MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uztrn Structured version   Visualization version   GIF version

Theorem uztrn 12249
Description: Transitive law for sets of upper integers. (Contributed by NM, 20-Sep-2005.)
Assertion
Ref Expression
uztrn ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑀 ∈ (ℤ𝑁))

Proof of Theorem uztrn
StepHypRef Expression
1 eluzel2 12236 . . 3 (𝐾 ∈ (ℤ𝑁) → 𝑁 ∈ ℤ)
21adantl 485 . 2 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ ℤ)
3 eluzelz 12241 . . 3 (𝑀 ∈ (ℤ𝐾) → 𝑀 ∈ ℤ)
43adantr 484 . 2 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑀 ∈ ℤ)
5 eluzle 12244 . . . 4 (𝐾 ∈ (ℤ𝑁) → 𝑁𝐾)
65adantl 485 . . 3 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁𝐾)
7 eluzle 12244 . . . 4 (𝑀 ∈ (ℤ𝐾) → 𝐾𝑀)
87adantr 484 . . 3 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝐾𝑀)
9 eluzelz 12241 . . . 4 (𝐾 ∈ (ℤ𝑁) → 𝐾 ∈ ℤ)
10 zletr 12014 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁𝐾𝐾𝑀) → 𝑁𝑀))
111, 9, 4, 10syl2an23an 1420 . . 3 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → ((𝑁𝐾𝐾𝑀) → 𝑁𝑀))
126, 8, 11mp2and 698 . 2 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁𝑀)
13 eluz2 12237 . 2 (𝑀 ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁𝑀))
142, 4, 12, 13syl3anbrc 1340 1 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑀 ∈ (ℤ𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2114   class class class wbr 5042  cfv 6334  cle 10665  cz 11969  cuz 12231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-ov 7143  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-neg 10862  df-z 11970  df-uz 12232
This theorem is referenced by:  uztrn2  12250  fzsplit2  12927  fzass4  12940  fzss1  12941  fzss2  12942  uzsplit  12974  seqfveq2  13388  sermono  13398  seqsplit  13399  seqid2  13412  fzsdom2  13785  seqcoll  13818  spllen  14107  splfv2a  14109  splval2  14110  climcndslem1  15195  mertenslem1  15231  ntrivcvgfvn0  15246  zprod  15282  dvdsfac  15667  smupvallem  15821  vdwlem2  16307  vdwlem6  16311  efgredleme  18860  bposlem6  25871  dchrisumlem2  26072  axlowdimlem16  26749  fzsplit3  30527  sseqf  31724  ballotlemsima  31847  ballotlemfrc  31858  climuzcnv  32988  seqpo  35143  incsequz2  35145  mettrifi  35153  monotuz  39812
  Copyright terms: Public domain W3C validator