| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2an3an | Structured version Visualization version GIF version | ||
| Description: syl3an 1160 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) |
| Ref | Expression |
|---|---|
| syl2an3an.1 | ⊢ (𝜑 → 𝜓) |
| syl2an3an.2 | ⊢ (𝜑 → 𝜒) |
| syl2an3an.3 | ⊢ (𝜃 → 𝜏) |
| syl2an3an.4 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| syl2an3an | ⊢ ((𝜑 ∧ 𝜃) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2an3an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2an3an.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | syl2an3an.3 | . . 3 ⊢ (𝜃 → 𝜏) | |
| 4 | syl2an3an.4 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
| 5 | 1, 2, 3, 4 | syl3an 1160 | . 2 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜃) → 𝜂) |
| 6 | 5 | 3anidm12 1421 | 1 ⊢ ((𝜑 ∧ 𝜃) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl2an23an 1425 disjxiun 5092 funcnvtp 6549 fldiv 13782 digit2 14161 ccatass 14513 ccatpfx 14625 swrdswrd 14629 lcmfunsnlem2lem2 16568 cncongr1 16596 lsmval 19545 lsmelval 19546 lmimlbs 21761 mdetdiagid 22503 uncld 22944 hausnei2 23256 uptx 23528 xkohmeo 23718 cnextcn 23970 cnextfres1 23971 nmhmcn 25036 uniioombl 25506 dvcnvlem 25896 dvlip2 25916 taylply2 26291 dvtaylp 26294 taylthlem2 26298 taylthlem2OLD 26299 logbgcd1irr 26720 ftalem2 27000 gausslemma2dlem2 27294 ostth2lem3 27562 wlkeq 29597 eucrctshift 30205 numclwwlk1lem2foalem 30313 numclwlk1lem1 30331 ccatf1 32903 lindsadd 37592 prjspnfv01 42597 prjspner01 42598 omlimcl2 43215 naddwordnexlem3 43372 fmtnofac2lem 47553 uhgrimprop 47876 isubgr3stgr 47958 gpgnbgrvtx0 48049 gpgnbgrvtx1 48050 itsclc0xyqsolb 48743 |
| Copyright terms: Public domain | W3C validator |