Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > supex | Structured version Visualization version GIF version |
Description: A supremum is a set. (Contributed by NM, 22-May-1999.) |
Ref | Expression |
---|---|
supex.1 | ⊢ 𝑅 Or 𝐴 |
Ref | Expression |
---|---|
supex | ⊢ sup(𝐵, 𝐴, 𝑅) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supex.1 | . 2 ⊢ 𝑅 Or 𝐴 | |
2 | id 22 | . . 3 ⊢ (𝑅 Or 𝐴 → 𝑅 Or 𝐴) | |
3 | 2 | supexd 9212 | . 2 ⊢ (𝑅 Or 𝐴 → sup(𝐵, 𝐴, 𝑅) ∈ V) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ sup(𝐵, 𝐴, 𝑅) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3432 Or wor 5502 supcsup 9199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rmo 3071 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-po 5503 df-so 5504 df-sup 9201 |
This theorem is referenced by: limsupgval 15185 limsupgre 15190 gcdval 16203 pczpre 16548 prmreclem1 16617 prdsdsfn 17176 prdsdsval 17189 xrge0tsms2 23998 mbfsup 24828 mbfinf 24829 itg2val 24893 itg2monolem1 24915 itg2mono 24918 mdegval 25228 mdegxrf 25233 plyeq0lem 25371 dgrval 25389 nmooval 29125 nmopval 30218 nmfnval 30238 lmdvg 31903 esumval 32014 erdszelem3 33155 erdszelem6 33158 supcnvlimsup 43281 limsuplt2 43294 liminfval 43300 limsupge 43302 liminflelimsuplem 43316 fourierdlem79 43726 sge0val 43904 sge0tsms 43918 smflimsuplem1 44353 smflimsuplem2 44354 smflimsuplem4 44356 |
Copyright terms: Public domain | W3C validator |