,
152 | 3brtr4d 5174 | . . . 4
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝐴↑(𝑚 + 1)) < (𝑋‘(𝑚 + 1))) | 
| 154 | 153 | 3exp 1119 | . . 3
⊢ (𝑚 ∈ (1..^𝑀) → ((𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) → (𝜑 → (𝐴↑(𝑚 + 1)) < (𝑋‘(𝑚 + 1))))) | 
| 155 | 9, 13, 17, 21, 58, 154 | fzind2 13825 | . 2
⊢ (𝑀 ∈ (1...𝑀) → (𝜑 → (𝐴↑𝑀) < (𝑋‘𝑀))) | 
| 156 | 5, 155 | mpcom 38 | 1
⊢ (𝜑 → (𝐴↑𝑀) < (𝑋‘𝑀)) |