Step | Hyp | Ref
| Expression |
1 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → (𝑆‘𝑏) = (𝑆‘𝐵)) |
2 | 1 | sseq2d 3949 |
. . . . . 6
⊢ (𝑏 = 𝐵 → ((𝑆‘𝐵) ⊆ (𝑆‘𝑏) ↔ (𝑆‘𝐵) ⊆ (𝑆‘𝐵))) |
3 | 2 | imbi2d 340 |
. . . . 5
⊢ (𝑏 = 𝐵 → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘𝐵) ⊆ (𝑆‘𝑏)) ↔ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘𝐵) ⊆ (𝑆‘𝐵)))) |
4 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑏 = 𝑎 → (𝑆‘𝑏) = (𝑆‘𝑎)) |
5 | 4 | sseq2d 3949 |
. . . . . 6
⊢ (𝑏 = 𝑎 → ((𝑆‘𝐵) ⊆ (𝑆‘𝑏) ↔ (𝑆‘𝐵) ⊆ (𝑆‘𝑎))) |
6 | 5 | imbi2d 340 |
. . . . 5
⊢ (𝑏 = 𝑎 → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘𝐵) ⊆ (𝑆‘𝑏)) ↔ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘𝐵) ⊆ (𝑆‘𝑎)))) |
7 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑏 = suc 𝑎 → (𝑆‘𝑏) = (𝑆‘suc 𝑎)) |
8 | 7 | sseq2d 3949 |
. . . . . 6
⊢ (𝑏 = suc 𝑎 → ((𝑆‘𝐵) ⊆ (𝑆‘𝑏) ↔ (𝑆‘𝐵) ⊆ (𝑆‘suc 𝑎))) |
9 | 8 | imbi2d 340 |
. . . . 5
⊢ (𝑏 = suc 𝑎 → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘𝐵) ⊆ (𝑆‘𝑏)) ↔ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘𝐵) ⊆ (𝑆‘suc 𝑎)))) |
10 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑏 = 𝐴 → (𝑆‘𝑏) = (𝑆‘𝐴)) |
11 | 10 | sseq2d 3949 |
. . . . . 6
⊢ (𝑏 = 𝐴 → ((𝑆‘𝐵) ⊆ (𝑆‘𝑏) ↔ (𝑆‘𝐵) ⊆ (𝑆‘𝐴))) |
12 | 11 | imbi2d 340 |
. . . . 5
⊢ (𝑏 = 𝐴 → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘𝐵) ⊆ (𝑆‘𝑏)) ↔ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘𝐵) ⊆ (𝑆‘𝐴)))) |
13 | | ssidd 3940 |
. . . . . 6
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘𝐵) ⊆ (𝑆‘𝐵)) |
14 | 13 | a1i 11 |
. . . . 5
⊢ (𝐵 ∈ ω → ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘𝐵) ⊆ (𝑆‘𝐵))) |
15 | | pm2.27 42 |
. . . . . . . . 9
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘𝐵) ⊆ (𝑆‘𝑎)) → (𝑆‘𝐵) ⊆ (𝑆‘𝑎))) |
16 | 15 | adantl 481 |
. . . . . . . 8
⊢ ((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝑎) ∧ (𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊)) → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘𝐵) ⊆ (𝑆‘𝑎)) → (𝑆‘𝐵) ⊆ (𝑆‘𝑎))) |
17 | | simpr 484 |
. . . . . . . . . 10
⊢
(((((𝑎 ∈
ω ∧ 𝐵 ∈
ω) ∧ 𝐵 ⊆
𝑎) ∧ (𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊)) ∧ (𝑆‘𝐵) ⊆ (𝑆‘𝑎)) → (𝑆‘𝐵) ⊆ (𝑆‘𝑎)) |
18 | | ssun1 4102 |
. . . . . . . . . . . 12
⊢ (𝑆‘𝑎) ⊆ ((𝑆‘𝑎) ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ (𝑆‘𝑎)(∃𝑣 ∈ (𝑆‘𝑎)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑧 ∈ (𝑀 ↑m ω) ∣
∀𝑘 ∈ 𝑀 ({〈𝑖, 𝑘〉} ∪ (𝑧 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))}) |
19 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → 𝑀 ∈ 𝑉) |
20 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → 𝐸 ∈ 𝑊) |
21 | | simplll 771 |
. . . . . . . . . . . . 13
⊢ ((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝑎) ∧ (𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊)) → 𝑎 ∈ ω) |
22 | | satfsschain.s |
. . . . . . . . . . . . . 14
⊢ 𝑆 = (𝑀 Sat 𝐸) |
23 | 22 | satfvsuc 33223 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑎 ∈ ω) → (𝑆‘suc 𝑎) = ((𝑆‘𝑎) ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ (𝑆‘𝑎)(∃𝑣 ∈ (𝑆‘𝑎)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑧 ∈ (𝑀 ↑m ω) ∣
∀𝑘 ∈ 𝑀 ({〈𝑖, 𝑘〉} ∪ (𝑧 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})) |
24 | 19, 20, 21, 23 | syl2an23an 1421 |
. . . . . . . . . . . 12
⊢ ((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝑎) ∧ (𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊)) → (𝑆‘suc 𝑎) = ((𝑆‘𝑎) ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ (𝑆‘𝑎)(∃𝑣 ∈ (𝑆‘𝑎)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑧 ∈ (𝑀 ↑m ω) ∣
∀𝑘 ∈ 𝑀 ({〈𝑖, 𝑘〉} ∪ (𝑧 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})) |
25 | 18, 24 | sseqtrrid 3970 |
. . . . . . . . . . 11
⊢ ((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝑎) ∧ (𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊)) → (𝑆‘𝑎) ⊆ (𝑆‘suc 𝑎)) |
26 | 25 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝑎 ∈
ω ∧ 𝐵 ∈
ω) ∧ 𝐵 ⊆
𝑎) ∧ (𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊)) ∧ (𝑆‘𝐵) ⊆ (𝑆‘𝑎)) → (𝑆‘𝑎) ⊆ (𝑆‘suc 𝑎)) |
27 | 17, 26 | sstrd 3927 |
. . . . . . . . 9
⊢
(((((𝑎 ∈
ω ∧ 𝐵 ∈
ω) ∧ 𝐵 ⊆
𝑎) ∧ (𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊)) ∧ (𝑆‘𝐵) ⊆ (𝑆‘𝑎)) → (𝑆‘𝐵) ⊆ (𝑆‘suc 𝑎)) |
28 | 27 | ex 412 |
. . . . . . . 8
⊢ ((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝑎) ∧ (𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊)) → ((𝑆‘𝐵) ⊆ (𝑆‘𝑎) → (𝑆‘𝐵) ⊆ (𝑆‘suc 𝑎))) |
29 | 16, 28 | syld 47 |
. . . . . . 7
⊢ ((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝑎) ∧ (𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊)) → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘𝐵) ⊆ (𝑆‘𝑎)) → (𝑆‘𝐵) ⊆ (𝑆‘suc 𝑎))) |
30 | 29 | ex 412 |
. . . . . 6
⊢ (((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝑎) → ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘𝐵) ⊆ (𝑆‘𝑎)) → (𝑆‘𝐵) ⊆ (𝑆‘suc 𝑎)))) |
31 | 30 | com23 86 |
. . . . 5
⊢ (((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝑎) → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘𝐵) ⊆ (𝑆‘𝑎)) → ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘𝐵) ⊆ (𝑆‘suc 𝑎)))) |
32 | 3, 6, 9, 12, 14, 31 | findsg 7720 |
. . . 4
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝐴) → ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘𝐵) ⊆ (𝑆‘𝐴))) |
33 | 32 | ex 412 |
. . 3
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ⊆ 𝐴 → ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘𝐵) ⊆ (𝑆‘𝐴)))) |
34 | 33 | com23 86 |
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝐵 ⊆ 𝐴 → (𝑆‘𝐵) ⊆ (𝑆‘𝐴)))) |
35 | 34 | impcom 407 |
1
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐵 ⊆ 𝐴 → (𝑆‘𝐵) ⊆ (𝑆‘𝐴))) |