MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nndivdvds Structured version   Visualization version   GIF version

Theorem nndivdvds 16265
Description: Strong form of dvdsval2 16259 for positive integers. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
nndivdvds ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵𝐴 ↔ (𝐴 / 𝐵) ∈ ℕ))

Proof of Theorem nndivdvds
StepHypRef Expression
1 nnz 12631 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
2 nnne0 12298 . . . 4 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
3 nnz 12631 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
43adantr 479 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
5 dvdsval2 16259 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ∧ 𝐴 ∈ ℤ) → (𝐵𝐴 ↔ (𝐴 / 𝐵) ∈ ℤ))
61, 2, 4, 5syl2an23an 1420 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵𝐴 ↔ (𝐴 / 𝐵) ∈ ℤ))
76anbi1d 629 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐵𝐴 ∧ 0 < (𝐴 / 𝐵)) ↔ ((𝐴 / 𝐵) ∈ ℤ ∧ 0 < (𝐴 / 𝐵))))
8 nnre 12271 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
98adantr 479 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ)
10 nnre 12271 . . . . 5 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
1110adantl 480 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
12 nngt0 12295 . . . . 5 (𝐴 ∈ ℕ → 0 < 𝐴)
1312adantr 479 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐴)
14 nngt0 12295 . . . . 5 (𝐵 ∈ ℕ → 0 < 𝐵)
1514adantl 480 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵)
169, 11, 13, 15divgt0d 12201 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < (𝐴 / 𝐵))
1716biantrud 530 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵𝐴 ↔ (𝐵𝐴 ∧ 0 < (𝐴 / 𝐵))))
18 elnnz 12620 . . 3 ((𝐴 / 𝐵) ∈ ℕ ↔ ((𝐴 / 𝐵) ∈ ℤ ∧ 0 < (𝐴 / 𝐵)))
1918a1i 11 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) ∈ ℕ ↔ ((𝐴 / 𝐵) ∈ ℤ ∧ 0 < (𝐴 / 𝐵))))
207, 17, 193bitr4d 310 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵𝐴 ↔ (𝐴 / 𝐵) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2099  wne 2930   class class class wbr 5153  (class class class)co 7424  cr 11157  0cc0 11158   < clt 11298   / cdiv 11921  cn 12264  cz 12610  cdvds 16256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-z 12611  df-dvds 16257
This theorem is referenced by:  nndivides  16266  dvdsdivcl  16318  divgcdnn  16515  lcmgcdlem  16607  isprm6  16715  divnumden  16750  hashgcdlem  16790  hashgcdeq  16791  oddprmdvds  16905  gexexlem  19850  ablfac1lem  20068  pgpfac1lem3a  20076  fincygsubgodexd  20113  znrrg  21563  dvdsflf1o  27215  mersenne  27256  perfectlem1  27258  perfect  27260  dchrvmasumlem1  27524  dchrisum0flblem2  27538  logsqvma  27571  oddpwdc  34188  nndivdvdsd  41698  lcmineqlem4  41731  lcmineqlem23  41750  aks6d1c1p3  41808  aks6d1c2p1  41816  aks6d1c2p2  41817  dffltz  42288  jm2.20nn  42655  jm2.27c  42665  fouriersw  45852  proththdlem  47185  perfectALTVlem1  47293  perfectALTV  47295
  Copyright terms: Public domain W3C validator