Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordsuc | Structured version Visualization version GIF version |
Description: The successor of an ordinal class is ordinal. (Contributed by NM, 3-Apr-1995.) |
Ref | Expression |
---|---|
ordsuc | ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elong 6221 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴)) | |
2 | suceloni 7592 | . . . . 5 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
3 | eloni 6223 | . . . . 5 ⊢ (suc 𝐴 ∈ On → Ord suc 𝐴) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐴 ∈ On → Ord suc 𝐴) |
5 | 1, 4 | syl6bir 257 | . . 3 ⊢ (𝐴 ∈ V → (Ord 𝐴 → Ord suc 𝐴)) |
6 | sucidg 6291 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
7 | ordelord 6235 | . . . . 5 ⊢ ((Ord suc 𝐴 ∧ 𝐴 ∈ suc 𝐴) → Ord 𝐴) | |
8 | 7 | ex 416 | . . . 4 ⊢ (Ord suc 𝐴 → (𝐴 ∈ suc 𝐴 → Ord 𝐴)) |
9 | 6, 8 | syl5com 31 | . . 3 ⊢ (𝐴 ∈ V → (Ord suc 𝐴 → Ord 𝐴)) |
10 | 5, 9 | impbid 215 | . 2 ⊢ (𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴)) |
11 | sucprc 6288 | . . . 4 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) | |
12 | 11 | eqcomd 2743 | . . 3 ⊢ (¬ 𝐴 ∈ V → 𝐴 = suc 𝐴) |
13 | ordeq 6220 | . . 3 ⊢ (𝐴 = suc 𝐴 → (Ord 𝐴 ↔ Ord suc 𝐴)) | |
14 | 12, 13 | syl 17 | . 2 ⊢ (¬ 𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴)) |
15 | 10, 14 | pm2.61i 185 | 1 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 = wceq 1543 ∈ wcel 2110 Vcvv 3408 Ord word 6212 Oncon0 6213 suc csuc 6215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-11 2158 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-tr 5162 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-ord 6216 df-on 6217 df-suc 6219 |
This theorem is referenced by: ordpwsuc 7594 sucelon 7596 ordsucss 7597 onpsssuc 7598 ordsucelsuc 7601 ordsucsssuc 7602 ordsucuniel 7603 ordsucun 7604 onsucuni2 7613 0elsuc 7614 nlimsucg 7621 limsssuc 7629 php4 8833 cantnflt 9287 fin23lem26 9939 hsmexlem1 10040 satfn 33030 nosupres 33647 noetasuplem4 33676 noetainflem4 33680 scutbdaybnd2lim 33748 onsuct0 34367 dfsucon 40815 |
Copyright terms: Public domain | W3C validator |