![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uztrn | Structured version Visualization version GIF version |
Description: Transitive law for sets of upper integers. (Contributed by NM, 20-Sep-2005.) |
Ref | Expression |
---|---|
uztrn | ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzel2 12823 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → 𝑁 ∈ ℤ) | |
2 | 1 | adantl 482 | . 2 ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑁 ∈ ℤ) |
3 | eluzelz 12828 | . . 3 ⊢ (𝑀 ∈ (ℤ≥‘𝐾) → 𝑀 ∈ ℤ) | |
4 | 3 | adantr 481 | . 2 ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℤ) |
5 | eluzle 12831 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → 𝑁 ≤ 𝐾) | |
6 | 5 | adantl 482 | . . 3 ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑁 ≤ 𝐾) |
7 | eluzle 12831 | . . . 4 ⊢ (𝑀 ∈ (ℤ≥‘𝐾) → 𝐾 ≤ 𝑀) | |
8 | 7 | adantr 481 | . . 3 ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝐾 ≤ 𝑀) |
9 | eluzelz 12828 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → 𝐾 ∈ ℤ) | |
10 | zletr 12602 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 ≤ 𝐾 ∧ 𝐾 ≤ 𝑀) → 𝑁 ≤ 𝑀)) | |
11 | 1, 9, 4, 10 | syl2an23an 1423 | . . 3 ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → ((𝑁 ≤ 𝐾 ∧ 𝐾 ≤ 𝑀) → 𝑁 ≤ 𝑀)) |
12 | 6, 8, 11 | mp2and 697 | . 2 ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑁 ≤ 𝑀) |
13 | eluz2 12824 | . 2 ⊢ (𝑀 ∈ (ℤ≥‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ≤ 𝑀)) | |
14 | 2, 4, 12, 13 | syl3anbrc 1343 | 1 ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 class class class wbr 5147 ‘cfv 6540 ≤ cle 11245 ℤcz 12554 ℤ≥cuz 12818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-pre-lttri 11180 ax-pre-lttrn 11181 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-neg 11443 df-z 12555 df-uz 12819 |
This theorem is referenced by: uztrn2 12837 fzsplit2 13522 fzass4 13535 fzss1 13536 fzss2 13537 uzsplit 13569 seqfveq2 13986 sermono 13996 seqsplit 13997 seqid2 14010 fzsdom2 14384 seqcoll 14421 spllen 14700 splfv2a 14702 splval2 14703 climcndslem1 15791 mertenslem1 15826 ntrivcvgfvn0 15841 zprod 15877 dvdsfac 16265 smupvallem 16420 vdwlem2 16911 vdwlem6 16915 efgredleme 19605 bposlem6 26781 dchrisumlem2 26982 axlowdimlem16 28204 fzsplit3 31992 sseqf 33379 ballotlemsima 33502 ballotlemfrc 33513 climuzcnv 34644 seqpo 36603 incsequz2 36605 mettrifi 36613 monotuz 41665 |
Copyright terms: Public domain | W3C validator |