| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2an3an | Structured version Visualization version GIF version | ||
| Description: syl3an 1160 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) |
| Ref | Expression |
|---|---|
| syl2an3an.1 | ⊢ (𝜑 → 𝜓) |
| syl2an3an.2 | ⊢ (𝜑 → 𝜒) |
| syl2an3an.3 | ⊢ (𝜃 → 𝜏) |
| syl2an3an.4 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| syl2an3an | ⊢ ((𝜑 ∧ 𝜃) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2an3an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2an3an.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | syl2an3an.3 | . . 3 ⊢ (𝜃 → 𝜏) | |
| 4 | syl2an3an.4 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
| 5 | 1, 2, 3, 4 | syl3an 1160 | . 2 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜃) → 𝜂) |
| 6 | 5 | 3anidm12 1421 | 1 ⊢ ((𝜑 ∧ 𝜃) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl2an23an 1425 disjxiun 5107 funcnvtp 6582 fldiv 13829 digit2 14208 ccatass 14560 ccatpfx 14673 swrdswrd 14677 lcmfunsnlem2lem2 16616 cncongr1 16644 lsmval 19585 lsmelval 19586 lmimlbs 21752 mdetdiagid 22494 uncld 22935 hausnei2 23247 uptx 23519 xkohmeo 23709 cnextcn 23961 cnextfres1 23962 nmhmcn 25027 uniioombl 25497 dvcnvlem 25887 dvlip2 25907 taylply2 26282 dvtaylp 26285 taylthlem2 26289 taylthlem2OLD 26290 logbgcd1irr 26711 ftalem2 26991 gausslemma2dlem2 27285 ostth2lem3 27553 wlkeq 29569 eucrctshift 30179 numclwwlk1lem2foalem 30287 numclwlk1lem1 30305 ccatf1 32877 lindsadd 37614 prjspnfv01 42619 prjspner01 42620 omlimcl2 43238 naddwordnexlem3 43395 fmtnofac2lem 47573 uhgrimprop 47896 isubgr3stgr 47978 gpgnbgrvtx0 48069 gpgnbgrvtx1 48070 itsclc0xyqsolb 48763 |
| Copyright terms: Public domain | W3C validator |