| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supex | Structured version Visualization version GIF version | ||
| Description: A supremum is a set. (Contributed by NM, 22-May-1999.) |
| Ref | Expression |
|---|---|
| supex.1 | ⊢ 𝑅 Or 𝐴 |
| Ref | Expression |
|---|---|
| supex | ⊢ sup(𝐵, 𝐴, 𝑅) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supex.1 | . 2 ⊢ 𝑅 Or 𝐴 | |
| 2 | id 22 | . . 3 ⊢ (𝑅 Or 𝐴 → 𝑅 Or 𝐴) | |
| 3 | 2 | supexd 9344 | . 2 ⊢ (𝑅 Or 𝐴 → sup(𝐵, 𝐴, 𝑅) ∈ V) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ sup(𝐵, 𝐴, 𝑅) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 Vcvv 3437 Or wor 5526 supcsup 9331 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rmo 3347 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-po 5527 df-so 5528 df-sup 9333 |
| This theorem is referenced by: limsupgval 15385 limsupgre 15390 gcdval 16409 pczpre 16761 prmreclem1 16830 prdsdsfn 17371 prdsdsval 17384 xrge0tsms2 24752 mbfsup 25593 mbfinf 25594 itg2val 25657 itg2monolem1 25679 itg2mono 25682 mdegval 25996 mdegxrf 26001 plyeq0lem 26143 dgrval 26161 nmooval 30745 nmopval 31838 nmfnval 31858 lmdvg 33987 esumval 34080 erdszelem3 35258 erdszelem6 35261 supcnvlimsup 45863 limsuplt2 45876 liminfval 45882 limsupge 45884 liminflelimsuplem 45898 fourierdlem79 46308 sge0val 46489 sge0tsms 46503 smflimsuplem1 46943 smflimsuplem2 46944 smflimsuplem4 46946 fsupdm2 46966 |
| Copyright terms: Public domain | W3C validator |