MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nndivdvds Structured version   Visualization version   GIF version

Theorem nndivdvds 15198
Description: Strong form of dvdsval2 15192 for positive integers. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
nndivdvds ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵𝐴 ↔ (𝐴 / 𝐵) ∈ ℕ))

Proof of Theorem nndivdvds
StepHypRef Expression
1 nnz 11601 . . . . 5 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
21adantl 467 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
3 nnne0 11255 . . . . 5 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
43adantl 467 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ≠ 0)
5 nnz 11601 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
65adantr 466 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
7 dvdsval2 15192 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ∧ 𝐴 ∈ ℤ) → (𝐵𝐴 ↔ (𝐴 / 𝐵) ∈ ℤ))
82, 4, 6, 7syl3anc 1476 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵𝐴 ↔ (𝐴 / 𝐵) ∈ ℤ))
98anbi1d 615 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐵𝐴 ∧ 0 < (𝐴 / 𝐵)) ↔ ((𝐴 / 𝐵) ∈ ℤ ∧ 0 < (𝐴 / 𝐵))))
10 nnre 11229 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
1110adantr 466 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ)
12 nnre 11229 . . . . 5 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
1312adantl 467 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
14 nngt0 11251 . . . . 5 (𝐴 ∈ ℕ → 0 < 𝐴)
1514adantr 466 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐴)
16 nngt0 11251 . . . . 5 (𝐵 ∈ ℕ → 0 < 𝐵)
1716adantl 467 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵)
1811, 13, 15, 17divgt0d 11161 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < (𝐴 / 𝐵))
1918biantrud 521 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵𝐴 ↔ (𝐵𝐴 ∧ 0 < (𝐴 / 𝐵))))
20 elnnz 11589 . . 3 ((𝐴 / 𝐵) ∈ ℕ ↔ ((𝐴 / 𝐵) ∈ ℤ ∧ 0 < (𝐴 / 𝐵)))
2120a1i 11 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) ∈ ℕ ↔ ((𝐴 / 𝐵) ∈ ℤ ∧ 0 < (𝐴 / 𝐵))))
229, 19, 213bitr4d 300 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵𝐴 ↔ (𝐴 / 𝐵) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wcel 2145  wne 2943   class class class wbr 4786  (class class class)co 6793  cr 10137  0cc0 10138   < clt 10276   / cdiv 10886  cn 11222  cz 11579  cdvds 15189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-z 11580  df-dvds 15190
This theorem is referenced by:  nndivides  15199  dvdsdivcl  15247  divgcdnn  15444  lcmgcdlem  15527  isprm6  15633  divnumden  15663  hashgcdlem  15700  hashgcdeq  15701  oddprmdvds  15814  gexexlem  18462  ablfac1lem  18675  pgpfac1lem3a  18683  znrrg  20129  dvdsflf1o  25134  mersenne  25173  perfectlem1  25175  perfect  25177  dchrvmasumlem1  25405  dchrisum0flblem2  25419  logsqvma  25452  oddpwdc  30756  jm2.20nn  38090  jm2.27c  38100  fouriersw  40965  proththdlem  42058  perfectALTVlem1  42158  perfectALTV  42160
  Copyright terms: Public domain W3C validator