MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nndivdvds Structured version   Visualization version   GIF version

Theorem nndivdvds 16164
Description: Strong form of dvdsval2 16158 for positive integers. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
nndivdvds ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵𝐴 ↔ (𝐴 / 𝐵) ∈ ℕ))

Proof of Theorem nndivdvds
StepHypRef Expression
1 nnz 12481 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
2 nnne0 12151 . . . 4 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
3 nnz 12481 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
43adantr 480 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
5 dvdsval2 16158 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ∧ 𝐴 ∈ ℤ) → (𝐵𝐴 ↔ (𝐴 / 𝐵) ∈ ℤ))
61, 2, 4, 5syl2an23an 1425 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵𝐴 ↔ (𝐴 / 𝐵) ∈ ℤ))
76anbi1d 631 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐵𝐴 ∧ 0 < (𝐴 / 𝐵)) ↔ ((𝐴 / 𝐵) ∈ ℤ ∧ 0 < (𝐴 / 𝐵))))
8 nnre 12124 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
98adantr 480 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ)
10 nnre 12124 . . . . 5 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
1110adantl 481 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
12 nngt0 12148 . . . . 5 (𝐴 ∈ ℕ → 0 < 𝐴)
1312adantr 480 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐴)
14 nngt0 12148 . . . . 5 (𝐵 ∈ ℕ → 0 < 𝐵)
1514adantl 481 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵)
169, 11, 13, 15divgt0d 12049 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < (𝐴 / 𝐵))
1716biantrud 531 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵𝐴 ↔ (𝐵𝐴 ∧ 0 < (𝐴 / 𝐵))))
18 elnnz 12470 . . 3 ((𝐴 / 𝐵) ∈ ℕ ↔ ((𝐴 / 𝐵) ∈ ℤ ∧ 0 < (𝐴 / 𝐵)))
1918a1i 11 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) ∈ ℕ ↔ ((𝐴 / 𝐵) ∈ ℤ ∧ 0 < (𝐴 / 𝐵))))
207, 17, 193bitr4d 311 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵𝐴 ↔ (𝐴 / 𝐵) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2110  wne 2926   class class class wbr 5089  (class class class)co 7341  cr 10997  0cc0 10998   < clt 11138   / cdiv 11766  cn 12117  cz 12460  cdvds 16155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-z 12461  df-dvds 16156
This theorem is referenced by:  nndivides  16165  dvdsdivcl  16219  divgcdnn  16418  lcmgcdlem  16509  isprm6  16617  divnumden  16651  hashgcdlem  16691  hashgcdeq  16693  oddprmdvds  16807  gexexlem  19757  ablfac1lem  19975  pgpfac1lem3a  19983  fincygsubgodexd  20020  znrrg  21495  dvdsflf1o  27117  mersenne  27158  perfectlem1  27160  perfect  27162  dchrvmasumlem1  27426  dchrisum0flblem2  27440  logsqvma  27473  oddpwdc  34357  nndivdvdsd  42011  lcmineqlem4  42044  lcmineqlem23  42063  aks6d1c1p3  42122  aks6d1c2p1  42130  aks6d1c2p2  42131  unitscyglem4  42210  dffltz  42646  jm2.20nn  43009  jm2.27c  43019  fouriersw  46248  proththdlem  47623  perfectALTVlem1  47731  perfectALTV  47733
  Copyright terms: Public domain W3C validator