Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satffunlem2 Structured version   Visualization version   GIF version

Theorem satffunlem2 34002
Description: Lemma 2 for satffun 34003: induction step. (Contributed by AV, 28-Oct-2023.)
Assertion
Ref Expression
satffunlem2 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → (Fun ((𝑀 Sat 𝐸)‘suc 𝑁) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑁)))

Proof of Theorem satffunlem2
Dummy variables 𝑓 𝑖 𝑗 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . 4 (((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) ∧ Fun ((𝑀 Sat 𝐸)‘suc 𝑁)) → Fun ((𝑀 Sat 𝐸)‘suc 𝑁))
2 simpr 485 . . . . . . 7 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → (𝑀𝑉𝐸𝑊))
3 peano2 7827 . . . . . . . . 9 (𝑁 ∈ ω → suc 𝑁 ∈ ω)
43ancri 550 . . . . . . . 8 (𝑁 ∈ ω → (suc 𝑁 ∈ ω ∧ 𝑁 ∈ ω))
54adantr 481 . . . . . . 7 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → (suc 𝑁 ∈ ω ∧ 𝑁 ∈ ω))
6 sssucid 6397 . . . . . . . 8 𝑁 ⊆ suc 𝑁
76a1i 11 . . . . . . 7 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → 𝑁 ⊆ suc 𝑁)
8 eqid 2736 . . . . . . . . 9 (𝑀 Sat 𝐸) = (𝑀 Sat 𝐸)
98satfsschain 33958 . . . . . . . 8 (((𝑀𝑉𝐸𝑊) ∧ (suc 𝑁 ∈ ω ∧ 𝑁 ∈ ω)) → (𝑁 ⊆ suc 𝑁 → ((𝑀 Sat 𝐸)‘𝑁) ⊆ ((𝑀 Sat 𝐸)‘suc 𝑁)))
109imp 407 . . . . . . 7 ((((𝑀𝑉𝐸𝑊) ∧ (suc 𝑁 ∈ ω ∧ 𝑁 ∈ ω)) ∧ 𝑁 ⊆ suc 𝑁) → ((𝑀 Sat 𝐸)‘𝑁) ⊆ ((𝑀 Sat 𝐸)‘suc 𝑁))
112, 5, 7, 10syl21anc 836 . . . . . 6 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → ((𝑀 Sat 𝐸)‘𝑁) ⊆ ((𝑀 Sat 𝐸)‘suc 𝑁))
12 eqid 2736 . . . . . . . 8 ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))
13 eqid 2736 . . . . . . . 8 {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)} = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}
148, 12, 13satffunlem2lem1 33998 . . . . . . 7 ((Fun ((𝑀 Sat 𝐸)‘suc 𝑁) ∧ ((𝑀 Sat 𝐸)‘𝑁) ⊆ ((𝑀 Sat 𝐸)‘suc 𝑁)) → Fun {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))})
1514expcom 414 . . . . . 6 (((𝑀 Sat 𝐸)‘𝑁) ⊆ ((𝑀 Sat 𝐸)‘suc 𝑁) → (Fun ((𝑀 Sat 𝐸)‘suc 𝑁) → Fun {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}))
1611, 15syl 17 . . . . 5 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → (Fun ((𝑀 Sat 𝐸)‘suc 𝑁) → Fun {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}))
1716imp 407 . . . 4 (((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) ∧ Fun ((𝑀 Sat 𝐸)‘suc 𝑁)) → Fun {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))})
188, 12, 13satffunlem2lem2 34000 . . . 4 (((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) ∧ Fun ((𝑀 Sat 𝐸)‘suc 𝑁)) → (dom ((𝑀 Sat 𝐸)‘suc 𝑁) ∩ dom {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}) = ∅)
19 funun 6547 . . . 4 (((Fun ((𝑀 Sat 𝐸)‘suc 𝑁) ∧ Fun {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}) ∧ (dom ((𝑀 Sat 𝐸)‘suc 𝑁) ∩ dom {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}) = ∅) → Fun (((𝑀 Sat 𝐸)‘suc 𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}))
201, 17, 18, 19syl21anc 836 . . 3 (((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) ∧ Fun ((𝑀 Sat 𝐸)‘suc 𝑁)) → Fun (((𝑀 Sat 𝐸)‘suc 𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}))
21 simpl 483 . . . . . 6 ((𝑀𝑉𝐸𝑊) → 𝑀𝑉)
22 simpr 485 . . . . . 6 ((𝑀𝑉𝐸𝑊) → 𝐸𝑊)
23 simpl 483 . . . . . 6 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → 𝑁 ∈ ω)
248, 12, 13satfvsucsuc 33959 . . . . . 6 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → ((𝑀 Sat 𝐸)‘suc suc 𝑁) = (((𝑀 Sat 𝐸)‘suc 𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}))
2521, 22, 23, 24syl2an23an 1423 . . . . 5 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → ((𝑀 Sat 𝐸)‘suc suc 𝑁) = (((𝑀 Sat 𝐸)‘suc 𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))}))
2625funeqd 6523 . . . 4 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → (Fun ((𝑀 Sat 𝐸)‘suc suc 𝑁) ↔ Fun (((𝑀 Sat 𝐸)‘suc 𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))})))
2726adantr 481 . . 3 (((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) ∧ Fun ((𝑀 Sat 𝐸)‘suc 𝑁)) → (Fun ((𝑀 Sat 𝐸)‘suc suc 𝑁) ↔ Fun (((𝑀 Sat 𝐸)‘suc 𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘suc 𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∨ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)∃𝑣 ∈ (((𝑀 Sat 𝐸)‘suc 𝑁) ∖ ((𝑀 Sat 𝐸)‘𝑁))(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))})))
2820, 27mpbird 256 . 2 (((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) ∧ Fun ((𝑀 Sat 𝐸)‘suc 𝑁)) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑁))
2928ex 413 1 ((𝑁 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → (Fun ((𝑀 Sat 𝐸)‘suc 𝑁) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wral 3064  wrex 3073  {crab 3407  cdif 3907  cun 3908  cin 3909  wss 3910  c0 4282  {csn 4586  cop 4592  {copab 5167  dom cdm 5633  cres 5635  suc csuc 6319  Fun wfun 6490  cfv 6496  (class class class)co 7357  ωcom 7802  1st c1st 7919  2nd c2nd 7920  m cmap 8765  𝑔cgna 33928  𝑔cgol 33929   Sat csat 33930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-map 8767  df-goel 33934  df-gona 33935  df-goal 33936  df-sat 33937  df-fmla 33939
This theorem is referenced by:  satffun  34003
  Copyright terms: Public domain W3C validator