![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supex | Structured version Visualization version GIF version |
Description: A supremum is a set. (Contributed by NM, 22-May-1999.) |
Ref | Expression |
---|---|
supex.1 | ⊢ 𝑅 Or 𝐴 |
Ref | Expression |
---|---|
supex | ⊢ sup(𝐵, 𝐴, 𝑅) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supex.1 | . 2 ⊢ 𝑅 Or 𝐴 | |
2 | id 22 | . . 3 ⊢ (𝑅 Or 𝐴 → 𝑅 Or 𝐴) | |
3 | 2 | supexd 9489 | . 2 ⊢ (𝑅 Or 𝐴 → sup(𝐵, 𝐴, 𝑅) ∈ V) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ sup(𝐵, 𝐴, 𝑅) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 Vcvv 3462 Or wor 5585 supcsup 9476 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-rex 3061 df-rmo 3364 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-po 5586 df-so 5587 df-sup 9478 |
This theorem is referenced by: limsupgval 15473 limsupgre 15478 gcdval 16491 pczpre 16844 prmreclem1 16913 prdsdsfn 17475 prdsdsval 17488 xrge0tsms2 24839 mbfsup 25681 mbfinf 25682 itg2val 25746 itg2monolem1 25768 itg2mono 25771 mdegval 26087 mdegxrf 26092 plyeq0lem 26234 dgrval 26252 nmooval 30693 nmopval 31786 nmfnval 31806 lmdvg 33781 esumval 33892 erdszelem3 35034 erdszelem6 35037 supcnvlimsup 45397 limsuplt2 45410 liminfval 45416 limsupge 45418 liminflelimsuplem 45432 fourierdlem79 45842 sge0val 46023 sge0tsms 46037 smflimsuplem1 46477 smflimsuplem2 46478 smflimsuplem4 46480 fsupdm2 46500 |
Copyright terms: Public domain | W3C validator |