Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfsschain Structured version   Visualization version   GIF version

Theorem satfsschain 34844
Description: The binary relation of a satisfaction predicate as function over wff codes is an increasing chain (with respect to inclusion). (Contributed by AV, 15-Oct-2023.)
Hypothesis
Ref Expression
satfsschain.s 𝑆 = (𝑀 Sat 𝐸)
Assertion
Ref Expression
satfsschain (((𝑀𝑉𝐸𝑊) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐵𝐴 → (𝑆𝐵) ⊆ (𝑆𝐴)))

Proof of Theorem satfsschain
Dummy variables 𝑎 𝑏 𝑖 𝑘 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6881 . . . . . . 7 (𝑏 = 𝐵 → (𝑆𝑏) = (𝑆𝐵))
21sseq2d 4006 . . . . . 6 (𝑏 = 𝐵 → ((𝑆𝐵) ⊆ (𝑆𝑏) ↔ (𝑆𝐵) ⊆ (𝑆𝐵)))
32imbi2d 340 . . . . 5 (𝑏 = 𝐵 → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑏)) ↔ ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝐵))))
4 fveq2 6881 . . . . . . 7 (𝑏 = 𝑎 → (𝑆𝑏) = (𝑆𝑎))
54sseq2d 4006 . . . . . 6 (𝑏 = 𝑎 → ((𝑆𝐵) ⊆ (𝑆𝑏) ↔ (𝑆𝐵) ⊆ (𝑆𝑎)))
65imbi2d 340 . . . . 5 (𝑏 = 𝑎 → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑏)) ↔ ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑎))))
7 fveq2 6881 . . . . . . 7 (𝑏 = suc 𝑎 → (𝑆𝑏) = (𝑆‘suc 𝑎))
87sseq2d 4006 . . . . . 6 (𝑏 = suc 𝑎 → ((𝑆𝐵) ⊆ (𝑆𝑏) ↔ (𝑆𝐵) ⊆ (𝑆‘suc 𝑎)))
98imbi2d 340 . . . . 5 (𝑏 = suc 𝑎 → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑏)) ↔ ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆‘suc 𝑎))))
10 fveq2 6881 . . . . . . 7 (𝑏 = 𝐴 → (𝑆𝑏) = (𝑆𝐴))
1110sseq2d 4006 . . . . . 6 (𝑏 = 𝐴 → ((𝑆𝐵) ⊆ (𝑆𝑏) ↔ (𝑆𝐵) ⊆ (𝑆𝐴)))
1211imbi2d 340 . . . . 5 (𝑏 = 𝐴 → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑏)) ↔ ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝐴))))
13 ssidd 3997 . . . . . 6 ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝐵))
1413a1i 11 . . . . 5 (𝐵 ∈ ω → ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝐵)))
15 pm2.27 42 . . . . . . . . 9 ((𝑀𝑉𝐸𝑊) → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑎)) → (𝑆𝐵) ⊆ (𝑆𝑎)))
1615adantl 481 . . . . . . . 8 ((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑎)) → (𝑆𝐵) ⊆ (𝑆𝑎)))
17 simpr 484 . . . . . . . . . 10 (((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) ∧ (𝑆𝐵) ⊆ (𝑆𝑎)) → (𝑆𝐵) ⊆ (𝑆𝑎))
18 ssun1 4164 . . . . . . . . . . . 12 (𝑆𝑎) ⊆ ((𝑆𝑎) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑎)(∃𝑣 ∈ (𝑆𝑎)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑧 ∈ (𝑀m ω) ∣ ∀𝑘𝑀 ({⟨𝑖, 𝑘⟩} ∪ (𝑧 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})
19 simpl 482 . . . . . . . . . . . . 13 ((𝑀𝑉𝐸𝑊) → 𝑀𝑉)
20 simpr 484 . . . . . . . . . . . . 13 ((𝑀𝑉𝐸𝑊) → 𝐸𝑊)
21 simplll 772 . . . . . . . . . . . . 13 ((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) → 𝑎 ∈ ω)
22 satfsschain.s . . . . . . . . . . . . . 14 𝑆 = (𝑀 Sat 𝐸)
2322satfvsuc 34841 . . . . . . . . . . . . 13 ((𝑀𝑉𝐸𝑊𝑎 ∈ ω) → (𝑆‘suc 𝑎) = ((𝑆𝑎) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑎)(∃𝑣 ∈ (𝑆𝑎)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑧 ∈ (𝑀m ω) ∣ ∀𝑘𝑀 ({⟨𝑖, 𝑘⟩} ∪ (𝑧 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
2419, 20, 21, 23syl2an23an 1420 . . . . . . . . . . . 12 ((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) → (𝑆‘suc 𝑎) = ((𝑆𝑎) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑎)(∃𝑣 ∈ (𝑆𝑎)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑧 ∈ (𝑀m ω) ∣ ∀𝑘𝑀 ({⟨𝑖, 𝑘⟩} ∪ (𝑧 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
2518, 24sseqtrrid 4027 . . . . . . . . . . 11 ((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) → (𝑆𝑎) ⊆ (𝑆‘suc 𝑎))
2625adantr 480 . . . . . . . . . 10 (((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) ∧ (𝑆𝐵) ⊆ (𝑆𝑎)) → (𝑆𝑎) ⊆ (𝑆‘suc 𝑎))
2717, 26sstrd 3984 . . . . . . . . 9 (((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) ∧ (𝑆𝐵) ⊆ (𝑆𝑎)) → (𝑆𝐵) ⊆ (𝑆‘suc 𝑎))
2827ex 412 . . . . . . . 8 ((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) → ((𝑆𝐵) ⊆ (𝑆𝑎) → (𝑆𝐵) ⊆ (𝑆‘suc 𝑎)))
2916, 28syld 47 . . . . . . 7 ((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑎)) → (𝑆𝐵) ⊆ (𝑆‘suc 𝑎)))
3029ex 412 . . . . . 6 (((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) → ((𝑀𝑉𝐸𝑊) → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑎)) → (𝑆𝐵) ⊆ (𝑆‘suc 𝑎))))
3130com23 86 . . . . 5 (((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑎)) → ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆‘suc 𝑎))))
323, 6, 9, 12, 14, 31findsg 7883 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝐴)))
3332ex 412 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝐴 → ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝐴))))
3433com23 86 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝑀𝑉𝐸𝑊) → (𝐵𝐴 → (𝑆𝐵) ⊆ (𝑆𝐴))))
3534impcom 407 1 (((𝑀𝑉𝐸𝑊) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐵𝐴 → (𝑆𝐵) ⊆ (𝑆𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 844   = wceq 1533  wcel 2098  wral 3053  wrex 3062  {crab 3424  cdif 3937  cun 3938  cin 3939  wss 3940  {csn 4620  cop 4626  {copab 5200  cres 5668  suc csuc 6356  cfv 6533  (class class class)co 7401  ωcom 7848  1st c1st 7966  2nd c2nd 7967  m cmap 8816  𝑔cgna 34814  𝑔cgol 34815   Sat csat 34816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9632
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-sat 34823
This theorem is referenced by:  satfvsucsuc  34845  satffunlem2lem2  34886  satffunlem2  34888  satfun  34891
  Copyright terms: Public domain W3C validator