![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supex | Structured version Visualization version GIF version |
Description: A supremum is a set. (Contributed by NM, 22-May-1999.) |
Ref | Expression |
---|---|
supex.1 | ⊢ 𝑅 Or 𝐴 |
Ref | Expression |
---|---|
supex | ⊢ sup(𝐵, 𝐴, 𝑅) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supex.1 | . 2 ⊢ 𝑅 Or 𝐴 | |
2 | id 22 | . . 3 ⊢ (𝑅 Or 𝐴 → 𝑅 Or 𝐴) | |
3 | 2 | supexd 9522 | . 2 ⊢ (𝑅 Or 𝐴 → sup(𝐵, 𝐴, 𝑅) ∈ V) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ sup(𝐵, 𝐴, 𝑅) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 Or wor 5606 supcsup 9509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rmo 3388 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-po 5607 df-so 5608 df-sup 9511 |
This theorem is referenced by: limsupgval 15522 limsupgre 15527 gcdval 16542 pczpre 16894 prmreclem1 16963 prdsdsfn 17525 prdsdsval 17538 xrge0tsms2 24876 mbfsup 25718 mbfinf 25719 itg2val 25783 itg2monolem1 25805 itg2mono 25808 mdegval 26122 mdegxrf 26127 plyeq0lem 26269 dgrval 26287 nmooval 30795 nmopval 31888 nmfnval 31908 lmdvg 33899 esumval 34010 erdszelem3 35161 erdszelem6 35164 supcnvlimsup 45661 limsuplt2 45674 liminfval 45680 limsupge 45682 liminflelimsuplem 45696 fourierdlem79 46106 sge0val 46287 sge0tsms 46301 smflimsuplem1 46741 smflimsuplem2 46742 smflimsuplem4 46744 fsupdm2 46764 |
Copyright terms: Public domain | W3C validator |