| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supex | Structured version Visualization version GIF version | ||
| Description: A supremum is a set. (Contributed by NM, 22-May-1999.) |
| Ref | Expression |
|---|---|
| supex.1 | ⊢ 𝑅 Or 𝐴 |
| Ref | Expression |
|---|---|
| supex | ⊢ sup(𝐵, 𝐴, 𝑅) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supex.1 | . 2 ⊢ 𝑅 Or 𝐴 | |
| 2 | id 22 | . . 3 ⊢ (𝑅 Or 𝐴 → 𝑅 Or 𝐴) | |
| 3 | 2 | supexd 9493 | . 2 ⊢ (𝑅 Or 𝐴 → sup(𝐵, 𝐴, 𝑅) ∈ V) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ sup(𝐵, 𝐴, 𝑅) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3480 Or wor 5591 supcsup 9480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rmo 3380 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-po 5592 df-so 5593 df-sup 9482 |
| This theorem is referenced by: limsupgval 15512 limsupgre 15517 gcdval 16533 pczpre 16885 prmreclem1 16954 prdsdsfn 17510 prdsdsval 17523 xrge0tsms2 24857 mbfsup 25699 mbfinf 25700 itg2val 25763 itg2monolem1 25785 itg2mono 25788 mdegval 26102 mdegxrf 26107 plyeq0lem 26249 dgrval 26267 nmooval 30782 nmopval 31875 nmfnval 31895 lmdvg 33952 esumval 34047 erdszelem3 35198 erdszelem6 35201 supcnvlimsup 45755 limsuplt2 45768 liminfval 45774 limsupge 45776 liminflelimsuplem 45790 fourierdlem79 46200 sge0val 46381 sge0tsms 46395 smflimsuplem1 46835 smflimsuplem2 46836 smflimsuplem4 46838 fsupdm2 46858 |
| Copyright terms: Public domain | W3C validator |