|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ordsuc | Structured version Visualization version GIF version | ||
| Description: A class is ordinal if and only if its successor is ordinal. (Contributed by NM, 3-Apr-1995.) Avoid ax-un 7755. (Revised by BTernaryTau, 6-Jan-2025.) | 
| Ref | Expression | 
|---|---|
| ordsuc | ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ordsuci 7828 | . 2 ⊢ (Ord 𝐴 → Ord suc 𝐴) | |
| 2 | sucidg 6465 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
| 3 | ordelord 6406 | . . . . 5 ⊢ ((Ord suc 𝐴 ∧ 𝐴 ∈ suc 𝐴) → Ord 𝐴) | |
| 4 | 3 | ex 412 | . . . 4 ⊢ (Ord suc 𝐴 → (𝐴 ∈ suc 𝐴 → Ord 𝐴)) | 
| 5 | 2, 4 | syl5com 31 | . . 3 ⊢ (𝐴 ∈ V → (Ord suc 𝐴 → Ord 𝐴)) | 
| 6 | sucprc 6460 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) | |
| 7 | 6 | eqcomd 2743 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → 𝐴 = suc 𝐴) | 
| 8 | ordeq 6391 | . . . . 5 ⊢ (𝐴 = suc 𝐴 → (Ord 𝐴 ↔ Ord suc 𝐴)) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴)) | 
| 10 | 9 | biimprd 248 | . . 3 ⊢ (¬ 𝐴 ∈ V → (Ord suc 𝐴 → Ord 𝐴)) | 
| 11 | 5, 10 | pm2.61i 182 | . 2 ⊢ (Ord suc 𝐴 → Ord 𝐴) | 
| 12 | 1, 11 | impbii 209 | 1 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 Vcvv 3480 Ord word 6383 suc csuc 6386 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-tr 5260 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-ord 6387 df-on 6388 df-suc 6390 | 
| This theorem is referenced by: ordpwsuc 7835 onsucb 7837 ordsucss 7838 onpsssuc 7839 ordsucelsuc 7842 ordsucsssuc 7843 ordsucuniel 7844 ordsucun 7845 onsucuni2 7854 0elsuc 7855 nlimsucg 7863 limsssuc 7871 cofon1 8710 cofon2 8711 php4 9250 cantnflt 9712 fin23lem26 10365 hsmexlem1 10466 nosupres 27752 noetasuplem4 27781 noetainflem4 27785 scutbdaybnd2lim 27862 satfn 35360 onsuct0 36442 ordsssucim 43415 dfsucon 43536 | 
| Copyright terms: Public domain | W3C validator |