![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uztrn | Structured version Visualization version GIF version |
Description: Transitive law for sets of upper integers. (Contributed by NM, 20-Sep-2005.) |
Ref | Expression |
---|---|
uztrn | ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzel2 12834 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → 𝑁 ∈ ℤ) | |
2 | 1 | adantl 481 | . 2 ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑁 ∈ ℤ) |
3 | eluzelz 12839 | . . 3 ⊢ (𝑀 ∈ (ℤ≥‘𝐾) → 𝑀 ∈ ℤ) | |
4 | 3 | adantr 480 | . 2 ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℤ) |
5 | eluzle 12842 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → 𝑁 ≤ 𝐾) | |
6 | 5 | adantl 481 | . . 3 ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑁 ≤ 𝐾) |
7 | eluzle 12842 | . . . 4 ⊢ (𝑀 ∈ (ℤ≥‘𝐾) → 𝐾 ≤ 𝑀) | |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝐾 ≤ 𝑀) |
9 | eluzelz 12839 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → 𝐾 ∈ ℤ) | |
10 | zletr 12613 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 ≤ 𝐾 ∧ 𝐾 ≤ 𝑀) → 𝑁 ≤ 𝑀)) | |
11 | 1, 9, 4, 10 | syl2an23an 1422 | . . 3 ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → ((𝑁 ≤ 𝐾 ∧ 𝐾 ≤ 𝑀) → 𝑁 ≤ 𝑀)) |
12 | 6, 8, 11 | mp2and 696 | . 2 ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑁 ≤ 𝑀) |
13 | eluz2 12835 | . 2 ⊢ (𝑀 ∈ (ℤ≥‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ≤ 𝑀)) | |
14 | 2, 4, 12, 13 | syl3anbrc 1342 | 1 ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 class class class wbr 5148 ‘cfv 6543 ≤ cle 11256 ℤcz 12565 ℤ≥cuz 12829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-pre-lttri 11190 ax-pre-lttrn 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-neg 11454 df-z 12566 df-uz 12830 |
This theorem is referenced by: uztrn2 12848 fzsplit2 13533 fzass4 13546 fzss1 13547 fzss2 13548 uzsplit 13580 seqfveq2 13997 sermono 14007 seqsplit 14008 seqid2 14021 fzsdom2 14395 seqcoll 14432 spllen 14711 splfv2a 14713 splval2 14714 climcndslem1 15802 mertenslem1 15837 ntrivcvgfvn0 15852 zprod 15888 dvdsfac 16276 smupvallem 16431 vdwlem2 16922 vdwlem6 16926 efgredleme 19656 bposlem6 27043 dchrisumlem2 27244 axlowdimlem16 28497 fzsplit3 32287 sseqf 33704 ballotlemsima 33827 ballotlemfrc 33838 climuzcnv 34969 seqpo 36931 incsequz2 36933 mettrifi 36941 monotuz 41995 |
Copyright terms: Public domain | W3C validator |