MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl2an3an Structured version   Visualization version   GIF version

Theorem syl2an3an 1424
Description: syl3an 1160 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.)
Hypotheses
Ref Expression
syl2an3an.1 (𝜑𝜓)
syl2an3an.2 (𝜑𝜒)
syl2an3an.3 (𝜃𝜏)
syl2an3an.4 ((𝜓𝜒𝜏) → 𝜂)
Assertion
Ref Expression
syl2an3an ((𝜑𝜃) → 𝜂)

Proof of Theorem syl2an3an
StepHypRef Expression
1 syl2an3an.1 . . 3 (𝜑𝜓)
2 syl2an3an.2 . . 3 (𝜑𝜒)
3 syl2an3an.3 . . 3 (𝜃𝜏)
4 syl2an3an.4 . . 3 ((𝜓𝜒𝜏) → 𝜂)
51, 2, 3, 4syl3an 1160 . 2 ((𝜑𝜑𝜃) → 𝜂)
653anidm12 1421 1 ((𝜑𝜃) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  syl2an23an  1425  disjxiun  5104  funcnvtp  6579  fldiv  13822  digit2  14201  ccatass  14553  ccatpfx  14666  swrdswrd  14670  lcmfunsnlem2lem2  16609  cncongr1  16637  lsmval  19578  lsmelval  19579  lmimlbs  21745  mdetdiagid  22487  uncld  22928  hausnei2  23240  uptx  23512  xkohmeo  23702  cnextcn  23954  cnextfres1  23955  nmhmcn  25020  uniioombl  25490  dvcnvlem  25880  dvlip2  25900  taylply2  26275  dvtaylp  26278  taylthlem2  26282  taylthlem2OLD  26283  logbgcd1irr  26704  ftalem2  26984  gausslemma2dlem2  27278  ostth2lem3  27546  wlkeq  29562  eucrctshift  30172  numclwwlk1lem2foalem  30280  numclwlk1lem1  30298  ccatf1  32870  lindsadd  37607  prjspnfv01  42612  prjspner01  42613  omlimcl2  43231  naddwordnexlem3  43388  fmtnofac2lem  47569  uhgrimprop  47892  isubgr3stgr  47974  gpgnbgrvtx0  48065  gpgnbgrvtx1  48066  itsclc0xyqsolb  48759
  Copyright terms: Public domain W3C validator