Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satffunlem2 Structured version   Visualization version   GIF version

Theorem satffunlem2 35395
Description: Lemma 2 for satffun 35396: induction step. (Contributed by AV, 28-Oct-2023.)
Assertion
Ref Expression
satffunlem2 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → (Fun ((𝑀 Sat 𝐸)‘suc 𝑁) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑁)))

Proof of Theorem satffunlem2
Dummy variables 𝑓 𝑖 𝑗 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 (((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) ∧ Fun ((𝑀 Sat 𝐸)‘suc 𝑁)) → Fun ((𝑀 Sat 𝐸)‘suc 𝑁))
2 simpr 484 . . . . . . 7 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → (𝑀𝑉𝐸𝑊))
3 peano2 7866 . . . . . . . . 9 (𝑁 ∈ ω → suc 𝑁 ∈ ω)
43ancri 549 . . . . . . . 8 (𝑁 ∈ ω → (suc 𝑁 ∈ ω ∧ 𝑁 ∈ ω))
54adantr 480 . . . . . . 7 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → (suc 𝑁 ∈ ω ∧ 𝑁 ∈ ω))
6 sssucid 6414 . . . . . . . 8 𝑁 ⊆ suc 𝑁
76a1i 11 . . . . . . 7 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → 𝑁 ⊆ suc 𝑁)
8 eqid 2729 . . . . . . . . 9 (𝑀 Sat 𝐸) = (𝑀 Sat 𝐸)
98satfsschain 35351 . . . . . . . 8 (((𝑀𝑉𝐸𝑊) ∧ (suc 𝑁 ∈ ω ∧ 𝑁 ∈ ω)) → (𝑁 ⊆ suc 𝑁 → ((𝑀 Sat 𝐸)‘𝑁) ⊆ ((𝑀 Sat 𝐸)‘suc 𝑁)))
109imp 406 . . . . . . 7 ((((𝑀𝑉𝐸𝑊) ∧ (suc 𝑁 ∈ ω ∧ 𝑁 ∈ ω)) ∧ 𝑁 ⊆ suc 𝑁) → ((𝑀 Sat 𝐸)‘𝑁) ⊆ ((𝑀 Sat 𝐸)‘suc 𝑁))
112, 5, 7, 10syl21anc 837 . . . . . 6 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → ((𝑀 Sat 𝐸)‘𝑁) ⊆ ((𝑀 Sat 𝐸)‘suc 𝑁))
12 eqid 2729 . . . . . . . 8 ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))
13 eqid 2729 . . . . . . . 8 {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)} = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}
148, 12, 13satffunlem2lem1 35391 . . . . . . 7 ((Fun ((𝑀 Sat 𝐸)‘suc 𝑁) ∧ ((𝑀 Sat 𝐸)‘𝑁) ⊆ ((𝑀 Sat 𝐸)‘suc 𝑁)) → Fun {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))})
1514expcom 413 . . . . . 6 (((𝑀 Sat 𝐸)‘𝑁) ⊆ ((𝑀 Sat 𝐸)‘suc 𝑁) → (Fun ((𝑀 Sat 𝐸)‘suc 𝑁) → Fun {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}))
1611, 15syl 17 . . . . 5 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → (Fun ((𝑀 Sat 𝐸)‘suc 𝑁) → Fun {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}))
1716imp 406 . . . 4 (((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) ∧ Fun ((𝑀 Sat 𝐸)‘suc 𝑁)) → Fun {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))})
188, 12, 13satffunlem2lem2 35393 . . . 4 (((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) ∧ Fun ((𝑀 Sat 𝐸)‘suc 𝑁)) → (dom ((𝑀 Sat 𝐸)‘suc 𝑁) ∩ dom {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}) = ∅)
19 funun 6562 . . . 4 (((Fun ((𝑀 Sat 𝐸)‘suc 𝑁) ∧ Fun {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}) ∧ (dom ((𝑀 Sat 𝐸)‘suc 𝑁) ∩ dom {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}) = ∅) → Fun (((𝑀 Sat 𝐸)‘suc 𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}))
201, 17, 18, 19syl21anc 837 . . 3 (((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) ∧ Fun ((𝑀 Sat 𝐸)‘suc 𝑁)) → Fun (((𝑀 Sat 𝐸)‘suc 𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}))
21 simpl 482 . . . . . 6 ((𝑀𝑉𝐸𝑊) → 𝑀𝑉)
22 simpr 484 . . . . . 6 ((𝑀𝑉𝐸𝑊) → 𝐸𝑊)
23 simpl 482 . . . . . 6 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → 𝑁 ∈ ω)
248, 12, 13satfvsucsuc 35352 . . . . . 6 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → ((𝑀 Sat 𝐸)‘suc suc 𝑁) = (((𝑀 Sat 𝐸)‘suc 𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}))
2521, 22, 23, 24syl2an23an 1425 . . . . 5 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → ((𝑀 Sat 𝐸)‘suc suc 𝑁) = (((𝑀 Sat 𝐸)‘suc 𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}))
2625funeqd 6538 . . . 4 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → (Fun ((𝑀 Sat 𝐸)‘suc suc 𝑁) ↔ Fun (((𝑀 Sat 𝐸)‘suc 𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))})))
2726adantr 480 . . 3 (((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) ∧ Fun ((𝑀 Sat 𝐸)‘suc 𝑁)) → (Fun ((𝑀 Sat 𝐸)‘suc suc 𝑁) ↔ Fun (((𝑀 Sat 𝐸)‘suc 𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))})))
2820, 27mpbird 257 . 2 (((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) ∧ Fun ((𝑀 Sat 𝐸)‘suc 𝑁)) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑁))
2928ex 412 1 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → (Fun ((𝑀 Sat 𝐸)‘suc 𝑁) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3405  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4296  {csn 4589  cop 4595  {copab 5169  dom cdm 5638  cres 5640  suc csuc 6334  Fun wfun 6505  cfv 6511  (class class class)co 7387  ωcom 7842  1st c1st 7966  2nd c2nd 7967  m cmap 8799  𝑔cgna 35321  𝑔cgol 35322   Sat csat 35323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-map 8801  df-goel 35327  df-gona 35328  df-goal 35329  df-sat 35330  df-fmla 35332
This theorem is referenced by:  satffun  35396
  Copyright terms: Public domain W3C validator