Step | Hyp | Ref
| Expression |
1 | | stoweidlem3.4 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℕ) |
2 | | elnnuz 12327 |
. . . 4
⊢ (𝑀 ∈ ℕ ↔ 𝑀 ∈
(ℤ≥‘1)) |
3 | 1, 2 | sylib 221 |
. . 3
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘1)) |
4 | | eluzfz2 12969 |
. . 3
⊢ (𝑀 ∈
(ℤ≥‘1) → 𝑀 ∈ (1...𝑀)) |
5 | 3, 4 | syl 17 |
. 2
⊢ (𝜑 → 𝑀 ∈ (1...𝑀)) |
6 | | oveq2 7163 |
. . . . 5
⊢ (𝑛 = 1 → (𝐴↑𝑛) = (𝐴↑1)) |
7 | | fveq2 6662 |
. . . . 5
⊢ (𝑛 = 1 → (𝑋‘𝑛) = (𝑋‘1)) |
8 | 6, 7 | breq12d 5048 |
. . . 4
⊢ (𝑛 = 1 → ((𝐴↑𝑛) < (𝑋‘𝑛) ↔ (𝐴↑1) < (𝑋‘1))) |
9 | 8 | imbi2d 344 |
. . 3
⊢ (𝑛 = 1 → ((𝜑 → (𝐴↑𝑛) < (𝑋‘𝑛)) ↔ (𝜑 → (𝐴↑1) < (𝑋‘1)))) |
10 | | oveq2 7163 |
. . . . 5
⊢ (𝑛 = 𝑚 → (𝐴↑𝑛) = (𝐴↑𝑚)) |
11 | | fveq2 6662 |
. . . . 5
⊢ (𝑛 = 𝑚 → (𝑋‘𝑛) = (𝑋‘𝑚)) |
12 | 10, 11 | breq12d 5048 |
. . . 4
⊢ (𝑛 = 𝑚 → ((𝐴↑𝑛) < (𝑋‘𝑛) ↔ (𝐴↑𝑚) < (𝑋‘𝑚))) |
13 | 12 | imbi2d 344 |
. . 3
⊢ (𝑛 = 𝑚 → ((𝜑 → (𝐴↑𝑛) < (𝑋‘𝑛)) ↔ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)))) |
14 | | oveq2 7163 |
. . . . 5
⊢ (𝑛 = (𝑚 + 1) → (𝐴↑𝑛) = (𝐴↑(𝑚 + 1))) |
15 | | fveq2 6662 |
. . . . 5
⊢ (𝑛 = (𝑚 + 1) → (𝑋‘𝑛) = (𝑋‘(𝑚 + 1))) |
16 | 14, 15 | breq12d 5048 |
. . . 4
⊢ (𝑛 = (𝑚 + 1) → ((𝐴↑𝑛) < (𝑋‘𝑛) ↔ (𝐴↑(𝑚 + 1)) < (𝑋‘(𝑚 + 1)))) |
17 | 16 | imbi2d 344 |
. . 3
⊢ (𝑛 = (𝑚 + 1) → ((𝜑 → (𝐴↑𝑛) < (𝑋‘𝑛)) ↔ (𝜑 → (𝐴↑(𝑚 + 1)) < (𝑋‘(𝑚 + 1))))) |
18 | | oveq2 7163 |
. . . . 5
⊢ (𝑛 = 𝑀 → (𝐴↑𝑛) = (𝐴↑𝑀)) |
19 | | fveq2 6662 |
. . . . 5
⊢ (𝑛 = 𝑀 → (𝑋‘𝑛) = (𝑋‘𝑀)) |
20 | 18, 19 | breq12d 5048 |
. . . 4
⊢ (𝑛 = 𝑀 → ((𝐴↑𝑛) < (𝑋‘𝑛) ↔ (𝐴↑𝑀) < (𝑋‘𝑀))) |
21 | 20 | imbi2d 344 |
. . 3
⊢ (𝑛 = 𝑀 → ((𝜑 → (𝐴↑𝑛) < (𝑋‘𝑛)) ↔ (𝜑 → (𝐴↑𝑀) < (𝑋‘𝑀)))) |
22 | | 1zzd 12057 |
. . . . . . . . 9
⊢ (𝜑 → 1 ∈
ℤ) |
23 | 1 | nnzd 12130 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℤ) |
24 | 22, 23, 22 | 3jca 1125 |
. . . . . . . 8
⊢ (𝜑 → (1 ∈ ℤ ∧
𝑀 ∈ ℤ ∧ 1
∈ ℤ)) |
25 | | 1le1 11311 |
. . . . . . . . 9
⊢ 1 ≤
1 |
26 | 25 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 1 ≤ 1) |
27 | 1 | nnge1d 11727 |
. . . . . . . 8
⊢ (𝜑 → 1 ≤ 𝑀) |
28 | 24, 26, 27 | jca32 519 |
. . . . . . 7
⊢ (𝜑 → ((1 ∈ ℤ ∧
𝑀 ∈ ℤ ∧ 1
∈ ℤ) ∧ (1 ≤ 1 ∧ 1 ≤ 𝑀))) |
29 | | elfz2 12951 |
. . . . . . 7
⊢ (1 ∈
(1...𝑀) ↔ ((1 ∈
ℤ ∧ 𝑀 ∈
ℤ ∧ 1 ∈ ℤ) ∧ (1 ≤ 1 ∧ 1 ≤ 𝑀))) |
30 | 28, 29 | sylibr 237 |
. . . . . 6
⊢ (𝜑 → 1 ∈ (1...𝑀)) |
31 | 30 | ancli 552 |
. . . . . 6
⊢ (𝜑 → (𝜑 ∧ 1 ∈ (1...𝑀))) |
32 | | stoweidlem3.2 |
. . . . . . . . 9
⊢
Ⅎ𝑖𝜑 |
33 | | nfv 1915 |
. . . . . . . . 9
⊢
Ⅎ𝑖1 ∈
(1...𝑀) |
34 | 32, 33 | nfan 1900 |
. . . . . . . 8
⊢
Ⅎ𝑖(𝜑 ∧ 1 ∈ (1...𝑀)) |
35 | | nfcv 2919 |
. . . . . . . . 9
⊢
Ⅎ𝑖𝐴 |
36 | | nfcv 2919 |
. . . . . . . . 9
⊢
Ⅎ𝑖
< |
37 | | stoweidlem3.1 |
. . . . . . . . . 10
⊢
Ⅎ𝑖𝐹 |
38 | | nfcv 2919 |
. . . . . . . . . 10
⊢
Ⅎ𝑖1 |
39 | 37, 38 | nffv 6672 |
. . . . . . . . 9
⊢
Ⅎ𝑖(𝐹‘1) |
40 | 35, 36, 39 | nfbr 5082 |
. . . . . . . 8
⊢
Ⅎ𝑖 𝐴 < (𝐹‘1) |
41 | 34, 40 | nfim 1897 |
. . . . . . 7
⊢
Ⅎ𝑖((𝜑 ∧ 1 ∈ (1...𝑀)) → 𝐴 < (𝐹‘1)) |
42 | | eleq1 2839 |
. . . . . . . . 9
⊢ (𝑖 = 1 → (𝑖 ∈ (1...𝑀) ↔ 1 ∈ (1...𝑀))) |
43 | 42 | anbi2d 631 |
. . . . . . . 8
⊢ (𝑖 = 1 → ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ↔ (𝜑 ∧ 1 ∈ (1...𝑀)))) |
44 | | fveq2 6662 |
. . . . . . . . 9
⊢ (𝑖 = 1 → (𝐹‘𝑖) = (𝐹‘1)) |
45 | 44 | breq2d 5047 |
. . . . . . . 8
⊢ (𝑖 = 1 → (𝐴 < (𝐹‘𝑖) ↔ 𝐴 < (𝐹‘1))) |
46 | 43, 45 | imbi12d 348 |
. . . . . . 7
⊢ (𝑖 = 1 → (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝐴 < (𝐹‘𝑖)) ↔ ((𝜑 ∧ 1 ∈ (1...𝑀)) → 𝐴 < (𝐹‘1)))) |
47 | | stoweidlem3.6 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝐴 < (𝐹‘𝑖)) |
48 | 41, 46, 47 | vtoclg1f 3486 |
. . . . . 6
⊢ (1 ∈
(1...𝑀) → ((𝜑 ∧ 1 ∈ (1...𝑀)) → 𝐴 < (𝐹‘1))) |
49 | 30, 31, 48 | sylc 65 |
. . . . 5
⊢ (𝜑 → 𝐴 < (𝐹‘1)) |
50 | | stoweidlem3.7 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
51 | 50 | rpcnd 12479 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℂ) |
52 | 51 | exp1d 13560 |
. . . . 5
⊢ (𝜑 → (𝐴↑1) = 𝐴) |
53 | | stoweidlem3.3 |
. . . . . . . 8
⊢ 𝑋 = seq1( · , 𝐹) |
54 | 53 | fveq1i 6663 |
. . . . . . 7
⊢ (𝑋‘1) = (seq1( · ,
𝐹)‘1) |
55 | | 1z 12056 |
. . . . . . . 8
⊢ 1 ∈
ℤ |
56 | | seq1 13436 |
. . . . . . . 8
⊢ (1 ∈
ℤ → (seq1( · , 𝐹)‘1) = (𝐹‘1)) |
57 | 55, 56 | ax-mp 5 |
. . . . . . 7
⊢ (seq1(
· , 𝐹)‘1) =
(𝐹‘1) |
58 | 54, 57 | eqtri 2781 |
. . . . . 6
⊢ (𝑋‘1) = (𝐹‘1) |
59 | 58 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝑋‘1) = (𝐹‘1)) |
60 | 49, 52, 59 | 3brtr4d 5067 |
. . . 4
⊢ (𝜑 → (𝐴↑1) < (𝑋‘1)) |
61 | 60 | a1i 11 |
. . 3
⊢ (𝑀 ∈
(ℤ≥‘1) → (𝜑 → (𝐴↑1) < (𝑋‘1))) |
62 | 50 | 3ad2ant3 1132 |
. . . . . . . 8
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 𝐴 ∈
ℝ+) |
63 | 62 | rpred 12477 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 𝐴 ∈ ℝ) |
64 | | elfzouz 13096 |
. . . . . . . . 9
⊢ (𝑚 ∈ (1..^𝑀) → 𝑚 ∈
(ℤ≥‘1)) |
65 | | elnnuz 12327 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ ↔ 𝑚 ∈
(ℤ≥‘1)) |
66 | | nnnn0 11946 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℕ0) |
67 | 65, 66 | sylbir 238 |
. . . . . . . . 9
⊢ (𝑚 ∈
(ℤ≥‘1) → 𝑚 ∈ ℕ0) |
68 | 64, 67 | syl 17 |
. . . . . . . 8
⊢ (𝑚 ∈ (1..^𝑀) → 𝑚 ∈ ℕ0) |
69 | 68 | 3ad2ant1 1130 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 𝑚 ∈ ℕ0) |
70 | 63, 69 | reexpcld 13582 |
. . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝐴↑𝑚) ∈ ℝ) |
71 | 53 | fveq1i 6663 |
. . . . . . . 8
⊢ (𝑋‘𝑚) = (seq1( · , 𝐹)‘𝑚) |
72 | 64 | adantr 484 |
. . . . . . . . 9
⊢ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → 𝑚 ∈
(ℤ≥‘1)) |
73 | | nfv 1915 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑖 𝑚 ∈ (1..^𝑀) |
74 | 73, 32 | nfan 1900 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖(𝑚 ∈ (1..^𝑀) ∧ 𝜑) |
75 | | nfv 1915 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖 𝑎 ∈ (1...𝑚) |
76 | 74, 75 | nfan 1900 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑎 ∈ (1...𝑚)) |
77 | | nfcv 2919 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑖𝑎 |
78 | 37, 77 | nffv 6672 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖(𝐹‘𝑎) |
79 | 78 | nfel1 2935 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖(𝐹‘𝑎) ∈ ℝ |
80 | 76, 79 | nfim 1897 |
. . . . . . . . . 10
⊢
Ⅎ𝑖(((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑎 ∈ (1...𝑚)) → (𝐹‘𝑎) ∈ ℝ) |
81 | | eleq1 2839 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑎 → (𝑖 ∈ (1...𝑚) ↔ 𝑎 ∈ (1...𝑚))) |
82 | 81 | anbi2d 631 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑎 → (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) ↔ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑎 ∈ (1...𝑚)))) |
83 | | fveq2 6662 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑎 → (𝐹‘𝑖) = (𝐹‘𝑎)) |
84 | 83 | eleq1d 2836 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑎 → ((𝐹‘𝑖) ∈ ℝ ↔ (𝐹‘𝑎) ∈ ℝ)) |
85 | 82, 84 | imbi12d 348 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑎 → ((((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → (𝐹‘𝑖) ∈ ℝ) ↔ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑎 ∈ (1...𝑚)) → (𝐹‘𝑎) ∈ ℝ))) |
86 | | stoweidlem3.5 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:(1...𝑀)⟶ℝ) |
87 | 86 | ad2antlr 726 |
. . . . . . . . . . 11
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝐹:(1...𝑀)⟶ℝ) |
88 | | 1zzd 12057 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 1 ∈ ℤ) |
89 | 23 | ad2antlr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑀 ∈ ℤ) |
90 | | elfzelz 12961 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (1...𝑚) → 𝑖 ∈ ℤ) |
91 | 90 | adantl 485 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ∈ ℤ) |
92 | 88, 89, 91 | 3jca 1125 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → (1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑖 ∈
ℤ)) |
93 | | elfzle1 12964 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (1...𝑚) → 1 ≤ 𝑖) |
94 | 93 | adantl 485 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 1 ≤ 𝑖) |
95 | 90 | zred 12131 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (1...𝑚) → 𝑖 ∈ ℝ) |
96 | 95 | adantl 485 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ∈ ℝ) |
97 | | elfzoelz 13092 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ (1..^𝑀) → 𝑚 ∈ ℤ) |
98 | 97 | zred 12131 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ (1..^𝑀) → 𝑚 ∈ ℝ) |
99 | 98 | ad2antrr 725 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑚 ∈ ℝ) |
100 | 1 | nnred 11694 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ∈ ℝ) |
101 | 100 | ad2antlr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑀 ∈ ℝ) |
102 | | elfzle2 12965 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (1...𝑚) → 𝑖 ≤ 𝑚) |
103 | 102 | adantl 485 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ≤ 𝑚) |
104 | | elfzoel2 13091 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ (1..^𝑀) → 𝑀 ∈ ℤ) |
105 | 104 | zred 12131 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ (1..^𝑀) → 𝑀 ∈ ℝ) |
106 | | elfzolt2 13101 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ (1..^𝑀) → 𝑚 < 𝑀) |
107 | 98, 105, 106 | ltled 10831 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ (1..^𝑀) → 𝑚 ≤ 𝑀) |
108 | 107 | ad2antrr 725 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑚 ≤ 𝑀) |
109 | 96, 99, 101, 103, 108 | letrd 10840 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ≤ 𝑀) |
110 | 92, 94, 109 | jca32 519 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (1 ≤
𝑖 ∧ 𝑖 ≤ 𝑀))) |
111 | | elfz2 12951 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (1...𝑀) ↔ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (1 ≤
𝑖 ∧ 𝑖 ≤ 𝑀))) |
112 | 110, 111 | sylibr 237 |
. . . . . . . . . . 11
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ∈ (1...𝑀)) |
113 | 87, 112 | ffvelrnd 6848 |
. . . . . . . . . 10
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑖 ∈ (1...𝑚)) → (𝐹‘𝑖) ∈ ℝ) |
114 | 80, 85, 113 | chvarfv 2240 |
. . . . . . . . 9
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ 𝑎 ∈ (1...𝑚)) → (𝐹‘𝑎) ∈ ℝ) |
115 | | remulcl 10665 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑎 · 𝑗) ∈ ℝ) |
116 | 115 | adantl 485 |
. . . . . . . . 9
⊢ (((𝑚 ∈ (1..^𝑀) ∧ 𝜑) ∧ (𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (𝑎 · 𝑗) ∈ ℝ) |
117 | 72, 114, 116 | seqcl 13445 |
. . . . . . . 8
⊢ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → (seq1( · , 𝐹)‘𝑚) ∈ ℝ) |
118 | 71, 117 | eqeltrid 2856 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → (𝑋‘𝑚) ∈ ℝ) |
119 | 118 | 3adant2 1128 |
. . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝑋‘𝑚) ∈ ℝ) |
120 | 86 | 3ad2ant3 1132 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 𝐹:(1...𝑀)⟶ℝ) |
121 | | fzofzp1 13188 |
. . . . . . . 8
⊢ (𝑚 ∈ (1..^𝑀) → (𝑚 + 1) ∈ (1...𝑀)) |
122 | 121 | 3ad2ant1 1130 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝑚 + 1) ∈ (1...𝑀)) |
123 | 120, 122 | ffvelrnd 6848 |
. . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝐹‘(𝑚 + 1)) ∈ ℝ) |
124 | 50 | rpge0d 12481 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ 𝐴) |
125 | 124 | 3ad2ant3 1132 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 0 ≤ 𝐴) |
126 | 63, 69, 125 | expge0d 13583 |
. . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 0 ≤ (𝐴↑𝑚)) |
127 | | simp3 1135 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 𝜑) |
128 | | simp2 1134 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚))) |
129 | 127, 128 | mpd 15 |
. . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝐴↑𝑚) < (𝑋‘𝑚)) |
130 | 121 | adantr 484 |
. . . . . . . 8
⊢ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → (𝑚 + 1) ∈ (1...𝑀)) |
131 | | simpr 488 |
. . . . . . . . 9
⊢ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → 𝜑) |
132 | 131, 130 | jca 515 |
. . . . . . . 8
⊢ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → (𝜑 ∧ (𝑚 + 1) ∈ (1...𝑀))) |
133 | | nfv 1915 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖(𝑚 + 1) ∈ (1...𝑀) |
134 | 32, 133 | nfan 1900 |
. . . . . . . . . 10
⊢
Ⅎ𝑖(𝜑 ∧ (𝑚 + 1) ∈ (1...𝑀)) |
135 | | nfcv 2919 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖(𝑚 + 1) |
136 | 37, 135 | nffv 6672 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖(𝐹‘(𝑚 + 1)) |
137 | 35, 36, 136 | nfbr 5082 |
. . . . . . . . . 10
⊢
Ⅎ𝑖 𝐴 < (𝐹‘(𝑚 + 1)) |
138 | 134, 137 | nfim 1897 |
. . . . . . . . 9
⊢
Ⅎ𝑖((𝜑 ∧ (𝑚 + 1) ∈ (1...𝑀)) → 𝐴 < (𝐹‘(𝑚 + 1))) |
139 | | eleq1 2839 |
. . . . . . . . . . 11
⊢ (𝑖 = (𝑚 + 1) → (𝑖 ∈ (1...𝑀) ↔ (𝑚 + 1) ∈ (1...𝑀))) |
140 | 139 | anbi2d 631 |
. . . . . . . . . 10
⊢ (𝑖 = (𝑚 + 1) → ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ↔ (𝜑 ∧ (𝑚 + 1) ∈ (1...𝑀)))) |
141 | | fveq2 6662 |
. . . . . . . . . . 11
⊢ (𝑖 = (𝑚 + 1) → (𝐹‘𝑖) = (𝐹‘(𝑚 + 1))) |
142 | 141 | breq2d 5047 |
. . . . . . . . . 10
⊢ (𝑖 = (𝑚 + 1) → (𝐴 < (𝐹‘𝑖) ↔ 𝐴 < (𝐹‘(𝑚 + 1)))) |
143 | 140, 142 | imbi12d 348 |
. . . . . . . . 9
⊢ (𝑖 = (𝑚 + 1) → (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝐴 < (𝐹‘𝑖)) ↔ ((𝜑 ∧ (𝑚 + 1) ∈ (1...𝑀)) → 𝐴 < (𝐹‘(𝑚 + 1))))) |
144 | 138, 143,
47 | vtoclg1f 3486 |
. . . . . . . 8
⊢ ((𝑚 + 1) ∈ (1...𝑀) → ((𝜑 ∧ (𝑚 + 1) ∈ (1...𝑀)) → 𝐴 < (𝐹‘(𝑚 + 1)))) |
145 | 130, 132,
144 | sylc 65 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ 𝜑) → 𝐴 < (𝐹‘(𝑚 + 1))) |
146 | 145 | 3adant2 1128 |
. . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 𝐴 < (𝐹‘(𝑚 + 1))) |
147 | 70, 119, 63, 123, 126, 129, 125, 146 | ltmul12ad 11624 |
. . . . 5
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → ((𝐴↑𝑚) · 𝐴) < ((𝑋‘𝑚) · (𝐹‘(𝑚 + 1)))) |
148 | 51 | 3ad2ant3 1132 |
. . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 𝐴 ∈ ℂ) |
149 | 148, 69 | expp1d 13566 |
. . . . 5
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝐴↑(𝑚 + 1)) = ((𝐴↑𝑚) · 𝐴)) |
150 | 53 | fveq1i 6663 |
. . . . . . 7
⊢ (𝑋‘(𝑚 + 1)) = (seq1( · , 𝐹)‘(𝑚 + 1)) |
151 | 150 | a1i 11 |
. . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝑋‘(𝑚 + 1)) = (seq1( · , 𝐹)‘(𝑚 + 1))) |
152 | 64 | 3ad2ant1 1130 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → 𝑚 ∈
(ℤ≥‘1)) |
153 | | seqp1 13438 |
. . . . . . 7
⊢ (𝑚 ∈
(ℤ≥‘1) → (seq1( · , 𝐹)‘(𝑚 + 1)) = ((seq1( · , 𝐹)‘𝑚) · (𝐹‘(𝑚 + 1)))) |
154 | 152, 153 | syl 17 |
. . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (seq1( · , 𝐹)‘(𝑚 + 1)) = ((seq1( · , 𝐹)‘𝑚) · (𝐹‘(𝑚 + 1)))) |
155 | 71 | a1i 11 |
. . . . . . . 8
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝑋‘𝑚) = (seq1( · , 𝐹)‘𝑚)) |
156 | 155 | eqcomd 2764 |
. . . . . . 7
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (seq1( · , 𝐹)‘𝑚) = (𝑋‘𝑚)) |
157 | 156 | oveq1d 7170 |
. . . . . 6
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → ((seq1( · , 𝐹)‘𝑚) · (𝐹‘(𝑚 + 1))) = ((𝑋‘𝑚) · (𝐹‘(𝑚 + 1)))) |
158 | 151, 154,
157 | 3eqtrd 2797 |
. . . . 5
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝑋‘(𝑚 + 1)) = ((𝑋‘𝑚) · (𝐹‘(𝑚 + 1)))) |
159 | 147, 149,
158 | 3brtr4d 5067 |
. . . 4
⊢ ((𝑚 ∈ (1..^𝑀) ∧ (𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) ∧ 𝜑) → (𝐴↑(𝑚 + 1)) < (𝑋‘(𝑚 + 1))) |
160 | 159 | 3exp 1116 |
. . 3
⊢ (𝑚 ∈ (1..^𝑀) → ((𝜑 → (𝐴↑𝑚) < (𝑋‘𝑚)) → (𝜑 → (𝐴↑(𝑚 + 1)) < (𝑋‘(𝑚 + 1))))) |
161 | 9, 13, 17, 21, 61, 160 | fzind2 13209 |
. 2
⊢ (𝑀 ∈ (1...𝑀) → (𝜑 → (𝐴↑𝑀) < (𝑋‘𝑀))) |
162 | 5, 161 | mpcom 38 |
1
⊢ (𝜑 → (𝐴↑𝑀) < (𝑋‘𝑀)) |