Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl2an3an | Structured version Visualization version GIF version |
Description: syl3an 1160 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) |
Ref | Expression |
---|---|
syl2an3an.1 | ⊢ (𝜑 → 𝜓) |
syl2an3an.2 | ⊢ (𝜑 → 𝜒) |
syl2an3an.3 | ⊢ (𝜃 → 𝜏) |
syl2an3an.4 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
syl2an3an | ⊢ ((𝜑 ∧ 𝜃) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2an3an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl2an3an.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | syl2an3an.3 | . . 3 ⊢ (𝜃 → 𝜏) | |
4 | syl2an3an.4 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
5 | 1, 2, 3, 4 | syl3an 1160 | . 2 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜃) → 𝜂) |
6 | 5 | 3anidm12 1419 | 1 ⊢ ((𝜑 ∧ 𝜃) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 |
This theorem is referenced by: syl2an23an 1423 disjxiun 5078 funcnvtp 6526 fldiv 13630 digit2 14001 ccatass 14342 ccatpfx 14463 swrdswrd 14467 lcmfunsnlem2lem2 16393 cncongr1 16421 lsmval 19302 lsmelval 19303 lmimlbs 21092 mdetdiagid 21798 uncld 22241 hausnei2 22553 uptx 22825 xkohmeo 23015 cnextcn 23267 cnextfres1 23268 nmhmcn 24332 uniioombl 24802 dvcnvlem 25189 dvlip2 25208 dvtaylp 25578 taylthlem2 25582 logbgcd1irr 25993 ftalem2 26272 gausslemma2dlem2 26564 ostth2lem3 26832 wlkeq 28050 eucrctshift 28656 numclwwlk1lem2foalem 28764 numclwlk1lem1 28782 ccatf1 31272 lindsadd 35818 prjspnfv01 40656 prjspner01 40657 fmtnofac2lem 45264 itsclc0xyqsolb 46360 |
Copyright terms: Public domain | W3C validator |