Step | Hyp | Ref
| Expression |
1 | | stoweidlem3.4 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℕ) |
2 | | elnnuz 12622 |
. . . 4
⊢ (𝑀 ∈ ℕ ↔ 𝑀 ∈
(ℤ≥‘1)) |
3 | 1, 2 | sylib 217 |
. . 3
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘1)) |
4 | | eluzfz2 13264 |
. . 3
⊢ (𝑀 ∈
(ℤ≥‘1) → 𝑀 ∈ (1...𝑀)) |
5 | 3, 4 | syl 17 |
. 2
⊢ (𝜑 → 𝑀 ∈ (1...𝑀)) |
6 | | oveq2 7283 |
. . . . 5
⊢ (𝑛 = 1 → (𝐴↑𝑛) = (𝐴↑1)) |
7 | | fveq2 6774 |
. . . . 5
⊢ (𝑛 = 1 → (𝑋‘𝑛) = (𝑋‘1)) |
8 | 6, 7 | breq12d 5087 |
. . . 4
⊢ (𝑛 = 1 → ((𝐴↑𝑛) < (𝑋‘𝑛) ↔ (𝐴↑1) < (𝑋‘1))) |
9 | 8 | imbi2d 341 |
. . 3
⊢ (𝑛 = 1 → ((𝜑 → (𝐴↑𝑛) < (𝑋‘𝑛)) ↔ (𝜑 → (𝐴↑1) < (𝑋‘1)))) |
10 | | oveq2 7283 |
. . . . 5
⊢ (𝑛 = 𝑚 → (𝐴↑𝑛) = (𝐴↑𝑚)) |
11 | | fveq2 6774 |
. . . . 5
⊢ (𝑛 = 𝑚 → (𝑋‘𝑛) = (𝑋‘𝑚)) |
12 | 10, 11 | breq12d 5087 |
. . . 4
⊢ (𝑛 = 𝑚 → ((𝐴↑𝑛) < (𝑋‘𝑛) ↔ (𝐴↑𝑚) < (𝑋‘𝑚))) |
13 | 12 | imbi2d 341 |
. . 3
⊢ (𝑛 = 𝑚 → ((𝜑 → (𝐴↑𝑛) < (𝑋‘𝑛)) ↔ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)))) |
14 | | oveq2 7283 |
. . . . 5
⊢ (𝑛 = (𝑚 + 1) → (𝐴↑𝑛) = (𝐴↑(𝑚 + 1))) |
15 | | fveq2 6774 |
. . . . 5
⊢ (𝑛 = (𝑚 + 1) → (𝑋‘𝑛) = (𝑋‘(𝑚 + 1))) |
16 | 14, 15 | breq12d 5087 |
. . . 4
⊢ (𝑛 = (𝑚 + 1) → ((𝐴↑𝑛) < (𝑋‘𝑛) ↔ (𝐴↑(𝑚 + 1)) < (𝑋‘(𝑚 + 1)))) |
17 | 16 | imbi2d 341 |
. . 3
⊢ (𝑛 = (𝑚 + 1) → ((𝜑 → (𝐴↑𝑛) < (𝑋‘𝑛)) ↔ (𝜑 → (𝐴↑(𝑚 + 1)) < (𝑋‘(𝑚 + 1))))) |
18 | | oveq2 7283 |
. . . . 5
⊢ (𝑛 = 𝑀 → (𝐴↑𝑛) = (𝐴↑𝑀)) |
19 | | fveq2 6774 |
. . . . 5
⊢ (𝑛 = 𝑀 → (𝑋‘𝑛) = (𝑋‘𝑀)) |
20 | 18, 19 | breq12d 5087 |
. . . 4
⊢ (𝑛 = 𝑀 → ((𝐴↑𝑛) < (𝑋‘𝑛) ↔ (𝐴↑𝑀) < (𝑋‘𝑀))) |
21 | 20 | imbi2d 341 |
. . 3
⊢ (𝑛 = 𝑀 → ((𝜑 → (𝐴↑𝑛) < (𝑋‘𝑛)) ↔ (𝜑 → (𝐴↑𝑀) < (𝑋‘𝑀)))) |
22 | | 1zzd 12351 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℤ) |
23 | 1 | nnzd 12425 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
24 | | 1le1 11603 |
. . . . . . . 8
⊢ 1 ≤
1 |
25 | 24 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 1 ≤ 1) |
26 | 1 | nnge1d 12021 |
. . . . . . 7
⊢ (𝜑 → 1 ≤ 𝑀) |
27 | 22, 23, 22, 25, 26 | elfzd 13247 |
. . . . . 6
⊢ (𝜑 → 1 ∈ (1...𝑀)) |
28 | 27 | ancli 549 |
. . . . . 6
⊢ (𝜑 → (𝜑 ∧ 1 ∈ (1...𝑀))) |
29 | | stoweidlem3.2 |
. . . . . . . . 9
⊢
Ⅎ𝑖𝜑 |
30 | | nfv 1917 |
. . . . . . . . 9
⊢
Ⅎ𝑖1 ∈
(1...𝑀) |
31 | 29, 30 | nfan 1902 |
. . . . . . . 8
⊢
Ⅎ𝑖(𝜑 ∧ 1 ∈ (1...𝑀)) |
32 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑖𝐴 |
33 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑖
< |
34 | | stoweidlem3.1 |
. . . . . . . . . 10
⊢
Ⅎ𝑖𝐹 |
35 | | nfcv 2907 |
. . . . . . . . . 10
⊢
Ⅎ𝑖1 |
36 | 34, 35 | nffv 6784 |
. . . . . . . . 9
⊢
Ⅎ𝑖(𝐹‘1) |
37 | 32, 33, 36 | nfbr 5121 |
. . . . . . . 8
⊢
Ⅎ𝑖 𝐴 < (𝐹‘1) |
38 | 31, 37 | nfim 1899 |
. . . . . . 7
⊢
Ⅎ𝑖((𝜑 ∧ 1 ∈ (1...𝑀)) → 𝐴 < (𝐹‘1)) |
39 | | eleq1 2826 |
. . . . . . . . 9
⊢ (𝑖 = 1 → (𝑖 ∈ (1...𝑀) ↔ 1 ∈ (1...𝑀))) |
40 | 39 | anbi2d 629 |
. . . . . . . 8
⊢ (𝑖 = 1 → ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ↔ (𝜑 ∧ 1 ∈ (1...𝑀)))) |
41 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑖 = 1 → (𝐹‘𝑖) = (𝐹‘1)) |
42 | 41 | breq2d 5086 |
. . . . . . . 8
⊢ (𝑖 = 1 → (𝐴 < (𝐹‘𝑖) ↔ 𝐴 < (𝐹‘1))) |
43 | 40, 42 | imbi12d 345 |
. . . . . . 7
⊢ (𝑖 = 1 → (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝐴 < (𝐹‘𝑖)) ↔ ((𝜑 ∧ 1 ∈ (1...𝑀)) → 𝐴 < (𝐹‘1)))) |
44 | | stoweidlem3.6 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝐴 < (𝐹‘𝑖)) |
45 | 38, 43, 44 | vtoclg1f 3504 |
. . . . . 6
⊢ (1 ∈
(1...𝑀) → ((𝜑 ∧ 1 ∈ (1...𝑀)) → 𝐴 < (𝐹‘1))) |
46 | 27, 28, 45 | sylc 65 |
. . . . 5
⊢ (𝜑 → 𝐴 < (𝐹‘1)) |
47 | | stoweidlem3.7 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
48 | 47 | rpcnd 12774 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℂ) |
49 | 48 | exp1d 13859 |
. . . . 5
⊢ (𝜑 → (𝐴↑1) = 𝐴) |
50 | | stoweidlem3.3 |
. . . . . . . 8
⊢ 𝑋 = seq1( · , 𝐹) |
51 | 50 | fveq1i 6775 |
. . . . . . 7
⊢ (𝑋‘1) = (seq1( · ,
𝐹)‘1) |
52 | | 1z 12350 |
. . . . . . . 8
⊢ 1 ∈
ℤ |
53 | | seq1 13734 |
. . . . . . . 8
⊢ (1 ∈
ℤ → (seq1( · , 𝐹)‘1) = (𝐹‘1)) |
54 | 52, 53 | ax-mp 5 |
. . . . . . 7
⊢ (seq1(
· , 𝐹)‘1) =
(𝐹‘1) |
55 | 51, 54 | eqtri 2766 |
. . . . . 6
⊢ (𝑋‘1) = (𝐹‘1) |
56 | 55 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝑋‘1) = (𝐹‘1)) |
57 | 46, 49, 56 | 3brtr4d 5106 |
. . . 4
⊢ (𝜑 → (𝐴↑1) < (𝑋‘1)) |
58 | 57 | a1i 11 |
. . 3
⊢ (𝑀 ∈
(ℤ≥‘1) → (𝜑 → (𝐴↑1) < (𝑋‘1))) |
59 | 47 | 3ad2ant3 1134 |
. . . . . . . 8
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 𝐴 ∈
ℝ+) |
60 | 59 | rpred 12772 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 𝐴 ∈ ℝ) |
61 | | elfzouz 13391 |
. . . . . . . . 9
⊢ (𝑚 ∈ (1..^𝑀) → 𝑚 ∈
(ℤ≥‘1)) |
62 | | elnnuz 12622 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ ↔ 𝑚 ∈
(ℤ≥‘1)) |
63 | | nnnn0 12240 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℕ0) |
64 | 62, 63 | sylbir 234 |
. . . . . . . . 9
⊢ (𝑚 ∈
(ℤ≥‘1) → 𝑚 ∈ ℕ0) |
65 | 61, 64 | syl 17 |
. . . . . . . 8
⊢ (𝑚 ∈ (1..^𝑀) → 𝑚 ∈ ℕ0) |
66 | 65 | 3ad2ant1 1132 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 𝑚 ∈ ℕ0) |
67 | 60, 66 | reexpcld 13881 |
. . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝐴↑𝑚) ∈ ℝ) |
68 | 50 | fveq1i 6775 |
. . . . . . . 8
⊢ (𝑋‘𝑚) = (seq1( · , 𝐹)‘𝑚) |
69 | 61 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → 𝑚 ∈
(ℤ≥‘1)) |
70 | | nfv 1917 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑖 𝑚 ∈ (1..^𝑀) |
71 | 70, 29 | nfan 1902 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖(𝑚 ∈ (1..^𝑀) ∧ 𝜑) |
72 | | nfv 1917 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖 𝑎 ∈ (1...𝑚) |
73 | 71, 72 | nfan 1902 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑎 ∈ (1...𝑚)) |
74 | | nfcv 2907 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑖𝑎 |
75 | 34, 74 | nffv 6784 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖(𝐹‘𝑎) |
76 | 75 | nfel1 2923 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖(𝐹‘𝑎) ∈ ℝ |
77 | 73, 76 | nfim 1899 |
. . . . . . . . . 10
⊢
Ⅎ𝑖(((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑎 ∈ (1...𝑚)) → (𝐹‘𝑎) ∈ ℝ) |
78 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑎 → (𝑖 ∈ (1...𝑚) ↔ 𝑎 ∈ (1...𝑚))) |
79 | 78 | anbi2d 629 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑎 → (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) ↔ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑎 ∈ (1...𝑚)))) |
80 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑎 → (𝐹‘𝑖) = (𝐹‘𝑎)) |
81 | 80 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑎 → ((𝐹‘𝑖) ∈ ℝ ↔ (𝐹‘𝑎) ∈ ℝ)) |
82 | 79, 81 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑎 → ((((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → (𝐹‘𝑖) ∈ ℝ) ↔ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑎 ∈ (1...𝑚)) → (𝐹‘𝑎) ∈ ℝ))) |
83 | | stoweidlem3.5 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:(1...𝑀)⟶ℝ) |
84 | 83 | ad2antlr 724 |
. . . . . . . . . . 11
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝐹:(1...𝑀)⟶ℝ) |
85 | | 1zzd 12351 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 1 ∈ ℤ) |
86 | 23 | ad2antlr 724 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑀 ∈ ℤ) |
87 | | elfzelz 13256 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (1...𝑚) → 𝑖 ∈ ℤ) |
88 | 87 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ∈ ℤ) |
89 | | elfzle1 13259 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (1...𝑚) → 1 ≤ 𝑖) |
90 | 89 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 1 ≤ 𝑖) |
91 | 87 | zred 12426 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (1...𝑚) → 𝑖 ∈ ℝ) |
92 | 91 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ∈ ℝ) |
93 | | elfzoelz 13387 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ (1..^𝑀) → 𝑚 ∈ ℤ) |
94 | 93 | zred 12426 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ (1..^𝑀) → 𝑚 ∈ ℝ) |
95 | 94 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑚 ∈ ℝ) |
96 | 1 | nnred 11988 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ ℝ) |
97 | 96 | ad2antlr 724 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑀 ∈ ℝ) |
98 | | elfzle2 13260 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (1...𝑚) → 𝑖 ≤ 𝑚) |
99 | 98 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ≤ 𝑚) |
100 | | elfzoel2 13386 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ (1..^𝑀) → 𝑀 ∈ ℤ) |
101 | 100 | zred 12426 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ (1..^𝑀) → 𝑀 ∈ ℝ) |
102 | | elfzolt2 13396 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ (1..^𝑀) → 𝑚 < 𝑀) |
103 | 94, 101, 102 | ltled 11123 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ (1..^𝑀) → 𝑚 ≤ 𝑀) |
104 | 103 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑚 ≤ 𝑀) |
105 | 92, 95, 97, 99, 104 | letrd 11132 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ≤ 𝑀) |
106 | 85, 86, 88, 90, 105 | elfzd 13247 |
. . . . . . . . . . 11
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ∈ (1...𝑀)) |
107 | 84, 106 | ffvelrnd 6962 |
. . . . . . . . . 10
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → (𝐹‘𝑖) ∈ ℝ) |
108 | 77, 82, 107 | chvarfv 2233 |
. . . . . . . . 9
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑎 ∈ (1...𝑚)) → (𝐹‘𝑎) ∈ ℝ) |
109 | | remulcl 10956 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑎 · 𝑗) ∈ ℝ) |
110 | 109 | adantl 482 |
. . . . . . . . 9
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ (𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (𝑎 · 𝑗) ∈ ℝ) |
111 | 69, 108, 110 | seqcl 13743 |
. . . . . . . 8
⊢ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → (seq1( · , 𝐹)‘𝑚) ∈ ℝ) |
112 | 68, 111 | eqeltrid 2843 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → (𝑋‘𝑚) ∈ ℝ) |
113 | 112 | 3adant2 1130 |
. . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝑋‘𝑚) ∈ ℝ) |
114 | 83 | 3ad2ant3 1134 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 𝐹:(1...𝑀)⟶ℝ) |
115 | | fzofzp1 13484 |
. . . . . . . 8
⊢ (𝑚 ∈ (1..^𝑀) → (𝑚 + 1) ∈ (1...𝑀)) |
116 | 115 | 3ad2ant1 1132 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝑚 + 1) ∈ (1...𝑀)) |
117 | 114, 116 | ffvelrnd 6962 |
. . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝐹‘(𝑚 + 1)) ∈ ℝ) |
118 | 47 | rpge0d 12776 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ 𝐴) |
119 | 118 | 3ad2ant3 1134 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 0 ≤ 𝐴) |
120 | 60, 66, 119 | expge0d 13882 |
. . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 0 ≤ (𝐴↑𝑚)) |
121 | | simp3 1137 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 𝜑) |
122 | | simp2 1136 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚))) |
123 | 121, 122 | mpd 15 |
. . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝐴↑𝑚) < (𝑋‘𝑚)) |
124 | 115 | adantr 481 |
. . . . . . . 8
⊢ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → (𝑚 + 1) ∈ (1...𝑀)) |
125 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → 𝜑) |
126 | 125, 124 | jca 512 |
. . . . . . . 8
⊢ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → (𝜑 ∧ (𝑚 + 1) ∈ (1...𝑀))) |
127 | | nfv 1917 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖(𝑚 + 1) ∈ (1...𝑀) |
128 | 29, 127 | nfan 1902 |
. . . . . . . . . 10
⊢
Ⅎ𝑖(𝜑 ∧ (𝑚 + 1) ∈ (1...𝑀)) |
129 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖(𝑚 + 1) |
130 | 34, 129 | nffv 6784 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖(𝐹‘(𝑚 + 1)) |
131 | 32, 33, 130 | nfbr 5121 |
. . . . . . . . . 10
⊢
Ⅎ𝑖 𝐴 < (𝐹‘(𝑚 + 1)) |
132 | 128, 131 | nfim 1899 |
. . . . . . . . 9
⊢
Ⅎ𝑖((𝜑 ∧ (𝑚 + 1) ∈ (1...𝑀)) → 𝐴 < (𝐹‘(𝑚 + 1))) |
133 | | eleq1 2826 |
. . . . . . . . . . 11
⊢ (𝑖 = (𝑚 + 1) → (𝑖 ∈ (1...𝑀) ↔ (𝑚 + 1) ∈ (1...𝑀))) |
134 | 133 | anbi2d 629 |
. . . . . . . . . 10
⊢ (𝑖 = (𝑚 + 1) → ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ↔ (𝜑 ∧ (𝑚 + 1) ∈ (1...𝑀)))) |
135 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑖 = (𝑚 + 1) → (𝐹‘𝑖) = (𝐹‘(𝑚 + 1))) |
136 | 135 | breq2d 5086 |
. . . . . . . . . 10
⊢ (𝑖 = (𝑚 + 1) → (𝐴 < (𝐹‘𝑖) ↔ 𝐴 < (𝐹‘(𝑚 + 1)))) |
137 | 134, 136 | imbi12d 345 |
. . . . . . . . 9
⊢ (𝑖 = (𝑚 + 1) → (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝐴 < (𝐹‘𝑖)) ↔ ((𝜑 ∧ (𝑚 + 1) ∈ (1...𝑀)) → 𝐴 < (𝐹‘(𝑚 + 1))))) |
138 | 132, 137,
44 | vtoclg1f 3504 |
. . . . . . . 8
⊢ ((𝑚 + 1) ∈ (1...𝑀) → ((𝜑 ∧ (𝑚 + 1) ∈ (1...𝑀)) → 𝐴 < (𝐹‘(𝑚 + 1)))) |
139 | 124, 126,
138 | sylc 65 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → 𝐴 < (𝐹‘(𝑚 + 1))) |
140 | 139 | 3adant2 1130 |
. . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 𝐴 < (𝐹‘(𝑚 + 1))) |
141 | 67, 113, 60, 117, 120, 123, 119, 140 | ltmul12ad 11916 |
. . . . 5
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → ((𝐴↑𝑚) · 𝐴) < ((𝑋‘𝑚) · (𝐹‘(𝑚 + 1)))) |
142 | 48 | 3ad2ant3 1134 |
. . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 𝐴 ∈ ℂ) |
143 | 142, 66 | expp1d 13865 |
. . . . 5
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝐴↑(𝑚 + 1)) = ((𝐴↑𝑚) · 𝐴)) |
144 | 50 | fveq1i 6775 |
. . . . . . 7
⊢ (𝑋‘(𝑚 + 1)) = (seq1( · , 𝐹)‘(𝑚 + 1)) |
145 | 144 | a1i 11 |
. . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝑋‘(𝑚 + 1)) = (seq1( · , 𝐹)‘(𝑚 + 1))) |
146 | 61 | 3ad2ant1 1132 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 𝑚 ∈
(ℤ≥‘1)) |
147 | | seqp1 13736 |
. . . . . . 7
⊢ (𝑚 ∈
(ℤ≥‘1) → (seq1( · , 𝐹)‘(𝑚 + 1)) = ((seq1( · , 𝐹)‘𝑚) · (𝐹‘(𝑚 + 1)))) |
148 | 146, 147 | syl 17 |
. . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (seq1( · , 𝐹)‘(𝑚 + 1)) = ((seq1( · , 𝐹)‘𝑚) · (𝐹‘(𝑚 + 1)))) |
149 | 68 | a1i 11 |
. . . . . . . 8
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝑋‘𝑚) = (seq1( · , 𝐹)‘𝑚)) |
150 | 149 | eqcomd 2744 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (seq1( · , 𝐹)‘𝑚) = (𝑋‘𝑚)) |
151 | 150 | oveq1d 7290 |
. . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → ((seq1( · , 𝐹)‘𝑚) · (𝐹‘(𝑚 + 1))) = ((𝑋‘𝑚) · (𝐹‘(𝑚 + 1)))) |
152 | 145, 148,
151 | 3eqtrd 2782 |
. . . . 5
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝑋‘(𝑚 + 1)) = ((𝑋‘𝑚) · (𝐹‘(𝑚 + 1)))) |
153 | 141, 143,
152 | 3brtr4d 5106 |
. . . 4
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝐴↑(𝑚 + 1)) < (𝑋‘(𝑚 + 1))) |
154 | 153 | 3exp 1118 |
. . 3
⊢ (𝑚 ∈ (1..^𝑀) → ((𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) → (𝜑 → (𝐴↑(𝑚 + 1)) < (𝑋‘(𝑚 + 1))))) |
155 | 9, 13, 17, 21, 58, 154 | fzind2 13505 |
. 2
⊢ (𝑀 ∈ (1...𝑀) → (𝜑 → (𝐴↑𝑀) < (𝑋‘𝑀))) |
156 | 5, 155 | mpcom 38 |
1
⊢ (𝜑 → (𝐴↑𝑀) < (𝑋‘𝑀)) |