| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2an3an | Structured version Visualization version GIF version | ||
| Description: syl3an 1160 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) |
| Ref | Expression |
|---|---|
| syl2an3an.1 | ⊢ (𝜑 → 𝜓) |
| syl2an3an.2 | ⊢ (𝜑 → 𝜒) |
| syl2an3an.3 | ⊢ (𝜃 → 𝜏) |
| syl2an3an.4 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| syl2an3an | ⊢ ((𝜑 ∧ 𝜃) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2an3an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2an3an.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | syl2an3an.3 | . . 3 ⊢ (𝜃 → 𝜏) | |
| 4 | syl2an3an.4 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
| 5 | 1, 2, 3, 4 | syl3an 1160 | . 2 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜃) → 𝜂) |
| 6 | 5 | 3anidm12 1421 | 1 ⊢ ((𝜑 ∧ 𝜃) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl2an23an 1425 disjxiun 5104 funcnvtp 6579 fldiv 13822 digit2 14201 ccatass 14553 ccatpfx 14666 swrdswrd 14670 lcmfunsnlem2lem2 16609 cncongr1 16637 lsmval 19578 lsmelval 19579 lmimlbs 21745 mdetdiagid 22487 uncld 22928 hausnei2 23240 uptx 23512 xkohmeo 23702 cnextcn 23954 cnextfres1 23955 nmhmcn 25020 uniioombl 25490 dvcnvlem 25880 dvlip2 25900 taylply2 26275 dvtaylp 26278 taylthlem2 26282 taylthlem2OLD 26283 logbgcd1irr 26704 ftalem2 26984 gausslemma2dlem2 27278 ostth2lem3 27546 wlkeq 29562 eucrctshift 30172 numclwwlk1lem2foalem 30280 numclwlk1lem1 30298 ccatf1 32870 lindsadd 37607 prjspnfv01 42612 prjspner01 42613 omlimcl2 43231 naddwordnexlem3 43388 fmtnofac2lem 47569 uhgrimprop 47892 isubgr3stgr 47974 gpgnbgrvtx0 48065 gpgnbgrvtx1 48066 itsclc0xyqsolb 48759 |
| Copyright terms: Public domain | W3C validator |