MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsucOLD Structured version   Visualization version   GIF version

Theorem ordsucOLD 7834
Description: Obsolete version of ordsuc 7833 as of 6-Jan-2025. (Contributed by NM, 3-Apr-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ordsucOLD (Ord 𝐴 ↔ Ord suc 𝐴)

Proof of Theorem ordsucOLD
StepHypRef Expression
1 elong 6394 . . . 4 (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴))
2 onsuc 7831 . . . . 5 (𝐴 ∈ On → suc 𝐴 ∈ On)
3 eloni 6396 . . . . 5 (suc 𝐴 ∈ On → Ord suc 𝐴)
42, 3syl 17 . . . 4 (𝐴 ∈ On → Ord suc 𝐴)
51, 4biimtrrdi 254 . . 3 (𝐴 ∈ V → (Ord 𝐴 → Ord suc 𝐴))
6 sucidg 6467 . . . 4 (𝐴 ∈ V → 𝐴 ∈ suc 𝐴)
7 ordelord 6408 . . . . 5 ((Ord suc 𝐴𝐴 ∈ suc 𝐴) → Ord 𝐴)
87ex 412 . . . 4 (Ord suc 𝐴 → (𝐴 ∈ suc 𝐴 → Ord 𝐴))
96, 8syl5com 31 . . 3 (𝐴 ∈ V → (Ord suc 𝐴 → Ord 𝐴))
105, 9impbid 212 . 2 (𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴))
11 sucprc 6462 . . . 4 𝐴 ∈ V → suc 𝐴 = 𝐴)
1211eqcomd 2741 . . 3 𝐴 ∈ V → 𝐴 = suc 𝐴)
13 ordeq 6393 . . 3 (𝐴 = suc 𝐴 → (Ord 𝐴 ↔ Ord suc 𝐴))
1412, 13syl 17 . 2 𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴))
1510, 14pm2.61i 182 1 (Ord 𝐴 ↔ Ord suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1537  wcel 2106  Vcvv 3478  Ord word 6385  Oncon0 6386  suc csuc 6388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-ord 6389  df-on 6390  df-suc 6392
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator