MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsucOLD Structured version   Visualization version   GIF version

Theorem ordsucOLD 7792
Description: Obsolete version of ordsuc 7791 as of 6-Jan-2025. (Contributed by NM, 3-Apr-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ordsucOLD (Ord 𝐴 ↔ Ord suc 𝐴)

Proof of Theorem ordsucOLD
StepHypRef Expression
1 elong 6343 . . . 4 (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴))
2 onsuc 7790 . . . . 5 (𝐴 ∈ On → suc 𝐴 ∈ On)
3 eloni 6345 . . . . 5 (suc 𝐴 ∈ On → Ord suc 𝐴)
42, 3syl 17 . . . 4 (𝐴 ∈ On → Ord suc 𝐴)
51, 4biimtrrdi 254 . . 3 (𝐴 ∈ V → (Ord 𝐴 → Ord suc 𝐴))
6 sucidg 6418 . . . 4 (𝐴 ∈ V → 𝐴 ∈ suc 𝐴)
7 ordelord 6357 . . . . 5 ((Ord suc 𝐴𝐴 ∈ suc 𝐴) → Ord 𝐴)
87ex 412 . . . 4 (Ord suc 𝐴 → (𝐴 ∈ suc 𝐴 → Ord 𝐴))
96, 8syl5com 31 . . 3 (𝐴 ∈ V → (Ord suc 𝐴 → Ord 𝐴))
105, 9impbid 212 . 2 (𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴))
11 sucprc 6413 . . . 4 𝐴 ∈ V → suc 𝐴 = 𝐴)
1211eqcomd 2736 . . 3 𝐴 ∈ V → 𝐴 = suc 𝐴)
13 ordeq 6342 . . 3 (𝐴 = suc 𝐴 → (Ord 𝐴 ↔ Ord suc 𝐴))
1412, 13syl 17 . 2 𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴))
1510, 14pm2.61i 182 1 (Ord 𝐴 ↔ Ord suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109  Vcvv 3450  Ord word 6334  Oncon0 6335  suc csuc 6337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338  df-on 6339  df-suc 6341
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator