![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordsucOLD | Structured version Visualization version GIF version |
Description: Obsolete version of ordsuc 7849 as of 6-Jan-2025. (Contributed by NM, 3-Apr-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ordsucOLD | ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elong 6403 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴)) | |
2 | onsuc 7847 | . . . . 5 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
3 | eloni 6405 | . . . . 5 ⊢ (suc 𝐴 ∈ On → Ord suc 𝐴) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐴 ∈ On → Ord suc 𝐴) |
5 | 1, 4 | biimtrrdi 254 | . . 3 ⊢ (𝐴 ∈ V → (Ord 𝐴 → Ord suc 𝐴)) |
6 | sucidg 6476 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
7 | ordelord 6417 | . . . . 5 ⊢ ((Ord suc 𝐴 ∧ 𝐴 ∈ suc 𝐴) → Ord 𝐴) | |
8 | 7 | ex 412 | . . . 4 ⊢ (Ord suc 𝐴 → (𝐴 ∈ suc 𝐴 → Ord 𝐴)) |
9 | 6, 8 | syl5com 31 | . . 3 ⊢ (𝐴 ∈ V → (Ord suc 𝐴 → Ord 𝐴)) |
10 | 5, 9 | impbid 212 | . 2 ⊢ (𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴)) |
11 | sucprc 6471 | . . . 4 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) | |
12 | 11 | eqcomd 2746 | . . 3 ⊢ (¬ 𝐴 ∈ V → 𝐴 = suc 𝐴) |
13 | ordeq 6402 | . . 3 ⊢ (𝐴 = suc 𝐴 → (Ord 𝐴 ↔ Ord suc 𝐴)) | |
14 | 12, 13 | syl 17 | . 2 ⊢ (¬ 𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴)) |
15 | 10, 14 | pm2.61i 182 | 1 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1537 ∈ wcel 2108 Vcvv 3488 Ord word 6394 Oncon0 6395 suc csuc 6397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-suc 6401 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |