MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uztrn Structured version   Visualization version   GIF version

Theorem uztrn 12818
Description: Transitive law for sets of upper integers. (Contributed by NM, 20-Sep-2005.)
Assertion
Ref Expression
uztrn ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑀 ∈ (ℤ𝑁))

Proof of Theorem uztrn
StepHypRef Expression
1 eluzel2 12805 . . 3 (𝐾 ∈ (ℤ𝑁) → 𝑁 ∈ ℤ)
21adantl 481 . 2 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ ℤ)
3 eluzelz 12810 . . 3 (𝑀 ∈ (ℤ𝐾) → 𝑀 ∈ ℤ)
43adantr 480 . 2 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑀 ∈ ℤ)
5 eluzle 12813 . . . 4 (𝐾 ∈ (ℤ𝑁) → 𝑁𝐾)
65adantl 481 . . 3 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁𝐾)
7 eluzle 12813 . . . 4 (𝑀 ∈ (ℤ𝐾) → 𝐾𝑀)
87adantr 480 . . 3 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝐾𝑀)
9 eluzelz 12810 . . . 4 (𝐾 ∈ (ℤ𝑁) → 𝐾 ∈ ℤ)
10 zletr 12584 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁𝐾𝐾𝑀) → 𝑁𝑀))
111, 9, 4, 10syl2an23an 1425 . . 3 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → ((𝑁𝐾𝐾𝑀) → 𝑁𝑀))
126, 8, 11mp2and 699 . 2 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁𝑀)
13 eluz2 12806 . 2 (𝑀 ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁𝑀))
142, 4, 12, 13syl3anbrc 1344 1 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑀 ∈ (ℤ𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109   class class class wbr 5110  cfv 6514  cle 11216  cz 12536  cuz 12800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-neg 11415  df-z 12537  df-uz 12801
This theorem is referenced by:  uztrn2  12819  fzsplit2  13517  fzass4  13530  fzss1  13531  fzss2  13532  uzsplit  13564  seqfveq2  13996  sermono  14006  seqsplit  14007  seqid2  14020  fzsdom2  14400  seqcoll  14436  spllen  14726  splfv2a  14728  splval2  14729  climcndslem1  15822  mertenslem1  15857  ntrivcvgfvn0  15872  zprod  15910  dvdsfac  16303  smupvallem  16460  vdwlem2  16960  vdwlem6  16964  efgredleme  19680  bposlem6  27207  dchrisumlem2  27408  axlowdimlem16  28891  fzsplit3  32723  sseqf  34390  ballotlemsima  34514  ballotlemfrc  34525  climuzcnv  35665  seqpo  37748  incsequz2  37750  mettrifi  37758  monotuz  42937
  Copyright terms: Public domain W3C validator