MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsucOLD Structured version   Visualization version   GIF version

Theorem ordsucOLD 7798
Description: Obsolete version of ordsuc 7797 as of 6-Jan-2025. (Contributed by NM, 3-Apr-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ordsucOLD (Ord 𝐴 ↔ Ord suc 𝐴)

Proof of Theorem ordsucOLD
StepHypRef Expression
1 elong 6369 . . . 4 (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴))
2 onsuc 7795 . . . . 5 (𝐴 ∈ On → suc 𝐴 ∈ On)
3 eloni 6371 . . . . 5 (suc 𝐴 ∈ On → Ord suc 𝐴)
42, 3syl 17 . . . 4 (𝐴 ∈ On → Ord suc 𝐴)
51, 4syl6bir 253 . . 3 (𝐴 ∈ V → (Ord 𝐴 → Ord suc 𝐴))
6 sucidg 6442 . . . 4 (𝐴 ∈ V → 𝐴 ∈ suc 𝐴)
7 ordelord 6383 . . . . 5 ((Ord suc 𝐴𝐴 ∈ suc 𝐴) → Ord 𝐴)
87ex 413 . . . 4 (Ord suc 𝐴 → (𝐴 ∈ suc 𝐴 → Ord 𝐴))
96, 8syl5com 31 . . 3 (𝐴 ∈ V → (Ord suc 𝐴 → Ord 𝐴))
105, 9impbid 211 . 2 (𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴))
11 sucprc 6437 . . . 4 𝐴 ∈ V → suc 𝐴 = 𝐴)
1211eqcomd 2738 . . 3 𝐴 ∈ V → 𝐴 = suc 𝐴)
13 ordeq 6368 . . 3 (𝐴 = suc 𝐴 → (Ord 𝐴 ↔ Ord suc 𝐴))
1412, 13syl 17 . 2 𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴))
1510, 14pm2.61i 182 1 (Ord 𝐴 ↔ Ord suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1541  wcel 2106  Vcvv 3474  Ord word 6360  Oncon0 6361  suc csuc 6363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-ord 6364  df-on 6365  df-suc 6367
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator