Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > supex | Structured version Visualization version GIF version |
Description: A supremum is a set. (Contributed by NM, 22-May-1999.) |
Ref | Expression |
---|---|
supex.1 | ⊢ 𝑅 Or 𝐴 |
Ref | Expression |
---|---|
supex | ⊢ sup(𝐵, 𝐴, 𝑅) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supex.1 | . 2 ⊢ 𝑅 Or 𝐴 | |
2 | id 22 | . . 3 ⊢ (𝑅 Or 𝐴 → 𝑅 Or 𝐴) | |
3 | 2 | supexd 9190 | . 2 ⊢ (𝑅 Or 𝐴 → sup(𝐵, 𝐴, 𝑅) ∈ V) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ sup(𝐵, 𝐴, 𝑅) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 Vcvv 3431 Or wor 5503 supcsup 9177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rmo 3074 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-po 5504 df-so 5505 df-sup 9179 |
This theorem is referenced by: limsupgval 15183 limsupgre 15188 gcdval 16201 pczpre 16546 prmreclem1 16615 prdsdsfn 17174 prdsdsval 17187 xrge0tsms2 23996 mbfsup 24826 mbfinf 24827 itg2val 24891 itg2monolem1 24913 itg2mono 24916 mdegval 25226 mdegxrf 25231 plyeq0lem 25369 dgrval 25387 nmooval 29121 nmopval 30214 nmfnval 30234 lmdvg 31899 esumval 32010 erdszelem3 33151 erdszelem6 33154 supcnvlimsup 43252 limsuplt2 43265 liminfval 43271 limsupge 43273 liminflelimsuplem 43287 fourierdlem79 43697 sge0val 43875 sge0tsms 43889 smflimsuplem1 44321 smflimsuplem2 44322 smflimsuplem4 44324 |
Copyright terms: Public domain | W3C validator |