| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supex | Structured version Visualization version GIF version | ||
| Description: A supremum is a set. (Contributed by NM, 22-May-1999.) |
| Ref | Expression |
|---|---|
| supex.1 | ⊢ 𝑅 Or 𝐴 |
| Ref | Expression |
|---|---|
| supex | ⊢ sup(𝐵, 𝐴, 𝑅) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supex.1 | . 2 ⊢ 𝑅 Or 𝐴 | |
| 2 | id 22 | . . 3 ⊢ (𝑅 Or 𝐴 → 𝑅 Or 𝐴) | |
| 3 | 2 | supexd 9465 | . 2 ⊢ (𝑅 Or 𝐴 → sup(𝐵, 𝐴, 𝑅) ∈ V) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ sup(𝐵, 𝐴, 𝑅) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 Or wor 5560 supcsup 9452 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rmo 3359 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-po 5561 df-so 5562 df-sup 9454 |
| This theorem is referenced by: limsupgval 15492 limsupgre 15497 gcdval 16515 pczpre 16867 prmreclem1 16936 prdsdsfn 17479 prdsdsval 17492 xrge0tsms2 24775 mbfsup 25617 mbfinf 25618 itg2val 25681 itg2monolem1 25703 itg2mono 25706 mdegval 26020 mdegxrf 26025 plyeq0lem 26167 dgrval 26185 nmooval 30744 nmopval 31837 nmfnval 31857 lmdvg 33984 esumval 34077 erdszelem3 35215 erdszelem6 35218 supcnvlimsup 45769 limsuplt2 45782 liminfval 45788 limsupge 45790 liminflelimsuplem 45804 fourierdlem79 46214 sge0val 46395 sge0tsms 46409 smflimsuplem1 46849 smflimsuplem2 46850 smflimsuplem4 46852 fsupdm2 46872 |
| Copyright terms: Public domain | W3C validator |