| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supex | Structured version Visualization version GIF version | ||
| Description: A supremum is a set. (Contributed by NM, 22-May-1999.) |
| Ref | Expression |
|---|---|
| supex.1 | ⊢ 𝑅 Or 𝐴 |
| Ref | Expression |
|---|---|
| supex | ⊢ sup(𝐵, 𝐴, 𝑅) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supex.1 | . 2 ⊢ 𝑅 Or 𝐴 | |
| 2 | id 22 | . . 3 ⊢ (𝑅 Or 𝐴 → 𝑅 Or 𝐴) | |
| 3 | 2 | supexd 9404 | . 2 ⊢ (𝑅 Or 𝐴 → sup(𝐵, 𝐴, 𝑅) ∈ V) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ sup(𝐵, 𝐴, 𝑅) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 Or wor 5545 supcsup 9391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rmo 3354 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-po 5546 df-so 5547 df-sup 9393 |
| This theorem is referenced by: limsupgval 15442 limsupgre 15447 gcdval 16466 pczpre 16818 prmreclem1 16887 prdsdsfn 17428 prdsdsval 17441 xrge0tsms2 24724 mbfsup 25565 mbfinf 25566 itg2val 25629 itg2monolem1 25651 itg2mono 25654 mdegval 25968 mdegxrf 25973 plyeq0lem 26115 dgrval 26133 nmooval 30692 nmopval 31785 nmfnval 31805 lmdvg 33943 esumval 34036 erdszelem3 35180 erdszelem6 35183 supcnvlimsup 45738 limsuplt2 45751 liminfval 45757 limsupge 45759 liminflelimsuplem 45773 fourierdlem79 46183 sge0val 46364 sge0tsms 46378 smflimsuplem1 46818 smflimsuplem2 46819 smflimsuplem4 46821 fsupdm2 46841 |
| Copyright terms: Public domain | W3C validator |