|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nndivdvds | Structured version Visualization version GIF version | ||
| Description: Strong form of dvdsval2 16294 for positive integers. (Contributed by Stefan O'Rear, 13-Sep-2014.) | 
| Ref | Expression | 
|---|---|
| nndivdvds | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 ∥ 𝐴 ↔ (𝐴 / 𝐵) ∈ ℕ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nnz 12636 | . . . 4 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
| 2 | nnne0 12301 | . . . 4 ⊢ (𝐵 ∈ ℕ → 𝐵 ≠ 0) | |
| 3 | nnz 12636 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ) | 
| 5 | dvdsval2 16294 | . . . 4 ⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ∧ 𝐴 ∈ ℤ) → (𝐵 ∥ 𝐴 ↔ (𝐴 / 𝐵) ∈ ℤ)) | |
| 6 | 1, 2, 4, 5 | syl2an23an 1424 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 ∥ 𝐴 ↔ (𝐴 / 𝐵) ∈ ℤ)) | 
| 7 | 6 | anbi1d 631 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐵 ∥ 𝐴 ∧ 0 < (𝐴 / 𝐵)) ↔ ((𝐴 / 𝐵) ∈ ℤ ∧ 0 < (𝐴 / 𝐵)))) | 
| 8 | nnre 12274 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ) | 
| 10 | nnre 12274 | . . . . 5 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ) | |
| 11 | 10 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ) | 
| 12 | nngt0 12298 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐴) | 
| 14 | nngt0 12298 | . . . . 5 ⊢ (𝐵 ∈ ℕ → 0 < 𝐵) | |
| 15 | 14 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵) | 
| 16 | 9, 11, 13, 15 | divgt0d 12204 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < (𝐴 / 𝐵)) | 
| 17 | 16 | biantrud 531 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 ∥ 𝐴 ↔ (𝐵 ∥ 𝐴 ∧ 0 < (𝐴 / 𝐵)))) | 
| 18 | elnnz 12625 | . . 3 ⊢ ((𝐴 / 𝐵) ∈ ℕ ↔ ((𝐴 / 𝐵) ∈ ℤ ∧ 0 < (𝐴 / 𝐵))) | |
| 19 | 18 | a1i 11 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) ∈ ℕ ↔ ((𝐴 / 𝐵) ∈ ℤ ∧ 0 < (𝐴 / 𝐵)))) | 
| 20 | 7, 17, 19 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 ∥ 𝐴 ↔ (𝐴 / 𝐵) ∈ ℕ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 ≠ wne 2939 class class class wbr 5142 (class class class)co 7432 ℝcr 11155 0cc0 11156 < clt 11296 / cdiv 11921 ℕcn 12267 ℤcz 12615 ∥ cdvds 16291 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-z 12616 df-dvds 16292 | 
| This theorem is referenced by: nndivides 16301 dvdsdivcl 16354 divgcdnn 16553 lcmgcdlem 16644 isprm6 16752 divnumden 16786 hashgcdlem 16826 hashgcdeq 16828 oddprmdvds 16942 gexexlem 19871 ablfac1lem 20089 pgpfac1lem3a 20097 fincygsubgodexd 20134 znrrg 21585 dvdsflf1o 27231 mersenne 27272 perfectlem1 27274 perfect 27276 dchrvmasumlem1 27540 dchrisum0flblem2 27554 logsqvma 27587 oddpwdc 34357 nndivdvdsd 42001 lcmineqlem4 42034 lcmineqlem23 42053 aks6d1c1p3 42112 aks6d1c2p1 42120 aks6d1c2p2 42121 unitscyglem4 42200 dffltz 42649 jm2.20nn 43014 jm2.27c 43024 fouriersw 46251 proththdlem 47605 perfectALTVlem1 47713 perfectALTV 47715 | 
| Copyright terms: Public domain | W3C validator |