MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uztrn Structured version   Visualization version   GIF version

Theorem uztrn 12894
Description: Transitive law for sets of upper integers. (Contributed by NM, 20-Sep-2005.)
Assertion
Ref Expression
uztrn ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑀 ∈ (ℤ𝑁))

Proof of Theorem uztrn
StepHypRef Expression
1 eluzel2 12881 . . 3 (𝐾 ∈ (ℤ𝑁) → 𝑁 ∈ ℤ)
21adantl 481 . 2 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ ℤ)
3 eluzelz 12886 . . 3 (𝑀 ∈ (ℤ𝐾) → 𝑀 ∈ ℤ)
43adantr 480 . 2 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑀 ∈ ℤ)
5 eluzle 12889 . . . 4 (𝐾 ∈ (ℤ𝑁) → 𝑁𝐾)
65adantl 481 . . 3 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁𝐾)
7 eluzle 12889 . . . 4 (𝑀 ∈ (ℤ𝐾) → 𝐾𝑀)
87adantr 480 . . 3 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝐾𝑀)
9 eluzelz 12886 . . . 4 (𝐾 ∈ (ℤ𝑁) → 𝐾 ∈ ℤ)
10 zletr 12659 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁𝐾𝐾𝑀) → 𝑁𝑀))
111, 9, 4, 10syl2an23an 1422 . . 3 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → ((𝑁𝐾𝐾𝑀) → 𝑁𝑀))
126, 8, 11mp2and 699 . 2 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁𝑀)
13 eluz2 12882 . 2 (𝑀 ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁𝑀))
142, 4, 12, 13syl3anbrc 1342 1 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑀 ∈ (ℤ𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106   class class class wbr 5148  cfv 6563  cle 11294  cz 12611  cuz 12876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-pre-lttri 11227  ax-pre-lttrn 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-neg 11493  df-z 12612  df-uz 12877
This theorem is referenced by:  uztrn2  12895  fzsplit2  13586  fzass4  13599  fzss1  13600  fzss2  13601  uzsplit  13633  seqfveq2  14062  sermono  14072  seqsplit  14073  seqid2  14086  fzsdom2  14464  seqcoll  14500  spllen  14789  splfv2a  14791  splval2  14792  climcndslem1  15882  mertenslem1  15917  ntrivcvgfvn0  15932  zprod  15970  dvdsfac  16360  smupvallem  16517  vdwlem2  17016  vdwlem6  17020  efgredleme  19776  bposlem6  27348  dchrisumlem2  27549  axlowdimlem16  28987  fzsplit3  32802  sseqf  34374  ballotlemsima  34497  ballotlemfrc  34508  climuzcnv  35656  seqpo  37734  incsequz2  37736  mettrifi  37744  monotuz  42930
  Copyright terms: Public domain W3C validator