![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl2an3an | Structured version Visualization version GIF version |
Description: syl3an 1160 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) |
Ref | Expression |
---|---|
syl2an3an.1 | ⊢ (𝜑 → 𝜓) |
syl2an3an.2 | ⊢ (𝜑 → 𝜒) |
syl2an3an.3 | ⊢ (𝜃 → 𝜏) |
syl2an3an.4 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
syl2an3an | ⊢ ((𝜑 ∧ 𝜃) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2an3an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl2an3an.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | syl2an3an.3 | . . 3 ⊢ (𝜃 → 𝜏) | |
4 | syl2an3an.4 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
5 | 1, 2, 3, 4 | syl3an 1160 | . 2 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜃) → 𝜂) |
6 | 5 | 3anidm12 1419 | 1 ⊢ ((𝜑 ∧ 𝜃) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: syl2an23an 1423 disjxiun 5163 funcnvtp 6641 fldiv 13911 digit2 14285 ccatass 14636 ccatpfx 14749 swrdswrd 14753 lcmfunsnlem2lem2 16686 cncongr1 16714 lsmval 19690 lsmelval 19691 lmimlbs 21879 mdetdiagid 22627 uncld 23070 hausnei2 23382 uptx 23654 xkohmeo 23844 cnextcn 24096 cnextfres1 24097 nmhmcn 25172 uniioombl 25643 dvcnvlem 26034 dvlip2 26054 taylply2 26427 dvtaylp 26430 taylthlem2 26434 taylthlem2OLD 26435 logbgcd1irr 26855 ftalem2 27135 gausslemma2dlem2 27429 ostth2lem3 27697 wlkeq 29670 eucrctshift 30275 numclwwlk1lem2foalem 30383 numclwlk1lem1 30401 ccatf1 32915 lindsadd 37573 prjspnfv01 42579 prjspner01 42580 omlimcl2 43203 naddwordnexlem3 43361 fmtnofac2lem 47442 itsclc0xyqsolb 48504 |
Copyright terms: Public domain | W3C validator |