| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uztrn | Structured version Visualization version GIF version | ||
| Description: Transitive law for sets of upper integers. (Contributed by NM, 20-Sep-2005.) |
| Ref | Expression |
|---|---|
| uztrn | ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzel2 12740 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → 𝑁 ∈ ℤ) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑁 ∈ ℤ) |
| 3 | eluzelz 12745 | . . 3 ⊢ (𝑀 ∈ (ℤ≥‘𝐾) → 𝑀 ∈ ℤ) | |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℤ) |
| 5 | eluzle 12748 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → 𝑁 ≤ 𝐾) | |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑁 ≤ 𝐾) |
| 7 | eluzle 12748 | . . . 4 ⊢ (𝑀 ∈ (ℤ≥‘𝐾) → 𝐾 ≤ 𝑀) | |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝐾 ≤ 𝑀) |
| 9 | eluzelz 12745 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → 𝐾 ∈ ℤ) | |
| 10 | zletr 12519 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 ≤ 𝐾 ∧ 𝐾 ≤ 𝑀) → 𝑁 ≤ 𝑀)) | |
| 11 | 1, 9, 4, 10 | syl2an23an 1425 | . . 3 ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → ((𝑁 ≤ 𝐾 ∧ 𝐾 ≤ 𝑀) → 𝑁 ≤ 𝑀)) |
| 12 | 6, 8, 11 | mp2and 699 | . 2 ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑁 ≤ 𝑀) |
| 13 | eluz2 12741 | . 2 ⊢ (𝑀 ∈ (ℤ≥‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ≤ 𝑀)) | |
| 14 | 2, 4, 12, 13 | syl3anbrc 1344 | 1 ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5092 ‘cfv 6482 ≤ cle 11150 ℤcz 12471 ℤ≥cuz 12735 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-neg 11350 df-z 12472 df-uz 12736 |
| This theorem is referenced by: uztrn2 12754 fzsplit2 13452 fzass4 13465 fzss1 13466 fzss2 13467 uzsplit 13499 seqfveq2 13931 sermono 13941 seqsplit 13942 seqid2 13955 fzsdom2 14335 seqcoll 14371 spllen 14660 splfv2a 14662 splval2 14663 climcndslem1 15756 mertenslem1 15791 ntrivcvgfvn0 15806 zprod 15844 dvdsfac 16237 smupvallem 16394 vdwlem2 16894 vdwlem6 16898 efgredleme 19622 bposlem6 27198 dchrisumlem2 27399 axlowdimlem16 28902 fzsplit3 32737 sseqf 34366 ballotlemsima 34490 ballotlemfrc 34501 climuzcnv 35654 seqpo 37737 incsequz2 37739 mettrifi 37747 monotuz 42924 |
| Copyright terms: Public domain | W3C validator |