| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supex | Structured version Visualization version GIF version | ||
| Description: A supremum is a set. (Contributed by NM, 22-May-1999.) |
| Ref | Expression |
|---|---|
| supex.1 | ⊢ 𝑅 Or 𝐴 |
| Ref | Expression |
|---|---|
| supex | ⊢ sup(𝐵, 𝐴, 𝑅) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supex.1 | . 2 ⊢ 𝑅 Or 𝐴 | |
| 2 | id 22 | . . 3 ⊢ (𝑅 Or 𝐴 → 𝑅 Or 𝐴) | |
| 3 | 2 | supexd 9411 | . 2 ⊢ (𝑅 Or 𝐴 → sup(𝐵, 𝐴, 𝑅) ∈ V) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ sup(𝐵, 𝐴, 𝑅) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 Or wor 5548 supcsup 9398 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rmo 3356 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-po 5549 df-so 5550 df-sup 9400 |
| This theorem is referenced by: limsupgval 15449 limsupgre 15454 gcdval 16473 pczpre 16825 prmreclem1 16894 prdsdsfn 17435 prdsdsval 17448 xrge0tsms2 24731 mbfsup 25572 mbfinf 25573 itg2val 25636 itg2monolem1 25658 itg2mono 25661 mdegval 25975 mdegxrf 25980 plyeq0lem 26122 dgrval 26140 nmooval 30699 nmopval 31792 nmfnval 31812 lmdvg 33950 esumval 34043 erdszelem3 35187 erdszelem6 35190 supcnvlimsup 45745 limsuplt2 45758 liminfval 45764 limsupge 45766 liminflelimsuplem 45780 fourierdlem79 46190 sge0val 46371 sge0tsms 46385 smflimsuplem1 46825 smflimsuplem2 46826 smflimsuplem4 46828 fsupdm2 46848 |
| Copyright terms: Public domain | W3C validator |