Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > supex | Structured version Visualization version GIF version |
Description: A supremum is a set. (Contributed by NM, 22-May-1999.) |
Ref | Expression |
---|---|
supex.1 | ⊢ 𝑅 Or 𝐴 |
Ref | Expression |
---|---|
supex | ⊢ sup(𝐵, 𝐴, 𝑅) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supex.1 | . 2 ⊢ 𝑅 Or 𝐴 | |
2 | id 22 | . . 3 ⊢ (𝑅 Or 𝐴 → 𝑅 Or 𝐴) | |
3 | 2 | supexd 9142 | . 2 ⊢ (𝑅 Or 𝐴 → sup(𝐵, 𝐴, 𝑅) ∈ V) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ sup(𝐵, 𝐴, 𝑅) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 Or wor 5493 supcsup 9129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rmo 3071 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-po 5494 df-so 5495 df-sup 9131 |
This theorem is referenced by: limsupgval 15113 limsupgre 15118 gcdval 16131 pczpre 16476 prmreclem1 16545 prdsdsfn 17093 prdsdsval 17106 xrge0tsms2 23904 mbfsup 24733 mbfinf 24734 itg2val 24798 itg2monolem1 24820 itg2mono 24823 mdegval 25133 mdegxrf 25138 plyeq0lem 25276 dgrval 25294 nmooval 29026 nmopval 30119 nmfnval 30139 lmdvg 31805 esumval 31914 erdszelem3 33055 erdszelem6 33058 supcnvlimsup 43171 limsuplt2 43184 liminfval 43190 limsupge 43192 liminflelimsuplem 43206 fourierdlem79 43616 sge0val 43794 sge0tsms 43808 smflimsuplem1 44240 smflimsuplem2 44241 smflimsuplem4 44243 |
Copyright terms: Public domain | W3C validator |