Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl2an3an | Structured version Visualization version GIF version |
Description: syl3an 1161 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) |
Ref | Expression |
---|---|
syl2an3an.1 | ⊢ (𝜑 → 𝜓) |
syl2an3an.2 | ⊢ (𝜑 → 𝜒) |
syl2an3an.3 | ⊢ (𝜃 → 𝜏) |
syl2an3an.4 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
syl2an3an | ⊢ ((𝜑 ∧ 𝜃) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2an3an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl2an3an.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | syl2an3an.3 | . . 3 ⊢ (𝜃 → 𝜏) | |
4 | syl2an3an.4 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
5 | 1, 2, 3, 4 | syl3an 1161 | . 2 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜃) → 𝜂) |
6 | 5 | 3anidm12 1420 | 1 ⊢ ((𝜑 ∧ 𝜃) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1090 |
This theorem is referenced by: syl2an23an 1424 disjxiun 5027 funcnvtp 6402 fldiv 13319 digit2 13689 ccatass 14031 ccatpfx 14152 swrdswrd 14156 lcmfunsnlem2lem2 16080 cncongr1 16108 lsmval 18891 lsmelval 18892 lmimlbs 20652 mdetdiagid 21351 uncld 21792 hausnei2 22104 uptx 22376 xkohmeo 22566 cnextcn 22818 cnextfres1 22819 nmhmcn 23872 uniioombl 24341 dvcnvlem 24728 dvlip2 24747 dvtaylp 25117 taylthlem2 25121 logbgcd1irr 25532 ftalem2 25811 gausslemma2dlem2 26103 ostth2lem3 26371 wlkeq 27575 eucrctshift 28180 numclwwlk1lem2foalem 28288 numclwlk1lem1 28306 ccatf1 30798 lindsadd 35393 prjspnfv01 40038 prjspner01 40039 fmtnofac2lem 44554 itsclc0xyqsolb 45650 |
Copyright terms: Public domain | W3C validator |