Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl2an3an | Structured version Visualization version GIF version |
Description: syl3an 1158 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) |
Ref | Expression |
---|---|
syl2an3an.1 | ⊢ (𝜑 → 𝜓) |
syl2an3an.2 | ⊢ (𝜑 → 𝜒) |
syl2an3an.3 | ⊢ (𝜃 → 𝜏) |
syl2an3an.4 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
syl2an3an | ⊢ ((𝜑 ∧ 𝜃) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2an3an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl2an3an.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | syl2an3an.3 | . . 3 ⊢ (𝜃 → 𝜏) | |
4 | syl2an3an.4 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
5 | 1, 2, 3, 4 | syl3an 1158 | . 2 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜃) → 𝜂) |
6 | 5 | 3anidm12 1417 | 1 ⊢ ((𝜑 ∧ 𝜃) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: syl2an23an 1421 disjxiun 5075 funcnvtp 6493 fldiv 13561 digit2 13932 ccatass 14274 ccatpfx 14395 swrdswrd 14399 lcmfunsnlem2lem2 16325 cncongr1 16353 lsmval 19234 lsmelval 19235 lmimlbs 21024 mdetdiagid 21730 uncld 22173 hausnei2 22485 uptx 22757 xkohmeo 22947 cnextcn 23199 cnextfres1 23200 nmhmcn 24264 uniioombl 24734 dvcnvlem 25121 dvlip2 25140 dvtaylp 25510 taylthlem2 25514 logbgcd1irr 25925 ftalem2 26204 gausslemma2dlem2 26496 ostth2lem3 26764 wlkeq 27981 eucrctshift 28586 numclwwlk1lem2foalem 28694 numclwlk1lem1 28712 ccatf1 31202 lindsadd 35749 prjspnfv01 40441 prjspner01 40442 fmtnofac2lem 44972 itsclc0xyqsolb 46068 |
Copyright terms: Public domain | W3C validator |