| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supex | Structured version Visualization version GIF version | ||
| Description: A supremum is a set. (Contributed by NM, 22-May-1999.) |
| Ref | Expression |
|---|---|
| supex.1 | ⊢ 𝑅 Or 𝐴 |
| Ref | Expression |
|---|---|
| supex | ⊢ sup(𝐵, 𝐴, 𝑅) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supex.1 | . 2 ⊢ 𝑅 Or 𝐴 | |
| 2 | id 22 | . . 3 ⊢ (𝑅 Or 𝐴 → 𝑅 Or 𝐴) | |
| 3 | 2 | supexd 9362 | . 2 ⊢ (𝑅 Or 𝐴 → sup(𝐵, 𝐴, 𝑅) ∈ V) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ sup(𝐵, 𝐴, 𝑅) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3438 Or wor 5530 supcsup 9349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rmo 3345 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-po 5531 df-so 5532 df-sup 9351 |
| This theorem is referenced by: limsupgval 15401 limsupgre 15406 gcdval 16425 pczpre 16777 prmreclem1 16846 prdsdsfn 17387 prdsdsval 17400 xrge0tsms2 24740 mbfsup 25581 mbfinf 25582 itg2val 25645 itg2monolem1 25667 itg2mono 25670 mdegval 25984 mdegxrf 25989 plyeq0lem 26131 dgrval 26149 nmooval 30725 nmopval 31818 nmfnval 31838 lmdvg 33919 esumval 34012 erdszelem3 35165 erdszelem6 35168 supcnvlimsup 45722 limsuplt2 45735 liminfval 45741 limsupge 45743 liminflelimsuplem 45757 fourierdlem79 46167 sge0val 46348 sge0tsms 46362 smflimsuplem1 46802 smflimsuplem2 46803 smflimsuplem4 46805 fsupdm2 46825 |
| Copyright terms: Public domain | W3C validator |