Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfsschain Structured version   Visualization version   GIF version

Theorem satfsschain 35391
Description: The binary relation of a satisfaction predicate as function over wff codes is an increasing chain (with respect to inclusion). (Contributed by AV, 15-Oct-2023.)
Hypothesis
Ref Expression
satfsschain.s 𝑆 = (𝑀 Sat 𝐸)
Assertion
Ref Expression
satfsschain (((𝑀𝑉𝐸𝑊) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐵𝐴 → (𝑆𝐵) ⊆ (𝑆𝐴)))

Proof of Theorem satfsschain
Dummy variables 𝑎 𝑏 𝑖 𝑘 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6881 . . . . . . 7 (𝑏 = 𝐵 → (𝑆𝑏) = (𝑆𝐵))
21sseq2d 3996 . . . . . 6 (𝑏 = 𝐵 → ((𝑆𝐵) ⊆ (𝑆𝑏) ↔ (𝑆𝐵) ⊆ (𝑆𝐵)))
32imbi2d 340 . . . . 5 (𝑏 = 𝐵 → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑏)) ↔ ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝐵))))
4 fveq2 6881 . . . . . . 7 (𝑏 = 𝑎 → (𝑆𝑏) = (𝑆𝑎))
54sseq2d 3996 . . . . . 6 (𝑏 = 𝑎 → ((𝑆𝐵) ⊆ (𝑆𝑏) ↔ (𝑆𝐵) ⊆ (𝑆𝑎)))
65imbi2d 340 . . . . 5 (𝑏 = 𝑎 → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑏)) ↔ ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑎))))
7 fveq2 6881 . . . . . . 7 (𝑏 = suc 𝑎 → (𝑆𝑏) = (𝑆‘suc 𝑎))
87sseq2d 3996 . . . . . 6 (𝑏 = suc 𝑎 → ((𝑆𝐵) ⊆ (𝑆𝑏) ↔ (𝑆𝐵) ⊆ (𝑆‘suc 𝑎)))
98imbi2d 340 . . . . 5 (𝑏 = suc 𝑎 → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑏)) ↔ ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆‘suc 𝑎))))
10 fveq2 6881 . . . . . . 7 (𝑏 = 𝐴 → (𝑆𝑏) = (𝑆𝐴))
1110sseq2d 3996 . . . . . 6 (𝑏 = 𝐴 → ((𝑆𝐵) ⊆ (𝑆𝑏) ↔ (𝑆𝐵) ⊆ (𝑆𝐴)))
1211imbi2d 340 . . . . 5 (𝑏 = 𝐴 → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑏)) ↔ ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝐴))))
13 ssidd 3987 . . . . . 6 ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝐵))
1413a1i 11 . . . . 5 (𝐵 ∈ ω → ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝐵)))
15 pm2.27 42 . . . . . . . . 9 ((𝑀𝑉𝐸𝑊) → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑎)) → (𝑆𝐵) ⊆ (𝑆𝑎)))
1615adantl 481 . . . . . . . 8 ((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑎)) → (𝑆𝐵) ⊆ (𝑆𝑎)))
17 simpr 484 . . . . . . . . . 10 (((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) ∧ (𝑆𝐵) ⊆ (𝑆𝑎)) → (𝑆𝐵) ⊆ (𝑆𝑎))
18 ssun1 4158 . . . . . . . . . . . 12 (𝑆𝑎) ⊆ ((𝑆𝑎) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑎)(∃𝑣 ∈ (𝑆𝑎)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑧 ∈ (𝑀m ω) ∣ ∀𝑘𝑀 ({⟨𝑖, 𝑘⟩} ∪ (𝑧 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})
19 simpl 482 . . . . . . . . . . . . 13 ((𝑀𝑉𝐸𝑊) → 𝑀𝑉)
20 simpr 484 . . . . . . . . . . . . 13 ((𝑀𝑉𝐸𝑊) → 𝐸𝑊)
21 simplll 774 . . . . . . . . . . . . 13 ((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) → 𝑎 ∈ ω)
22 satfsschain.s . . . . . . . . . . . . . 14 𝑆 = (𝑀 Sat 𝐸)
2322satfvsuc 35388 . . . . . . . . . . . . 13 ((𝑀𝑉𝐸𝑊𝑎 ∈ ω) → (𝑆‘suc 𝑎) = ((𝑆𝑎) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑎)(∃𝑣 ∈ (𝑆𝑎)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑧 ∈ (𝑀m ω) ∣ ∀𝑘𝑀 ({⟨𝑖, 𝑘⟩} ∪ (𝑧 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
2419, 20, 21, 23syl2an23an 1425 . . . . . . . . . . . 12 ((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) → (𝑆‘suc 𝑎) = ((𝑆𝑎) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑎)(∃𝑣 ∈ (𝑆𝑎)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑧 ∈ (𝑀m ω) ∣ ∀𝑘𝑀 ({⟨𝑖, 𝑘⟩} ∪ (𝑧 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
2518, 24sseqtrrid 4007 . . . . . . . . . . 11 ((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) → (𝑆𝑎) ⊆ (𝑆‘suc 𝑎))
2625adantr 480 . . . . . . . . . 10 (((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) ∧ (𝑆𝐵) ⊆ (𝑆𝑎)) → (𝑆𝑎) ⊆ (𝑆‘suc 𝑎))
2717, 26sstrd 3974 . . . . . . . . 9 (((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) ∧ (𝑆𝐵) ⊆ (𝑆𝑎)) → (𝑆𝐵) ⊆ (𝑆‘suc 𝑎))
2827ex 412 . . . . . . . 8 ((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) → ((𝑆𝐵) ⊆ (𝑆𝑎) → (𝑆𝐵) ⊆ (𝑆‘suc 𝑎)))
2916, 28syld 47 . . . . . . 7 ((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑎)) → (𝑆𝐵) ⊆ (𝑆‘suc 𝑎)))
3029ex 412 . . . . . 6 (((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) → ((𝑀𝑉𝐸𝑊) → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑎)) → (𝑆𝐵) ⊆ (𝑆‘suc 𝑎))))
3130com23 86 . . . . 5 (((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑎)) → ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆‘suc 𝑎))))
323, 6, 9, 12, 14, 31findsg 7898 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝐴)))
3332ex 412 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝐴 → ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝐴))))
3433com23 86 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝑀𝑉𝐸𝑊) → (𝐵𝐴 → (𝑆𝐵) ⊆ (𝑆𝐴))))
3534impcom 407 1 (((𝑀𝑉𝐸𝑊) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐵𝐴 → (𝑆𝐵) ⊆ (𝑆𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3052  wrex 3061  {crab 3420  cdif 3928  cun 3929  cin 3930  wss 3931  {csn 4606  cop 4612  {copab 5186  cres 5661  suc csuc 6359  cfv 6536  (class class class)co 7410  ωcom 7866  1st c1st 7991  2nd c2nd 7992  m cmap 8845  𝑔cgna 35361  𝑔cgol 35362   Sat csat 35363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-sat 35370
This theorem is referenced by:  satfvsucsuc  35392  satffunlem2lem2  35433  satffunlem2  35435  satfun  35438
  Copyright terms: Public domain W3C validator