![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordsuc | Structured version Visualization version GIF version |
Description: A class is ordinal if and only if its successor is ordinal. (Contributed by NM, 3-Apr-1995.) Avoid ax-un 7754. (Revised by BTernaryTau, 6-Jan-2025.) |
Ref | Expression |
---|---|
ordsuc | ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsuci 7828 | . 2 ⊢ (Ord 𝐴 → Ord suc 𝐴) | |
2 | sucidg 6467 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
3 | ordelord 6408 | . . . . 5 ⊢ ((Ord suc 𝐴 ∧ 𝐴 ∈ suc 𝐴) → Ord 𝐴) | |
4 | 3 | ex 412 | . . . 4 ⊢ (Ord suc 𝐴 → (𝐴 ∈ suc 𝐴 → Ord 𝐴)) |
5 | 2, 4 | syl5com 31 | . . 3 ⊢ (𝐴 ∈ V → (Ord suc 𝐴 → Ord 𝐴)) |
6 | sucprc 6462 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) | |
7 | 6 | eqcomd 2741 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → 𝐴 = suc 𝐴) |
8 | ordeq 6393 | . . . . 5 ⊢ (𝐴 = suc 𝐴 → (Ord 𝐴 ↔ Ord suc 𝐴)) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴)) |
10 | 9 | biimprd 248 | . . 3 ⊢ (¬ 𝐴 ∈ V → (Ord suc 𝐴 → Ord 𝐴)) |
11 | 5, 10 | pm2.61i 182 | . 2 ⊢ (Ord suc 𝐴 → Ord 𝐴) |
12 | 1, 11 | impbii 209 | 1 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 Vcvv 3478 Ord word 6385 suc csuc 6388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 df-on 6390 df-suc 6392 |
This theorem is referenced by: ordpwsuc 7835 onsucb 7837 ordsucss 7838 onpsssuc 7839 ordsucelsuc 7842 ordsucsssuc 7843 ordsucuniel 7844 ordsucun 7845 onsucuni2 7854 0elsuc 7855 nlimsucg 7863 limsssuc 7871 cofon1 8709 cofon2 8710 php4 9248 cantnflt 9710 fin23lem26 10363 hsmexlem1 10464 nosupres 27767 noetasuplem4 27796 noetainflem4 27800 scutbdaybnd2lim 27877 satfn 35340 onsuct0 36424 ordsssucim 43392 dfsucon 43513 |
Copyright terms: Public domain | W3C validator |