| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supex | Structured version Visualization version GIF version | ||
| Description: A supremum is a set. (Contributed by NM, 22-May-1999.) |
| Ref | Expression |
|---|---|
| supex.1 | ⊢ 𝑅 Or 𝐴 |
| Ref | Expression |
|---|---|
| supex | ⊢ sup(𝐵, 𝐴, 𝑅) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supex.1 | . 2 ⊢ 𝑅 Or 𝐴 | |
| 2 | id 22 | . . 3 ⊢ (𝑅 Or 𝐴 → 𝑅 Or 𝐴) | |
| 3 | 2 | supexd 9337 | . 2 ⊢ (𝑅 Or 𝐴 → sup(𝐵, 𝐴, 𝑅) ∈ V) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ sup(𝐵, 𝐴, 𝑅) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 Or wor 5523 supcsup 9324 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rmo 3346 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-po 5524 df-so 5525 df-sup 9326 |
| This theorem is referenced by: limsupgval 15383 limsupgre 15388 gcdval 16407 pczpre 16759 prmreclem1 16828 prdsdsfn 17369 prdsdsval 17382 xrge0tsms2 24752 mbfsup 25593 mbfinf 25594 itg2val 25657 itg2monolem1 25679 itg2mono 25682 mdegval 25996 mdegxrf 26001 plyeq0lem 26143 dgrval 26161 nmooval 30741 nmopval 31834 nmfnval 31854 lmdvg 33964 esumval 34057 erdszelem3 35235 erdszelem6 35238 supcnvlimsup 45784 limsuplt2 45797 liminfval 45803 limsupge 45805 liminflelimsuplem 45819 fourierdlem79 46229 sge0val 46410 sge0tsms 46424 smflimsuplem1 46864 smflimsuplem2 46865 smflimsuplem4 46867 fsupdm2 46887 |
| Copyright terms: Public domain | W3C validator |