| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordsuc | Structured version Visualization version GIF version | ||
| Description: A class is ordinal if and only if its successor is ordinal. (Contributed by NM, 3-Apr-1995.) Avoid ax-un 7675. (Revised by BTernaryTau, 6-Jan-2025.) |
| Ref | Expression |
|---|---|
| ordsuc | ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsuci 7748 | . 2 ⊢ (Ord 𝐴 → Ord suc 𝐴) | |
| 2 | sucidg 6394 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
| 3 | ordelord 6333 | . . . . 5 ⊢ ((Ord suc 𝐴 ∧ 𝐴 ∈ suc 𝐴) → Ord 𝐴) | |
| 4 | 3 | ex 412 | . . . 4 ⊢ (Ord suc 𝐴 → (𝐴 ∈ suc 𝐴 → Ord 𝐴)) |
| 5 | 2, 4 | syl5com 31 | . . 3 ⊢ (𝐴 ∈ V → (Ord suc 𝐴 → Ord 𝐴)) |
| 6 | sucprc 6389 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) | |
| 7 | 6 | eqcomd 2735 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → 𝐴 = suc 𝐴) |
| 8 | ordeq 6318 | . . . . 5 ⊢ (𝐴 = suc 𝐴 → (Ord 𝐴 ↔ Ord suc 𝐴)) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴)) |
| 10 | 9 | biimprd 248 | . . 3 ⊢ (¬ 𝐴 ∈ V → (Ord suc 𝐴 → Ord 𝐴)) |
| 11 | 5, 10 | pm2.61i 182 | . 2 ⊢ (Ord suc 𝐴 → Ord 𝐴) |
| 12 | 1, 11 | impbii 209 | 1 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3438 Ord word 6310 suc csuc 6313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-ord 6314 df-on 6315 df-suc 6317 |
| This theorem is referenced by: ordpwsuc 7754 onsucb 7756 ordsucss 7757 onpsssuc 7758 ordsucelsuc 7761 ordsucsssuc 7762 ordsucuniel 7763 ordsucun 7764 onsucuni2 7773 0elsuc 7774 nlimsucg 7782 limsssuc 7790 cofon1 8597 cofon2 8598 php4 9134 cantnflt 9587 fin23lem26 10238 hsmexlem1 10339 nosupres 27636 noetasuplem4 27665 noetainflem4 27669 scutbdaybnd2lim 27747 satfn 35347 onsuct0 36434 ordsssucim 43395 dfsucon 43516 |
| Copyright terms: Public domain | W3C validator |