Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfsschain Structured version   Visualization version   GIF version

Theorem satfsschain 33958
Description: The binary relation of a satisfaction predicate as function over wff codes is an increasing chain (with respect to inclusion). (Contributed by AV, 15-Oct-2023.)
Hypothesis
Ref Expression
satfsschain.s 𝑆 = (𝑀 Sat 𝐸)
Assertion
Ref Expression
satfsschain (((𝑀𝑉𝐸𝑊) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐵𝐴 → (𝑆𝐵) ⊆ (𝑆𝐴)))

Proof of Theorem satfsschain
Dummy variables 𝑎 𝑏 𝑖 𝑘 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6842 . . . . . . 7 (𝑏 = 𝐵 → (𝑆𝑏) = (𝑆𝐵))
21sseq2d 3976 . . . . . 6 (𝑏 = 𝐵 → ((𝑆𝐵) ⊆ (𝑆𝑏) ↔ (𝑆𝐵) ⊆ (𝑆𝐵)))
32imbi2d 340 . . . . 5 (𝑏 = 𝐵 → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑏)) ↔ ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝐵))))
4 fveq2 6842 . . . . . . 7 (𝑏 = 𝑎 → (𝑆𝑏) = (𝑆𝑎))
54sseq2d 3976 . . . . . 6 (𝑏 = 𝑎 → ((𝑆𝐵) ⊆ (𝑆𝑏) ↔ (𝑆𝐵) ⊆ (𝑆𝑎)))
65imbi2d 340 . . . . 5 (𝑏 = 𝑎 → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑏)) ↔ ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑎))))
7 fveq2 6842 . . . . . . 7 (𝑏 = suc 𝑎 → (𝑆𝑏) = (𝑆‘suc 𝑎))
87sseq2d 3976 . . . . . 6 (𝑏 = suc 𝑎 → ((𝑆𝐵) ⊆ (𝑆𝑏) ↔ (𝑆𝐵) ⊆ (𝑆‘suc 𝑎)))
98imbi2d 340 . . . . 5 (𝑏 = suc 𝑎 → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑏)) ↔ ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆‘suc 𝑎))))
10 fveq2 6842 . . . . . . 7 (𝑏 = 𝐴 → (𝑆𝑏) = (𝑆𝐴))
1110sseq2d 3976 . . . . . 6 (𝑏 = 𝐴 → ((𝑆𝐵) ⊆ (𝑆𝑏) ↔ (𝑆𝐵) ⊆ (𝑆𝐴)))
1211imbi2d 340 . . . . 5 (𝑏 = 𝐴 → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑏)) ↔ ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝐴))))
13 ssidd 3967 . . . . . 6 ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝐵))
1413a1i 11 . . . . 5 (𝐵 ∈ ω → ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝐵)))
15 pm2.27 42 . . . . . . . . 9 ((𝑀𝑉𝐸𝑊) → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑎)) → (𝑆𝐵) ⊆ (𝑆𝑎)))
1615adantl 482 . . . . . . . 8 ((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑎)) → (𝑆𝐵) ⊆ (𝑆𝑎)))
17 simpr 485 . . . . . . . . . 10 (((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) ∧ (𝑆𝐵) ⊆ (𝑆𝑎)) → (𝑆𝐵) ⊆ (𝑆𝑎))
18 ssun1 4132 . . . . . . . . . . . 12 (𝑆𝑎) ⊆ ((𝑆𝑎) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑎)(∃𝑣 ∈ (𝑆𝑎)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑧 ∈ (𝑀m ω) ∣ ∀𝑘𝑀 ({⟨𝑖, 𝑘⟩} ∪ (𝑧 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})
19 simpl 483 . . . . . . . . . . . . 13 ((𝑀𝑉𝐸𝑊) → 𝑀𝑉)
20 simpr 485 . . . . . . . . . . . . 13 ((𝑀𝑉𝐸𝑊) → 𝐸𝑊)
21 simplll 773 . . . . . . . . . . . . 13 ((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) → 𝑎 ∈ ω)
22 satfsschain.s . . . . . . . . . . . . . 14 𝑆 = (𝑀 Sat 𝐸)
2322satfvsuc 33955 . . . . . . . . . . . . 13 ((𝑀𝑉𝐸𝑊𝑎 ∈ ω) → (𝑆‘suc 𝑎) = ((𝑆𝑎) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑎)(∃𝑣 ∈ (𝑆𝑎)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑧 ∈ (𝑀m ω) ∣ ∀𝑘𝑀 ({⟨𝑖, 𝑘⟩} ∪ (𝑧 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
2419, 20, 21, 23syl2an23an 1423 . . . . . . . . . . . 12 ((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) → (𝑆‘suc 𝑎) = ((𝑆𝑎) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑎)(∃𝑣 ∈ (𝑆𝑎)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑧 ∈ (𝑀m ω) ∣ ∀𝑘𝑀 ({⟨𝑖, 𝑘⟩} ∪ (𝑧 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
2518, 24sseqtrrid 3997 . . . . . . . . . . 11 ((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) → (𝑆𝑎) ⊆ (𝑆‘suc 𝑎))
2625adantr 481 . . . . . . . . . 10 (((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) ∧ (𝑆𝐵) ⊆ (𝑆𝑎)) → (𝑆𝑎) ⊆ (𝑆‘suc 𝑎))
2717, 26sstrd 3954 . . . . . . . . 9 (((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) ∧ (𝑆𝐵) ⊆ (𝑆𝑎)) → (𝑆𝐵) ⊆ (𝑆‘suc 𝑎))
2827ex 413 . . . . . . . 8 ((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) → ((𝑆𝐵) ⊆ (𝑆𝑎) → (𝑆𝐵) ⊆ (𝑆‘suc 𝑎)))
2916, 28syld 47 . . . . . . 7 ((((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) ∧ (𝑀𝑉𝐸𝑊)) → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑎)) → (𝑆𝐵) ⊆ (𝑆‘suc 𝑎)))
3029ex 413 . . . . . 6 (((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) → ((𝑀𝑉𝐸𝑊) → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑎)) → (𝑆𝐵) ⊆ (𝑆‘suc 𝑎))))
3130com23 86 . . . . 5 (((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) → (((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝑎)) → ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆‘suc 𝑎))))
323, 6, 9, 12, 14, 31findsg 7836 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝐴)))
3332ex 413 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝐴 → ((𝑀𝑉𝐸𝑊) → (𝑆𝐵) ⊆ (𝑆𝐴))))
3433com23 86 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝑀𝑉𝐸𝑊) → (𝐵𝐴 → (𝑆𝐵) ⊆ (𝑆𝐴))))
3534impcom 408 1 (((𝑀𝑉𝐸𝑊) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐵𝐴 → (𝑆𝐵) ⊆ (𝑆𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wral 3064  wrex 3073  {crab 3407  cdif 3907  cun 3908  cin 3909  wss 3910  {csn 4586  cop 4592  {copab 5167  cres 5635  suc csuc 6319  cfv 6496  (class class class)co 7357  ωcom 7802  1st c1st 7919  2nd c2nd 7920  m cmap 8765  𝑔cgna 33928  𝑔cgol 33929   Sat csat 33930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-sat 33937
This theorem is referenced by:  satfvsucsuc  33959  satffunlem2lem2  34000  satffunlem2  34002  satfun  34005
  Copyright terms: Public domain W3C validator