| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2an3an | Structured version Visualization version GIF version | ||
| Description: syl3an 1160 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) |
| Ref | Expression |
|---|---|
| syl2an3an.1 | ⊢ (𝜑 → 𝜓) |
| syl2an3an.2 | ⊢ (𝜑 → 𝜒) |
| syl2an3an.3 | ⊢ (𝜃 → 𝜏) |
| syl2an3an.4 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| syl2an3an | ⊢ ((𝜑 ∧ 𝜃) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2an3an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2an3an.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | syl2an3an.3 | . . 3 ⊢ (𝜃 → 𝜏) | |
| 4 | syl2an3an.4 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
| 5 | 1, 2, 3, 4 | syl3an 1160 | . 2 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜃) → 𝜂) |
| 6 | 5 | 3anidm12 1421 | 1 ⊢ ((𝜑 ∧ 𝜃) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl2an23an 1425 disjxiun 5086 funcnvtp 6540 fldiv 13756 digit2 14135 ccatass 14488 ccatpfx 14600 swrdswrd 14604 lcmfunsnlem2lem2 16542 cncongr1 16570 lsmval 19553 lsmelval 19554 lmimlbs 21766 mdetdiagid 22508 uncld 22949 hausnei2 23261 uptx 23533 xkohmeo 23723 cnextcn 23975 cnextfres1 23976 nmhmcn 25040 uniioombl 25510 dvcnvlem 25900 dvlip2 25920 taylply2 26295 dvtaylp 26298 taylthlem2 26302 taylthlem2OLD 26303 logbgcd1irr 26724 ftalem2 27004 gausslemma2dlem2 27298 ostth2lem3 27566 wlkeq 29605 eucrctshift 30213 numclwwlk1lem2foalem 30321 numclwlk1lem1 30339 ccatf1 32920 lindsadd 37632 prjspnfv01 42636 prjspner01 42637 omlimcl2 43254 naddwordnexlem3 43411 fmtnofac2lem 47578 uhgrimprop 47902 isubgr3stgr 47985 gpgnbgrvtx0 48084 gpgnbgrvtx1 48085 itsclc0xyqsolb 48781 |
| Copyright terms: Public domain | W3C validator |