| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2an3an | Structured version Visualization version GIF version | ||
| Description: syl3an 1160 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) |
| Ref | Expression |
|---|---|
| syl2an3an.1 | ⊢ (𝜑 → 𝜓) |
| syl2an3an.2 | ⊢ (𝜑 → 𝜒) |
| syl2an3an.3 | ⊢ (𝜃 → 𝜏) |
| syl2an3an.4 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| syl2an3an | ⊢ ((𝜑 ∧ 𝜃) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2an3an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2an3an.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | syl2an3an.3 | . . 3 ⊢ (𝜃 → 𝜏) | |
| 4 | syl2an3an.4 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
| 5 | 1, 2, 3, 4 | syl3an 1160 | . 2 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜃) → 𝜂) |
| 6 | 5 | 3anidm12 1421 | 1 ⊢ ((𝜑 ∧ 𝜃) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl2an23an 1425 disjxiun 5092 funcnvtp 6552 fldiv 13774 digit2 14153 ccatass 14506 ccatpfx 14618 swrdswrd 14622 lcmfunsnlem2lem2 16560 cncongr1 16588 lsmval 19570 lsmelval 19571 lmimlbs 21783 mdetdiagid 22525 uncld 22966 hausnei2 23278 uptx 23550 xkohmeo 23740 cnextcn 23992 cnextfres1 23993 nmhmcn 25057 uniioombl 25527 dvcnvlem 25917 dvlip2 25937 taylply2 26312 dvtaylp 26315 taylthlem2 26319 taylthlem2OLD 26320 logbgcd1irr 26741 ftalem2 27021 gausslemma2dlem2 27315 ostth2lem3 27583 wlkeq 29623 eucrctshift 30234 numclwwlk1lem2foalem 30342 numclwlk1lem1 30360 ccatf1 32941 lindsadd 37663 lpssat 39122 lssatle 39124 prjspnfv01 42732 prjspner01 42733 omlimcl2 43349 naddwordnexlem3 43506 fmtnofac2lem 47682 uhgrimprop 48006 isubgr3stgr 48089 gpgnbgrvtx0 48188 gpgnbgrvtx1 48189 itsclc0xyqsolb 48885 |
| Copyright terms: Public domain | W3C validator |