MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nndivdvds Structured version   Visualization version   GIF version

Theorem nndivdvds 16311
Description: Strong form of dvdsval2 16305 for positive integers. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
nndivdvds ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵𝐴 ↔ (𝐴 / 𝐵) ∈ ℕ))

Proof of Theorem nndivdvds
StepHypRef Expression
1 nnz 12660 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
2 nnne0 12327 . . . 4 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
3 nnz 12660 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
43adantr 480 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
5 dvdsval2 16305 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ∧ 𝐴 ∈ ℤ) → (𝐵𝐴 ↔ (𝐴 / 𝐵) ∈ ℤ))
61, 2, 4, 5syl2an23an 1423 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵𝐴 ↔ (𝐴 / 𝐵) ∈ ℤ))
76anbi1d 630 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐵𝐴 ∧ 0 < (𝐴 / 𝐵)) ↔ ((𝐴 / 𝐵) ∈ ℤ ∧ 0 < (𝐴 / 𝐵))))
8 nnre 12300 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
98adantr 480 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ)
10 nnre 12300 . . . . 5 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
1110adantl 481 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
12 nngt0 12324 . . . . 5 (𝐴 ∈ ℕ → 0 < 𝐴)
1312adantr 480 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐴)
14 nngt0 12324 . . . . 5 (𝐵 ∈ ℕ → 0 < 𝐵)
1514adantl 481 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵)
169, 11, 13, 15divgt0d 12230 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < (𝐴 / 𝐵))
1716biantrud 531 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵𝐴 ↔ (𝐵𝐴 ∧ 0 < (𝐴 / 𝐵))))
18 elnnz 12649 . . 3 ((𝐴 / 𝐵) ∈ ℕ ↔ ((𝐴 / 𝐵) ∈ ℤ ∧ 0 < (𝐴 / 𝐵)))
1918a1i 11 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) ∈ ℕ ↔ ((𝐴 / 𝐵) ∈ ℤ ∧ 0 < (𝐴 / 𝐵))))
207, 17, 193bitr4d 311 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵𝐴 ↔ (𝐴 / 𝐵) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wne 2946   class class class wbr 5166  (class class class)co 7448  cr 11183  0cc0 11184   < clt 11324   / cdiv 11947  cn 12293  cz 12639  cdvds 16302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-z 12640  df-dvds 16303
This theorem is referenced by:  nndivides  16312  dvdsdivcl  16364  divgcdnn  16561  lcmgcdlem  16653  isprm6  16761  divnumden  16795  hashgcdlem  16835  hashgcdeq  16836  oddprmdvds  16950  gexexlem  19894  ablfac1lem  20112  pgpfac1lem3a  20120  fincygsubgodexd  20157  znrrg  21607  dvdsflf1o  27248  mersenne  27289  perfectlem1  27291  perfect  27293  dchrvmasumlem1  27557  dchrisum0flblem2  27571  logsqvma  27604  oddpwdc  34319  nndivdvdsd  41956  lcmineqlem4  41989  lcmineqlem23  42008  aks6d1c1p3  42067  aks6d1c2p1  42075  aks6d1c2p2  42076  unitscyglem4  42155  dffltz  42589  jm2.20nn  42954  jm2.27c  42964  fouriersw  46152  proththdlem  47487  perfectALTVlem1  47595  perfectALTV  47597
  Copyright terms: Public domain W3C validator