| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uztrn | Structured version Visualization version GIF version | ||
| Description: Transitive law for sets of upper integers. (Contributed by NM, 20-Sep-2005.) |
| Ref | Expression |
|---|---|
| uztrn | ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzel2 12798 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → 𝑁 ∈ ℤ) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑁 ∈ ℤ) |
| 3 | eluzelz 12803 | . . 3 ⊢ (𝑀 ∈ (ℤ≥‘𝐾) → 𝑀 ∈ ℤ) | |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℤ) |
| 5 | eluzle 12806 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → 𝑁 ≤ 𝐾) | |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑁 ≤ 𝐾) |
| 7 | eluzle 12806 | . . . 4 ⊢ (𝑀 ∈ (ℤ≥‘𝐾) → 𝐾 ≤ 𝑀) | |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝐾 ≤ 𝑀) |
| 9 | eluzelz 12803 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → 𝐾 ∈ ℤ) | |
| 10 | zletr 12577 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 ≤ 𝐾 ∧ 𝐾 ≤ 𝑀) → 𝑁 ≤ 𝑀)) | |
| 11 | 1, 9, 4, 10 | syl2an23an 1425 | . . 3 ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → ((𝑁 ≤ 𝐾 ∧ 𝐾 ≤ 𝑀) → 𝑁 ≤ 𝑀)) |
| 12 | 6, 8, 11 | mp2and 699 | . 2 ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑁 ≤ 𝑀) |
| 13 | eluz2 12799 | . 2 ⊢ (𝑀 ∈ (ℤ≥‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ≤ 𝑀)) | |
| 14 | 2, 4, 12, 13 | syl3anbrc 1344 | 1 ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 ≤ cle 11209 ℤcz 12529 ℤ≥cuz 12793 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-neg 11408 df-z 12530 df-uz 12794 |
| This theorem is referenced by: uztrn2 12812 fzsplit2 13510 fzass4 13523 fzss1 13524 fzss2 13525 uzsplit 13557 seqfveq2 13989 sermono 13999 seqsplit 14000 seqid2 14013 fzsdom2 14393 seqcoll 14429 spllen 14719 splfv2a 14721 splval2 14722 climcndslem1 15815 mertenslem1 15850 ntrivcvgfvn0 15865 zprod 15903 dvdsfac 16296 smupvallem 16453 vdwlem2 16953 vdwlem6 16957 efgredleme 19673 bposlem6 27200 dchrisumlem2 27401 axlowdimlem16 28884 fzsplit3 32716 sseqf 34383 ballotlemsima 34507 ballotlemfrc 34518 climuzcnv 35658 seqpo 37741 incsequz2 37743 mettrifi 37751 monotuz 42930 |
| Copyright terms: Public domain | W3C validator |