Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfsschain Structured version   Visualization version   GIF version

Theorem satfsschain 33326
Description: The binary relation of a satisfaction predicate as function over wff codes is an increasing chain (with respect to inclusion). (Contributed by AV, 15-Oct-2023.)
Hypothesis
Ref Expression
satfsschain.s 𝑆 = (𝑀 Sat 𝐸)
Assertion
Ref Expression
satfsschain (((𝑀𝑉𝐸𝑊) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐵𝐴 → (𝑆𝐵) ⊆ (𝑆𝐴)))

Proof of Theorem satfsschain
Dummy variables 𝑎 𝑏 𝑖 𝑘 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6774 . . . . . . 7 (𝑏 = 𝐵 → (𝑆𝑏) = (𝑆𝐵))
21sseq2d 3953 . . . . . 6 (𝑏 = 𝐵 → ((𝑆𝐵) ⊆ (𝑆𝑏) ↔ (𝑆𝐵) ⊆ (𝑆𝐵)))
32imbi2d 341 . . . . 5 (𝑏 = 𝐵 → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑏)) ↔ ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝐵))))
4 fveq2 6774 . . . . . . 7 (𝑏 = 𝑎 → (𝑆𝑏) = (𝑆𝑎))
54sseq2d 3953 . . . . . 6 (𝑏 = 𝑎 → ((𝑆𝐵) ⊆ (𝑆𝑏) ↔ (𝑆𝐵) ⊆ (𝑆𝑎)))
65imbi2d 341 . . . . 5 (𝑏 = 𝑎 → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑏)) ↔ ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑎))))
7 fveq2 6774 . . . . . . 7 (𝑏 = suc 𝑎 → (𝑆𝑏) = (𝑆‘suc 𝑎))
87sseq2d 3953 . . . . . 6 (𝑏 = suc 𝑎 → ((𝑆𝐵) ⊆ (𝑆𝑏) ↔ (𝑆𝐵) ⊆ (𝑆‘suc 𝑎)))
98imbi2d 341 . . . . 5 (𝑏 = suc 𝑎 → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑏)) ↔ ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆‘suc 𝑎))))
10 fveq2 6774 . . . . . . 7 (𝑏 = 𝐴 → (𝑆𝑏) = (𝑆𝐴))
1110sseq2d 3953 . . . . . 6 (𝑏 = 𝐴 → ((𝑆𝐵) ⊆ (𝑆𝑏) ↔ (𝑆𝐵) ⊆ (𝑆𝐴)))
1211imbi2d 341 . . . . 5 (𝑏 = 𝐴 → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑏)) ↔ ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝐴))))
13 ssidd 3944 . . . . . 6 ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝐵))
1413a1i 11 . . . . 5 (𝐵 ∈ ω → ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝐵)))
15 pm2.27 42 . . . . . . . . 9 ((𝑀𝑉𝐸𝑊) → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑎)) → (𝑆𝐵) ⊆ (𝑆𝑎)))
1615adantl 482 . . . . . . . 8 ((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑎)) → (𝑆𝐵) ⊆ (𝑆𝑎)))
17 simpr 485 . . . . . . . . . 10 (((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) ∧ (𝑆𝐵) ⊆ (𝑆𝑎)) → (𝑆𝐵) ⊆ (𝑆𝑎))
18 ssun1 4106 . . . . . . . . . . . 12 (𝑆𝑎) ⊆ ((𝑆𝑎) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑎)(∃𝑣 ∈ (𝑆𝑎)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑧 ∈ (𝑀m ω) ∣ ∀𝑘𝑀 ({⟨𝑖, 𝑘⟩} ∪ (𝑧 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})
19 simpl 483 . . . . . . . . . . . . 13 ((𝑀𝑉𝐸𝑊) → 𝑀𝑉)
20 simpr 485 . . . . . . . . . . . . 13 ((𝑀𝑉𝐸𝑊) → 𝐸𝑊)
21 simplll 772 . . . . . . . . . . . . 13 ((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) → 𝑎 ∈ ω)
22 satfsschain.s . . . . . . . . . . . . . 14 𝑆 = (𝑀 Sat 𝐸)
2322satfvsuc 33323 . . . . . . . . . . . . 13 ((𝑀𝑉𝐸𝑊𝑎 ∈ ω) → (𝑆‘suc 𝑎) = ((𝑆𝑎) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑎)(∃𝑣 ∈ (𝑆𝑎)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑧 ∈ (𝑀m ω) ∣ ∀𝑘𝑀 ({⟨𝑖, 𝑘⟩} ∪ (𝑧 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
2419, 20, 21, 23syl2an23an 1422 . . . . . . . . . . . 12 ((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) → (𝑆‘suc 𝑎) = ((𝑆𝑎) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑎)(∃𝑣 ∈ (𝑆𝑎)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑧 ∈ (𝑀m ω) ∣ ∀𝑘𝑀 ({⟨𝑖, 𝑘⟩} ∪ (𝑧 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
2518, 24sseqtrrid 3974 . . . . . . . . . . 11 ((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) → (𝑆𝑎) ⊆ (𝑆‘suc 𝑎))
2625adantr 481 . . . . . . . . . 10 (((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) ∧ (𝑆𝐵) ⊆ (𝑆𝑎)) → (𝑆𝑎) ⊆ (𝑆‘suc 𝑎))
2717, 26sstrd 3931 . . . . . . . . 9 (((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) ∧ (𝑆𝐵) ⊆ (𝑆𝑎)) → (𝑆𝐵) ⊆ (𝑆‘suc 𝑎))
2827ex 413 . . . . . . . 8 ((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) → ((𝑆𝐵) ⊆ (𝑆𝑎) → (𝑆𝐵) ⊆ (𝑆‘suc 𝑎)))
2916, 28syld 47 . . . . . . 7 ((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑎)) → (𝑆𝐵) ⊆ (𝑆‘suc 𝑎)))
3029ex 413 . . . . . 6 (((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) → ((𝑀𝑉𝐸𝑊) → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑎)) → (𝑆𝐵) ⊆ (𝑆‘suc 𝑎))))
3130com23 86 . . . . 5 (((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑎)) → ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆‘suc 𝑎))))
323, 6, 9, 12, 14, 31findsg 7746 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝐴)))
3332ex 413 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝐴 → ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝐴))))
3433com23 86 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝑀𝑉𝐸𝑊) → (𝐵𝐴 → (𝑆𝐵) ⊆ (𝑆𝐴))))
3534impcom 408 1 (((𝑀𝑉𝐸𝑊) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐵𝐴 → (𝑆𝐵) ⊆ (𝑆𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  cdif 3884  cun 3885  cin 3886  wss 3887  {csn 4561  cop 4567  {copab 5136  cres 5591  suc csuc 6268  cfv 6433  (class class class)co 7275  ωcom 7712  1st c1st 7829  2nd c2nd 7830  m cmap 8615  𝑔cgna 33296  𝑔cgol 33297   Sat csat 33298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-sat 33305
This theorem is referenced by:  satfvsucsuc  33327  satffunlem2lem2  33368  satffunlem2  33370  satfun  33373
  Copyright terms: Public domain W3C validator