| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2an3an | Structured version Visualization version GIF version | ||
| Description: syl3an 1160 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) |
| Ref | Expression |
|---|---|
| syl2an3an.1 | ⊢ (𝜑 → 𝜓) |
| syl2an3an.2 | ⊢ (𝜑 → 𝜒) |
| syl2an3an.3 | ⊢ (𝜃 → 𝜏) |
| syl2an3an.4 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| syl2an3an | ⊢ ((𝜑 ∧ 𝜃) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2an3an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2an3an.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | syl2an3an.3 | . . 3 ⊢ (𝜃 → 𝜏) | |
| 4 | syl2an3an.4 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
| 5 | 1, 2, 3, 4 | syl3an 1160 | . 2 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜃) → 𝜂) |
| 6 | 5 | 3anidm12 1421 | 1 ⊢ ((𝜑 ∧ 𝜃) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl2an23an 1425 disjxiun 5121 funcnvtp 6604 fldiv 13882 digit2 14259 ccatass 14611 ccatpfx 14724 swrdswrd 14728 lcmfunsnlem2lem2 16663 cncongr1 16691 lsmval 19634 lsmelval 19635 lmimlbs 21801 mdetdiagid 22543 uncld 22984 hausnei2 23296 uptx 23568 xkohmeo 23758 cnextcn 24010 cnextfres1 24011 nmhmcn 25076 uniioombl 25547 dvcnvlem 25937 dvlip2 25957 taylply2 26332 dvtaylp 26335 taylthlem2 26339 taylthlem2OLD 26340 logbgcd1irr 26761 ftalem2 27041 gausslemma2dlem2 27335 ostth2lem3 27603 wlkeq 29619 eucrctshift 30229 numclwwlk1lem2foalem 30337 numclwlk1lem1 30355 ccatf1 32929 lindsadd 37642 prjspnfv01 42614 prjspner01 42615 omlimcl2 43233 naddwordnexlem3 43390 fmtnofac2lem 47549 uhgrimprop 47872 isubgr3stgr 47954 gpgnbgrvtx0 48043 gpgnbgrvtx1 48044 itsclc0xyqsolb 48717 |
| Copyright terms: Public domain | W3C validator |