![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nndivdvds | Structured version Visualization version GIF version |
Description: Strong form of dvdsval2 16199 for positive integers. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
Ref | Expression |
---|---|
nndivdvds | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 ∥ 𝐴 ↔ (𝐴 / 𝐵) ∈ ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz 12578 | . . . 4 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
2 | nnne0 12245 | . . . 4 ⊢ (𝐵 ∈ ℕ → 𝐵 ≠ 0) | |
3 | nnz 12578 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
4 | 3 | adantr 481 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ) |
5 | dvdsval2 16199 | . . . 4 ⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ∧ 𝐴 ∈ ℤ) → (𝐵 ∥ 𝐴 ↔ (𝐴 / 𝐵) ∈ ℤ)) | |
6 | 1, 2, 4, 5 | syl2an23an 1423 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 ∥ 𝐴 ↔ (𝐴 / 𝐵) ∈ ℤ)) |
7 | 6 | anbi1d 630 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐵 ∥ 𝐴 ∧ 0 < (𝐴 / 𝐵)) ↔ ((𝐴 / 𝐵) ∈ ℤ ∧ 0 < (𝐴 / 𝐵)))) |
8 | nnre 12218 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
9 | 8 | adantr 481 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ) |
10 | nnre 12218 | . . . . 5 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ) | |
11 | 10 | adantl 482 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ) |
12 | nngt0 12242 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | |
13 | 12 | adantr 481 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐴) |
14 | nngt0 12242 | . . . . 5 ⊢ (𝐵 ∈ ℕ → 0 < 𝐵) | |
15 | 14 | adantl 482 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵) |
16 | 9, 11, 13, 15 | divgt0d 12148 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < (𝐴 / 𝐵)) |
17 | 16 | biantrud 532 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 ∥ 𝐴 ↔ (𝐵 ∥ 𝐴 ∧ 0 < (𝐴 / 𝐵)))) |
18 | elnnz 12567 | . . 3 ⊢ ((𝐴 / 𝐵) ∈ ℕ ↔ ((𝐴 / 𝐵) ∈ ℤ ∧ 0 < (𝐴 / 𝐵))) | |
19 | 18 | a1i 11 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) ∈ ℕ ↔ ((𝐴 / 𝐵) ∈ ℤ ∧ 0 < (𝐴 / 𝐵)))) |
20 | 7, 17, 19 | 3bitr4d 310 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 ∥ 𝐴 ↔ (𝐴 / 𝐵) ∈ ℕ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ≠ wne 2940 class class class wbr 5148 (class class class)co 7408 ℝcr 11108 0cc0 11109 < clt 11247 / cdiv 11870 ℕcn 12211 ℤcz 12557 ∥ cdvds 16196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-z 12558 df-dvds 16197 |
This theorem is referenced by: nndivides 16206 dvdsdivcl 16258 divgcdnn 16455 lcmgcdlem 16542 isprm6 16650 divnumden 16683 hashgcdlem 16720 hashgcdeq 16721 oddprmdvds 16835 gexexlem 19719 ablfac1lem 19937 pgpfac1lem3a 19945 fincygsubgodexd 19982 znrrg 21120 dvdsflf1o 26688 mersenne 26727 perfectlem1 26729 perfect 26731 dchrvmasumlem1 26995 dchrisum0flblem2 27009 logsqvma 27042 oddpwdc 33348 nndivdvdsd 40860 lcmineqlem4 40892 lcmineqlem23 40911 aks6d1c2p1 40951 aks6d1c2p2 40952 dffltz 41377 jm2.20nn 41726 jm2.27c 41736 fouriersw 44937 proththdlem 46271 perfectALTVlem1 46379 perfectALTV 46381 |
Copyright terms: Public domain | W3C validator |