![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl2an3an | Structured version Visualization version GIF version |
Description: syl3an 1159 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) |
Ref | Expression |
---|---|
syl2an3an.1 | ⊢ (𝜑 → 𝜓) |
syl2an3an.2 | ⊢ (𝜑 → 𝜒) |
syl2an3an.3 | ⊢ (𝜃 → 𝜏) |
syl2an3an.4 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
syl2an3an | ⊢ ((𝜑 ∧ 𝜃) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2an3an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl2an3an.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | syl2an3an.3 | . . 3 ⊢ (𝜃 → 𝜏) | |
4 | syl2an3an.4 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
5 | 1, 2, 3, 4 | syl3an 1159 | . 2 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜃) → 𝜂) |
6 | 5 | 3anidm12 1418 | 1 ⊢ ((𝜑 ∧ 𝜃) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: syl2an23an 1422 disjxiun 5145 funcnvtp 6631 fldiv 13897 digit2 14272 ccatass 14623 ccatpfx 14736 swrdswrd 14740 lcmfunsnlem2lem2 16673 cncongr1 16701 lsmval 19681 lsmelval 19682 lmimlbs 21874 mdetdiagid 22622 uncld 23065 hausnei2 23377 uptx 23649 xkohmeo 23839 cnextcn 24091 cnextfres1 24092 nmhmcn 25167 uniioombl 25638 dvcnvlem 26029 dvlip2 26049 taylply2 26424 dvtaylp 26427 taylthlem2 26431 taylthlem2OLD 26432 logbgcd1irr 26852 ftalem2 27132 gausslemma2dlem2 27426 ostth2lem3 27694 wlkeq 29667 eucrctshift 30272 numclwwlk1lem2foalem 30380 numclwlk1lem1 30398 ccatf1 32918 lindsadd 37600 prjspnfv01 42611 prjspner01 42612 omlimcl2 43231 naddwordnexlem3 43389 fmtnofac2lem 47493 isubgr3stgr 47878 gpgnbgrvtx0 47965 gpgnbgrvtx1 47966 itsclc0xyqsolb 48620 |
Copyright terms: Public domain | W3C validator |