| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordsucOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of ordsuc 7812 as of 6-Jan-2025. (Contributed by NM, 3-Apr-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ordsucOLD | ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elong 6365 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴)) | |
| 2 | onsuc 7810 | . . . . 5 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
| 3 | eloni 6367 | . . . . 5 ⊢ (suc 𝐴 ∈ On → Ord suc 𝐴) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐴 ∈ On → Ord suc 𝐴) |
| 5 | 1, 4 | biimtrrdi 254 | . . 3 ⊢ (𝐴 ∈ V → (Ord 𝐴 → Ord suc 𝐴)) |
| 6 | sucidg 6440 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
| 7 | ordelord 6379 | . . . . 5 ⊢ ((Ord suc 𝐴 ∧ 𝐴 ∈ suc 𝐴) → Ord 𝐴) | |
| 8 | 7 | ex 412 | . . . 4 ⊢ (Ord suc 𝐴 → (𝐴 ∈ suc 𝐴 → Ord 𝐴)) |
| 9 | 6, 8 | syl5com 31 | . . 3 ⊢ (𝐴 ∈ V → (Ord suc 𝐴 → Ord 𝐴)) |
| 10 | 5, 9 | impbid 212 | . 2 ⊢ (𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴)) |
| 11 | sucprc 6435 | . . . 4 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) | |
| 12 | 11 | eqcomd 2742 | . . 3 ⊢ (¬ 𝐴 ∈ V → 𝐴 = suc 𝐴) |
| 13 | ordeq 6364 | . . 3 ⊢ (𝐴 = suc 𝐴 → (Ord 𝐴 ↔ Ord suc 𝐴)) | |
| 14 | 12, 13 | syl 17 | . 2 ⊢ (¬ 𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴)) |
| 15 | 10, 14 | pm2.61i 182 | 1 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3464 Ord word 6356 Oncon0 6357 suc csuc 6359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 df-suc 6363 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |