Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satffunlem2 Structured version   Visualization version   GIF version

Theorem satffunlem2 35071
Description: Lemma 2 for satffun 35072: induction step. (Contributed by AV, 28-Oct-2023.)
Assertion
Ref Expression
satffunlem2 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → (Fun ((𝑀 Sat 𝐸)‘suc 𝑁) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑁)))

Proof of Theorem satffunlem2
Dummy variables 𝑓 𝑖 𝑗 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 483 . . . 4 (((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) ∧ Fun ((𝑀 Sat 𝐸)‘suc 𝑁)) → Fun ((𝑀 Sat 𝐸)‘suc 𝑁))
2 simpr 483 . . . . . . 7 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → (𝑀𝑉𝐸𝑊))
3 peano2 7891 . . . . . . . . 9 (𝑁 ∈ ω → suc 𝑁 ∈ ω)
43ancri 548 . . . . . . . 8 (𝑁 ∈ ω → (suc 𝑁 ∈ ω ∧ 𝑁 ∈ ω))
54adantr 479 . . . . . . 7 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → (suc 𝑁 ∈ ω ∧ 𝑁 ∈ ω))
6 sssucid 6445 . . . . . . . 8 𝑁 ⊆ suc 𝑁
76a1i 11 . . . . . . 7 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → 𝑁 ⊆ suc 𝑁)
8 eqid 2725 . . . . . . . . 9 (𝑀 Sat 𝐸) = (𝑀 Sat 𝐸)
98satfsschain 35027 . . . . . . . 8 (((𝑀𝑉𝐸𝑊) ∧ (suc 𝑁 ∈ ω ∧ 𝑁 ∈ ω)) → (𝑁 ⊆ suc 𝑁 → ((𝑀 Sat 𝐸)‘𝑁) ⊆ ((𝑀 Sat 𝐸)‘suc 𝑁)))
109imp 405 . . . . . . 7 ((((𝑀𝑉𝐸𝑊) ∧ (suc 𝑁 ∈ ω ∧ 𝑁 ∈ ω)) ∧ 𝑁 ⊆ suc 𝑁) → ((𝑀 Sat 𝐸)‘𝑁) ⊆ ((𝑀 Sat 𝐸)‘suc 𝑁))
112, 5, 7, 10syl21anc 836 . . . . . 6 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → ((𝑀 Sat 𝐸)‘𝑁) ⊆ ((𝑀 Sat 𝐸)‘suc 𝑁))
12 eqid 2725 . . . . . . . 8 ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))
13 eqid 2725 . . . . . . . 8 {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)} = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}
148, 12, 13satffunlem2lem1 35067 . . . . . . 7 ((Fun ((𝑀 Sat 𝐸)‘suc 𝑁) ∧ ((𝑀 Sat 𝐸)‘𝑁) ⊆ ((𝑀 Sat 𝐸)‘suc 𝑁)) → Fun {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))})
1514expcom 412 . . . . . 6 (((𝑀 Sat 𝐸)‘𝑁) ⊆ ((𝑀 Sat 𝐸)‘suc 𝑁) → (Fun ((𝑀 Sat 𝐸)‘suc 𝑁) → Fun {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}))
1611, 15syl 17 . . . . 5 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → (Fun ((𝑀 Sat 𝐸)‘suc 𝑁) → Fun {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}))
1716imp 405 . . . 4 (((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) ∧ Fun ((𝑀 Sat 𝐸)‘suc 𝑁)) → Fun {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))})
188, 12, 13satffunlem2lem2 35069 . . . 4 (((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) ∧ Fun ((𝑀 Sat 𝐸)‘suc 𝑁)) → (dom ((𝑀 Sat 𝐸)‘suc 𝑁) ∩ dom {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}) = ∅)
19 funun 6594 . . . 4 (((Fun ((𝑀 Sat 𝐸)‘suc 𝑁) ∧ Fun {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}) ∧ (dom ((𝑀 Sat 𝐸)‘suc 𝑁) ∩ dom {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}) = ∅) → Fun (((𝑀 Sat 𝐸)‘suc 𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}))
201, 17, 18, 19syl21anc 836 . . 3 (((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) ∧ Fun ((𝑀 Sat 𝐸)‘suc 𝑁)) → Fun (((𝑀 Sat 𝐸)‘suc 𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}))
21 simpl 481 . . . . . 6 ((𝑀𝑉𝐸𝑊) → 𝑀𝑉)
22 simpr 483 . . . . . 6 ((𝑀𝑉𝐸𝑊) → 𝐸𝑊)
23 simpl 481 . . . . . 6 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → 𝑁 ∈ ω)
248, 12, 13satfvsucsuc 35028 . . . . . 6 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → ((𝑀 Sat 𝐸)‘suc suc 𝑁) = (((𝑀 Sat 𝐸)‘suc 𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}))
2521, 22, 23, 24syl2an23an 1420 . . . . 5 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → ((𝑀 Sat 𝐸)‘suc suc 𝑁) = (((𝑀 Sat 𝐸)‘suc 𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}))
2625funeqd 6570 . . . 4 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → (Fun ((𝑀 Sat 𝐸)‘suc suc 𝑁) ↔ Fun (((𝑀 Sat 𝐸)‘suc 𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))})))
2726adantr 479 . . 3 (((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) ∧ Fun ((𝑀 Sat 𝐸)‘suc 𝑁)) → (Fun ((𝑀 Sat 𝐸)‘suc suc 𝑁) ↔ Fun (((𝑀 Sat 𝐸)‘suc 𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))})))
2820, 27mpbird 256 . 2 (((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) ∧ Fun ((𝑀 Sat 𝐸)‘suc 𝑁)) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑁))
2928ex 411 1 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → (Fun ((𝑀 Sat 𝐸)‘suc 𝑁) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  wral 3051  wrex 3060  {crab 3419  cdif 3938  cun 3939  cin 3940  wss 3941  c0 4319  {csn 4625  cop 4631  {copab 5206  dom cdm 5673  cres 5675  suc csuc 6367  Fun wfun 6537  cfv 6543  (class class class)co 7413  ωcom 7865  1st c1st 7985  2nd c2nd 7986  m cmap 8838  𝑔cgna 34997  𝑔cgol 34998   Sat csat 34999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-inf2 9659
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-map 8840  df-goel 35003  df-gona 35004  df-goal 35005  df-sat 35006  df-fmla 35008
This theorem is referenced by:  satffun  35072
  Copyright terms: Public domain W3C validator