Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfdm Structured version   Visualization version   GIF version

Theorem satfdm 32729
Description: The domain of the satisfaction predicate as function over wff codes does not depend on the model 𝑀 and the binary relation 𝐸 on 𝑀. (Contributed by AV, 13-Oct-2023.)
Assertion
Ref Expression
satfdm (((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌)) → ∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((𝑁 Sat 𝐹)‘𝑛))
Distinct variable groups:   𝑛,𝐸   𝑛,𝐹   𝑛,𝑀   𝑛,𝑁   𝑛,𝑉   𝑛,𝑊   𝑛,𝑋   𝑛,𝑌

Proof of Theorem satfdm
Dummy variables 𝑎 𝑏 𝑖 𝑢 𝑣 𝑥 𝑦 𝑓 𝑤 𝑚 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6645 . . . . . . 7 (𝑥 = ∅ → ((𝑀 Sat 𝐸)‘𝑥) = ((𝑀 Sat 𝐸)‘∅))
21dmeqd 5738 . . . . . 6 (𝑥 = ∅ → dom ((𝑀 Sat 𝐸)‘𝑥) = dom ((𝑀 Sat 𝐸)‘∅))
3 fveq2 6645 . . . . . . 7 (𝑥 = ∅ → ((𝑁 Sat 𝐹)‘𝑥) = ((𝑁 Sat 𝐹)‘∅))
43dmeqd 5738 . . . . . 6 (𝑥 = ∅ → dom ((𝑁 Sat 𝐹)‘𝑥) = dom ((𝑁 Sat 𝐹)‘∅))
52, 4eqeq12d 2814 . . . . 5 (𝑥 = ∅ → (dom ((𝑀 Sat 𝐸)‘𝑥) = dom ((𝑁 Sat 𝐹)‘𝑥) ↔ dom ((𝑀 Sat 𝐸)‘∅) = dom ((𝑁 Sat 𝐹)‘∅)))
65imbi2d 344 . . . 4 (𝑥 = ∅ → ((((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌)) → dom ((𝑀 Sat 𝐸)‘𝑥) = dom ((𝑁 Sat 𝐹)‘𝑥)) ↔ (((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌)) → dom ((𝑀 Sat 𝐸)‘∅) = dom ((𝑁 Sat 𝐹)‘∅))))
7 fveq2 6645 . . . . . . 7 (𝑥 = 𝑦 → ((𝑀 Sat 𝐸)‘𝑥) = ((𝑀 Sat 𝐸)‘𝑦))
87dmeqd 5738 . . . . . 6 (𝑥 = 𝑦 → dom ((𝑀 Sat 𝐸)‘𝑥) = dom ((𝑀 Sat 𝐸)‘𝑦))
9 fveq2 6645 . . . . . . 7 (𝑥 = 𝑦 → ((𝑁 Sat 𝐹)‘𝑥) = ((𝑁 Sat 𝐹)‘𝑦))
109dmeqd 5738 . . . . . 6 (𝑥 = 𝑦 → dom ((𝑁 Sat 𝐹)‘𝑥) = dom ((𝑁 Sat 𝐹)‘𝑦))
118, 10eqeq12d 2814 . . . . 5 (𝑥 = 𝑦 → (dom ((𝑀 Sat 𝐸)‘𝑥) = dom ((𝑁 Sat 𝐹)‘𝑥) ↔ dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)))
1211imbi2d 344 . . . 4 (𝑥 = 𝑦 → ((((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌)) → dom ((𝑀 Sat 𝐸)‘𝑥) = dom ((𝑁 Sat 𝐹)‘𝑥)) ↔ (((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌)) → dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦))))
13 fveq2 6645 . . . . . . 7 (𝑥 = suc 𝑦 → ((𝑀 Sat 𝐸)‘𝑥) = ((𝑀 Sat 𝐸)‘suc 𝑦))
1413dmeqd 5738 . . . . . 6 (𝑥 = suc 𝑦 → dom ((𝑀 Sat 𝐸)‘𝑥) = dom ((𝑀 Sat 𝐸)‘suc 𝑦))
15 fveq2 6645 . . . . . . 7 (𝑥 = suc 𝑦 → ((𝑁 Sat 𝐹)‘𝑥) = ((𝑁 Sat 𝐹)‘suc 𝑦))
1615dmeqd 5738 . . . . . 6 (𝑥 = suc 𝑦 → dom ((𝑁 Sat 𝐹)‘𝑥) = dom ((𝑁 Sat 𝐹)‘suc 𝑦))
1714, 16eqeq12d 2814 . . . . 5 (𝑥 = suc 𝑦 → (dom ((𝑀 Sat 𝐸)‘𝑥) = dom ((𝑁 Sat 𝐹)‘𝑥) ↔ dom ((𝑀 Sat 𝐸)‘suc 𝑦) = dom ((𝑁 Sat 𝐹)‘suc 𝑦)))
1817imbi2d 344 . . . 4 (𝑥 = suc 𝑦 → ((((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌)) → dom ((𝑀 Sat 𝐸)‘𝑥) = dom ((𝑁 Sat 𝐹)‘𝑥)) ↔ (((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌)) → dom ((𝑀 Sat 𝐸)‘suc 𝑦) = dom ((𝑁 Sat 𝐹)‘suc 𝑦))))
19 fveq2 6645 . . . . . . 7 (𝑥 = 𝑛 → ((𝑀 Sat 𝐸)‘𝑥) = ((𝑀 Sat 𝐸)‘𝑛))
2019dmeqd 5738 . . . . . 6 (𝑥 = 𝑛 → dom ((𝑀 Sat 𝐸)‘𝑥) = dom ((𝑀 Sat 𝐸)‘𝑛))
21 fveq2 6645 . . . . . . 7 (𝑥 = 𝑛 → ((𝑁 Sat 𝐹)‘𝑥) = ((𝑁 Sat 𝐹)‘𝑛))
2221dmeqd 5738 . . . . . 6 (𝑥 = 𝑛 → dom ((𝑁 Sat 𝐹)‘𝑥) = dom ((𝑁 Sat 𝐹)‘𝑛))
2320, 22eqeq12d 2814 . . . . 5 (𝑥 = 𝑛 → (dom ((𝑀 Sat 𝐸)‘𝑥) = dom ((𝑁 Sat 𝐹)‘𝑥) ↔ dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((𝑁 Sat 𝐹)‘𝑛)))
2423imbi2d 344 . . . 4 (𝑥 = 𝑛 → ((((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌)) → dom ((𝑀 Sat 𝐸)‘𝑥) = dom ((𝑁 Sat 𝐹)‘𝑥)) ↔ (((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌)) → dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((𝑁 Sat 𝐹)‘𝑛))))
25 rexcom4 3212 . . . . . . . . . 10 (∃𝑣 ∈ ω ∃𝑦(𝑥 = (𝑢𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑢)𝐸(𝑎𝑣)}) ↔ ∃𝑦𝑣 ∈ ω (𝑥 = (𝑢𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑢)𝐸(𝑎𝑣)}))
2625rexbii 3210 . . . . . . . . 9 (∃𝑢 ∈ ω ∃𝑣 ∈ ω ∃𝑦(𝑥 = (𝑢𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑢)𝐸(𝑎𝑣)}) ↔ ∃𝑢 ∈ ω ∃𝑦𝑣 ∈ ω (𝑥 = (𝑢𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑢)𝐸(𝑎𝑣)}))
27 ovex 7168 . . . . . . . . . . . . . . . 16 (𝑀m ω) ∈ V
2827rabex 5199 . . . . . . . . . . . . . . 15 {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑢)𝐸(𝑎𝑣)} ∈ V
2928isseti 3455 . . . . . . . . . . . . . 14 𝑦 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑢)𝐸(𝑎𝑣)}
30 ovex 7168 . . . . . . . . . . . . . . . 16 (𝑁m ω) ∈ V
3130rabex 5199 . . . . . . . . . . . . . . 15 {𝑎 ∈ (𝑁m ω) ∣ (𝑎𝑢)𝐹(𝑎𝑣)} ∈ V
3231isseti 3455 . . . . . . . . . . . . . 14 𝑧 𝑧 = {𝑎 ∈ (𝑁m ω) ∣ (𝑎𝑢)𝐹(𝑎𝑣)}
3329, 322th 267 . . . . . . . . . . . . 13 (∃𝑦 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑢)𝐸(𝑎𝑣)} ↔ ∃𝑧 𝑧 = {𝑎 ∈ (𝑁m ω) ∣ (𝑎𝑢)𝐹(𝑎𝑣)})
3433anbi2i 625 . . . . . . . . . . . 12 ((𝑥 = (𝑢𝑔𝑣) ∧ ∃𝑦 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑢)𝐸(𝑎𝑣)}) ↔ (𝑥 = (𝑢𝑔𝑣) ∧ ∃𝑧 𝑧 = {𝑎 ∈ (𝑁m ω) ∣ (𝑎𝑢)𝐹(𝑎𝑣)}))
35 19.42v 1954 . . . . . . . . . . . 12 (∃𝑦(𝑥 = (𝑢𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑢)𝐸(𝑎𝑣)}) ↔ (𝑥 = (𝑢𝑔𝑣) ∧ ∃𝑦 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑢)𝐸(𝑎𝑣)}))
36 19.42v 1954 . . . . . . . . . . . 12 (∃𝑧(𝑥 = (𝑢𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁m ω) ∣ (𝑎𝑢)𝐹(𝑎𝑣)}) ↔ (𝑥 = (𝑢𝑔𝑣) ∧ ∃𝑧 𝑧 = {𝑎 ∈ (𝑁m ω) ∣ (𝑎𝑢)𝐹(𝑎𝑣)}))
3734, 35, 363bitr4i 306 . . . . . . . . . . 11 (∃𝑦(𝑥 = (𝑢𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑢)𝐸(𝑎𝑣)}) ↔ ∃𝑧(𝑥 = (𝑢𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁m ω) ∣ (𝑎𝑢)𝐹(𝑎𝑣)}))
3837rexbii 3210 . . . . . . . . . 10 (∃𝑣 ∈ ω ∃𝑦(𝑥 = (𝑢𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑢)𝐸(𝑎𝑣)}) ↔ ∃𝑣 ∈ ω ∃𝑧(𝑥 = (𝑢𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁m ω) ∣ (𝑎𝑢)𝐹(𝑎𝑣)}))
3938rexbii 3210 . . . . . . . . 9 (∃𝑢 ∈ ω ∃𝑣 ∈ ω ∃𝑦(𝑥 = (𝑢𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑢)𝐸(𝑎𝑣)}) ↔ ∃𝑢 ∈ ω ∃𝑣 ∈ ω ∃𝑧(𝑥 = (𝑢𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁m ω) ∣ (𝑎𝑢)𝐹(𝑎𝑣)}))
40 rexcom4 3212 . . . . . . . . 9 (∃𝑢 ∈ ω ∃𝑦𝑣 ∈ ω (𝑥 = (𝑢𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑢)𝐸(𝑎𝑣)}) ↔ ∃𝑦𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑢)𝐸(𝑎𝑣)}))
4126, 39, 403bitr3ri 305 . . . . . . . 8 (∃𝑦𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑢)𝐸(𝑎𝑣)}) ↔ ∃𝑢 ∈ ω ∃𝑣 ∈ ω ∃𝑧(𝑥 = (𝑢𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁m ω) ∣ (𝑎𝑢)𝐹(𝑎𝑣)}))
42 rexcom4 3212 . . . . . . . . 9 (∃𝑣 ∈ ω ∃𝑧(𝑥 = (𝑢𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁m ω) ∣ (𝑎𝑢)𝐹(𝑎𝑣)}) ↔ ∃𝑧𝑣 ∈ ω (𝑥 = (𝑢𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁m ω) ∣ (𝑎𝑢)𝐹(𝑎𝑣)}))
4342rexbii 3210 . . . . . . . 8 (∃𝑢 ∈ ω ∃𝑣 ∈ ω ∃𝑧(𝑥 = (𝑢𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁m ω) ∣ (𝑎𝑢)𝐹(𝑎𝑣)}) ↔ ∃𝑢 ∈ ω ∃𝑧𝑣 ∈ ω (𝑥 = (𝑢𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁m ω) ∣ (𝑎𝑢)𝐹(𝑎𝑣)}))
4441, 43bitri 278 . . . . . . 7 (∃𝑦𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑢)𝐸(𝑎𝑣)}) ↔ ∃𝑢 ∈ ω ∃𝑧𝑣 ∈ ω (𝑥 = (𝑢𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁m ω) ∣ (𝑎𝑢)𝐹(𝑎𝑣)}))
45 rexcom4 3212 . . . . . . 7 (∃𝑢 ∈ ω ∃𝑧𝑣 ∈ ω (𝑥 = (𝑢𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁m ω) ∣ (𝑎𝑢)𝐹(𝑎𝑣)}) ↔ ∃𝑧𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁m ω) ∣ (𝑎𝑢)𝐹(𝑎𝑣)}))
4644, 45bitri 278 . . . . . 6 (∃𝑦𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑢)𝐸(𝑎𝑣)}) ↔ ∃𝑧𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁m ω) ∣ (𝑎𝑢)𝐹(𝑎𝑣)}))
4746abbii 2863 . . . . 5 {𝑥 ∣ ∃𝑦𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑢)𝐸(𝑎𝑣)})} = {𝑥 ∣ ∃𝑧𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁m ω) ∣ (𝑎𝑢)𝐹(𝑎𝑣)})}
48 eqid 2798 . . . . . . . . 9 (𝑀 Sat 𝐸) = (𝑀 Sat 𝐸)
4948satfv0 32718 . . . . . . . 8 ((𝑀𝑉𝐸𝑊) → ((𝑀 Sat 𝐸)‘∅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑢)𝐸(𝑎𝑣)})})
5049dmeqd 5738 . . . . . . 7 ((𝑀𝑉𝐸𝑊) → dom ((𝑀 Sat 𝐸)‘∅) = dom {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑢)𝐸(𝑎𝑣)})})
51 dmopab 5748 . . . . . . 7 dom {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑢)𝐸(𝑎𝑣)})} = {𝑥 ∣ ∃𝑦𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑢)𝐸(𝑎𝑣)})}
5250, 51eqtrdi 2849 . . . . . 6 ((𝑀𝑉𝐸𝑊) → dom ((𝑀 Sat 𝐸)‘∅) = {𝑥 ∣ ∃𝑦𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑢)𝐸(𝑎𝑣)})})
5352adantr 484 . . . . 5 (((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌)) → dom ((𝑀 Sat 𝐸)‘∅) = {𝑥 ∣ ∃𝑦𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑢)𝐸(𝑎𝑣)})})
54 eqid 2798 . . . . . . . . 9 (𝑁 Sat 𝐹) = (𝑁 Sat 𝐹)
5554satfv0 32718 . . . . . . . 8 ((𝑁𝑋𝐹𝑌) → ((𝑁 Sat 𝐹)‘∅) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁m ω) ∣ (𝑎𝑢)𝐹(𝑎𝑣)})})
5655dmeqd 5738 . . . . . . 7 ((𝑁𝑋𝐹𝑌) → dom ((𝑁 Sat 𝐹)‘∅) = dom {⟨𝑥, 𝑧⟩ ∣ ∃𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁m ω) ∣ (𝑎𝑢)𝐹(𝑎𝑣)})})
57 dmopab 5748 . . . . . . 7 dom {⟨𝑥, 𝑧⟩ ∣ ∃𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁m ω) ∣ (𝑎𝑢)𝐹(𝑎𝑣)})} = {𝑥 ∣ ∃𝑧𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁m ω) ∣ (𝑎𝑢)𝐹(𝑎𝑣)})}
5856, 57eqtrdi 2849 . . . . . 6 ((𝑁𝑋𝐹𝑌) → dom ((𝑁 Sat 𝐹)‘∅) = {𝑥 ∣ ∃𝑧𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁m ω) ∣ (𝑎𝑢)𝐹(𝑎𝑣)})})
5958adantl 485 . . . . 5 (((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌)) → dom ((𝑁 Sat 𝐹)‘∅) = {𝑥 ∣ ∃𝑧𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁m ω) ∣ (𝑎𝑢)𝐹(𝑎𝑣)})})
6047, 53, 593eqtr4a 2859 . . . 4 (((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌)) → dom ((𝑀 Sat 𝐸)‘∅) = dom ((𝑁 Sat 𝐹)‘∅))
61 pm2.27 42 . . . . . . . 8 (((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌)) → ((((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌)) → dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)))
6261adantl 485 . . . . . . 7 ((𝑦 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌))) → ((((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌)) → dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)))
63 simpr 488 . . . . . . . . . . 11 (((𝑦 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌))) ∧ dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦))
64 simprl 770 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌))) → (𝑀𝑉𝐸𝑊))
65 simpl 486 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌))) → 𝑦 ∈ ω)
66 df-3an 1086 . . . . . . . . . . . . . . . . . 18 ((𝑀𝑉𝐸𝑊𝑦 ∈ ω) ↔ ((𝑀𝑉𝐸𝑊) ∧ 𝑦 ∈ ω))
6764, 65, 66sylanbrc 586 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌))) → (𝑀𝑉𝐸𝑊𝑦 ∈ ω))
68 satfdmlem 32728 . . . . . . . . . . . . . . . . 17 (((𝑀𝑉𝐸𝑊𝑦 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎))))
6967, 68sylan 583 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌))) ∧ dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎))))
70 simprr 772 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌))) → (𝑁𝑋𝐹𝑌))
71 df-3an 1086 . . . . . . . . . . . . . . . . . 18 ((𝑁𝑋𝐹𝑌𝑦 ∈ ω) ↔ ((𝑁𝑋𝐹𝑌) ∧ 𝑦 ∈ ω))
7270, 65, 71sylanbrc 586 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌))) → (𝑁𝑋𝐹𝑌𝑦 ∈ ω))
73 id 22 . . . . . . . . . . . . . . . . . 18 (dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦) → dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦))
7473eqcomd 2804 . . . . . . . . . . . . . . . . 17 (dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦) → dom ((𝑁 Sat 𝐹)‘𝑦) = dom ((𝑀 Sat 𝐸)‘𝑦))
75 satfdmlem 32728 . . . . . . . . . . . . . . . . 17 (((𝑁𝑋𝐹𝑌𝑦 ∈ ω) ∧ dom ((𝑁 Sat 𝐹)‘𝑦) = dom ((𝑀 Sat 𝐸)‘𝑦)) → (∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎)) → ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))
7672, 74, 75syl2an 598 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌))) ∧ dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → (∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎)) → ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))
7769, 76impbid 215 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌))) ∧ dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎))))
7827difexi 5196 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) ∈ V
7978isseti 3455 . . . . . . . . . . . . . . . . . . . 20 𝑤 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))
8079biantru 533 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ ∃𝑤 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))
8180bicomi 227 . . . . . . . . . . . . . . . . . 18 ((𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ ∃𝑤 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ↔ 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)))
8281rexbii 3210 . . . . . . . . . . . . . . . . 17 (∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ ∃𝑤 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ↔ ∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)))
8327rabex 5199 . . . . . . . . . . . . . . . . . . . . 21 {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)} ∈ V
8483isseti 3455 . . . . . . . . . . . . . . . . . . . 20 𝑤 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}
8584biantru 533 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ∀𝑔𝑖(1st𝑢) ↔ (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ ∃𝑤 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))
8685bicomi 227 . . . . . . . . . . . . . . . . . 18 ((𝑥 = ∀𝑔𝑖(1st𝑢) ∧ ∃𝑤 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}) ↔ 𝑥 = ∀𝑔𝑖(1st𝑢))
8786rexbii 3210 . . . . . . . . . . . . . . . . 17 (∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ ∃𝑤 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}) ↔ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))
8882, 87orbi12i 912 . . . . . . . . . . . . . . . 16 ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ ∃𝑤 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ ∃𝑤 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ (∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))
8988rexbii 3210 . . . . . . . . . . . . . . 15 (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ ∃𝑤 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ ∃𝑤 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))
9030difexi 5196 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏))) ∈ V
9190isseti 3455 . . . . . . . . . . . . . . . . . . . 20 𝑧 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))
9291biantru 533 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ↔ (𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ ∃𝑧 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))))
9392bicomi 227 . . . . . . . . . . . . . . . . . 18 ((𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ ∃𝑧 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ↔ 𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)))
9493rexbii 3210 . . . . . . . . . . . . . . . . 17 (∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ ∃𝑧 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ↔ ∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)))
9530rabex 5199 . . . . . . . . . . . . . . . . . . . . 21 {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)} ∈ V
9695isseti 3455 . . . . . . . . . . . . . . . . . . . 20 𝑧 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)}
9796biantru 533 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ∀𝑔𝑖(1st𝑎) ↔ (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ ∃𝑧 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)}))
9897bicomi 227 . . . . . . . . . . . . . . . . . 18 ((𝑥 = ∀𝑔𝑖(1st𝑎) ∧ ∃𝑧 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)}) ↔ 𝑥 = ∀𝑔𝑖(1st𝑎))
9998rexbii 3210 . . . . . . . . . . . . . . . . 17 (∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ ∃𝑧 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)}) ↔ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎))
10094, 99orbi12i 912 . . . . . . . . . . . . . . . 16 ((∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ ∃𝑧 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ ∃𝑧 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)})) ↔ (∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎)))
101100rexbii 3210 . . . . . . . . . . . . . . 15 (∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ ∃𝑧 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ ∃𝑧 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)})) ↔ ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎)))
10277, 89, 1013bitr4g 317 . . . . . . . . . . . . . 14 (((𝑦 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌))) ∧ dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ ∃𝑤 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ ∃𝑤 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ ∃𝑧 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ ∃𝑧 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)}))))
103 19.42v 1954 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑤(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ↔ (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ ∃𝑤 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))
104103bicomi 227 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ ∃𝑤 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ↔ ∃𝑤(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))
105104rexbii 3210 . . . . . . . . . . . . . . . . . . 19 (∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ ∃𝑤 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ↔ ∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)∃𝑤(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))
106 rexcom4 3212 . . . . . . . . . . . . . . . . . . 19 (∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)∃𝑤(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ↔ ∃𝑤𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))
107105, 106bitri 278 . . . . . . . . . . . . . . . . . 18 (∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ ∃𝑤 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ↔ ∃𝑤𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))
108 19.42v 1954 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑤(𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}) ↔ (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ ∃𝑤 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))
109108bicomi 227 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = ∀𝑔𝑖(1st𝑢) ∧ ∃𝑤 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}) ↔ ∃𝑤(𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))
110109rexbii 3210 . . . . . . . . . . . . . . . . . . 19 (∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ ∃𝑤 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}) ↔ ∃𝑖 ∈ ω ∃𝑤(𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))
111 rexcom4 3212 . . . . . . . . . . . . . . . . . . 19 (∃𝑖 ∈ ω ∃𝑤(𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}) ↔ ∃𝑤𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))
112110, 111bitri 278 . . . . . . . . . . . . . . . . . 18 (∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ ∃𝑤 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}) ↔ ∃𝑤𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))
113107, 112orbi12i 912 . . . . . . . . . . . . . . . . 17 ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ ∃𝑤 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ ∃𝑤 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ (∃𝑤𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑤𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))
114 19.43 1883 . . . . . . . . . . . . . . . . . 18 (∃𝑤(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ (∃𝑤𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑤𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))
115114bicomi 227 . . . . . . . . . . . . . . . . 17 ((∃𝑤𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑤𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ ∃𝑤(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))
116113, 115bitri 278 . . . . . . . . . . . . . . . 16 ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ ∃𝑤 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ ∃𝑤 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ ∃𝑤(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))
117116rexbii 3210 . . . . . . . . . . . . . . 15 (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ ∃𝑤 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ ∃𝑤 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)∃𝑤(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))
118 rexcom4 3212 . . . . . . . . . . . . . . 15 (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)∃𝑤(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ ∃𝑤𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))
119117, 118bitri 278 . . . . . . . . . . . . . 14 (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ ∃𝑤 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ ∃𝑤 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ ∃𝑤𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))
120 19.42v 1954 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑧(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ↔ (𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ ∃𝑧 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))))
121120bicomi 227 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ ∃𝑧 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ↔ ∃𝑧(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))))
122121rexbii 3210 . . . . . . . . . . . . . . . . . . 19 (∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ ∃𝑧 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ↔ ∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)∃𝑧(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))))
123 rexcom4 3212 . . . . . . . . . . . . . . . . . . 19 (∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)∃𝑧(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ↔ ∃𝑧𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))))
124122, 123bitri 278 . . . . . . . . . . . . . . . . . 18 (∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ ∃𝑧 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ↔ ∃𝑧𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))))
125 19.42v 1954 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑧(𝑥 = ∀𝑔𝑖(1st𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)}) ↔ (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ ∃𝑧 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)}))
126125bicomi 227 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = ∀𝑔𝑖(1st𝑎) ∧ ∃𝑧 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)}) ↔ ∃𝑧(𝑥 = ∀𝑔𝑖(1st𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)}))
127126rexbii 3210 . . . . . . . . . . . . . . . . . . 19 (∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ ∃𝑧 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)}) ↔ ∃𝑖 ∈ ω ∃𝑧(𝑥 = ∀𝑔𝑖(1st𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)}))
128 rexcom4 3212 . . . . . . . . . . . . . . . . . . 19 (∃𝑖 ∈ ω ∃𝑧(𝑥 = ∀𝑔𝑖(1st𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)}) ↔ ∃𝑧𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)}))
129127, 128bitri 278 . . . . . . . . . . . . . . . . . 18 (∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ ∃𝑧 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)}) ↔ ∃𝑧𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)}))
130124, 129orbi12i 912 . . . . . . . . . . . . . . . . 17 ((∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ ∃𝑧 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ ∃𝑧 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)})) ↔ (∃𝑧𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ∨ ∃𝑧𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)})))
131 19.43 1883 . . . . . . . . . . . . . . . . . 18 (∃𝑧(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)})) ↔ (∃𝑧𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ∨ ∃𝑧𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)})))
132131bicomi 227 . . . . . . . . . . . . . . . . 17 ((∃𝑧𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ∨ ∃𝑧𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)})) ↔ ∃𝑧(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)})))
133130, 132bitri 278 . . . . . . . . . . . . . . . 16 ((∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ ∃𝑧 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ ∃𝑧 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)})) ↔ ∃𝑧(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)})))
134133rexbii 3210 . . . . . . . . . . . . . . 15 (∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ ∃𝑧 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ ∃𝑧 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)})) ↔ ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)∃𝑧(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)})))
135 rexcom4 3212 . . . . . . . . . . . . . . 15 (∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)∃𝑧(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)})) ↔ ∃𝑧𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)})))
136134, 135bitri 278 . . . . . . . . . . . . . 14 (∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ ∃𝑧 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ ∃𝑧 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)})) ↔ ∃𝑧𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)})))
137102, 119, 1363bitr3g 316 . . . . . . . . . . . . 13 (((𝑦 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌))) ∧ dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → (∃𝑤𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ ∃𝑧𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)}))))
138137abbidv 2862 . . . . . . . . . . . 12 (((𝑦 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌))) ∧ dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → {𝑥 ∣ ∃𝑤𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))} = {𝑥 ∣ ∃𝑧𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)}))})
139 dmopab 5748 . . . . . . . . . . . 12 dom {⟨𝑥, 𝑤⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))} = {𝑥 ∣ ∃𝑤𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}
140 dmopab 5748 . . . . . . . . . . . 12 dom {⟨𝑥, 𝑧⟩ ∣ ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)}))} = {𝑥 ∣ ∃𝑧𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)}))}
141138, 139, 1403eqtr4g 2858 . . . . . . . . . . 11 (((𝑦 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌))) ∧ dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → dom {⟨𝑥, 𝑤⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))} = dom {⟨𝑥, 𝑧⟩ ∣ ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)}))})
14263, 141uneq12d 4091 . . . . . . . . . 10 (((𝑦 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌))) ∧ dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → (dom ((𝑀 Sat 𝐸)‘𝑦) ∪ dom {⟨𝑥, 𝑤⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}) = (dom ((𝑁 Sat 𝐹)‘𝑦) ∪ dom {⟨𝑥, 𝑧⟩ ∣ ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)}))}))
143 dmun 5743 . . . . . . . . . 10 dom (((𝑀 Sat 𝐸)‘𝑦) ∪ {⟨𝑥, 𝑤⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}) = (dom ((𝑀 Sat 𝐸)‘𝑦) ∪ dom {⟨𝑥, 𝑤⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})
144 dmun 5743 . . . . . . . . . 10 dom (((𝑁 Sat 𝐹)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)}))}) = (dom ((𝑁 Sat 𝐹)‘𝑦) ∪ dom {⟨𝑥, 𝑧⟩ ∣ ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)}))})
145142, 143, 1443eqtr4g 2858 . . . . . . . . 9 (((𝑦 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌))) ∧ dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → dom (((𝑀 Sat 𝐸)‘𝑦) ∪ {⟨𝑥, 𝑤⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}) = dom (((𝑁 Sat 𝐹)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)}))}))
146 simpl 486 . . . . . . . . . . . . . 14 ((𝑀𝑉𝐸𝑊) → 𝑀𝑉)
147146adantr 484 . . . . . . . . . . . . 13 (((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌)) → 𝑀𝑉)
148 simpr 488 . . . . . . . . . . . . . 14 ((𝑀𝑉𝐸𝑊) → 𝐸𝑊)
149148adantr 484 . . . . . . . . . . . . 13 (((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌)) → 𝐸𝑊)
15048satfvsuc 32721 . . . . . . . . . . . . 13 ((𝑀𝑉𝐸𝑊𝑦 ∈ ω) → ((𝑀 Sat 𝐸)‘suc 𝑦) = (((𝑀 Sat 𝐸)‘𝑦) ∪ {⟨𝑥, 𝑤⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
151147, 149, 65, 150syl2an23an 1420 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌))) → ((𝑀 Sat 𝐸)‘suc 𝑦) = (((𝑀 Sat 𝐸)‘𝑦) ∪ {⟨𝑥, 𝑤⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
152151dmeqd 5738 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌))) → dom ((𝑀 Sat 𝐸)‘suc 𝑦) = dom (((𝑀 Sat 𝐸)‘𝑦) ∪ {⟨𝑥, 𝑤⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
153 simprl 770 . . . . . . . . . . . . 13 (((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌)) → 𝑁𝑋)
154 simprr 772 . . . . . . . . . . . . 13 (((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌)) → 𝐹𝑌)
15554satfvsuc 32721 . . . . . . . . . . . . 13 ((𝑁𝑋𝐹𝑌𝑦 ∈ ω) → ((𝑁 Sat 𝐹)‘suc 𝑦) = (((𝑁 Sat 𝐹)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)}))}))
156153, 154, 65, 155syl2an23an 1420 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌))) → ((𝑁 Sat 𝐹)‘suc 𝑦) = (((𝑁 Sat 𝐹)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)}))}))
157156dmeqd 5738 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌))) → dom ((𝑁 Sat 𝐹)‘suc 𝑦) = dom (((𝑁 Sat 𝐹)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)}))}))
158152, 157eqeq12d 2814 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌))) → (dom ((𝑀 Sat 𝐸)‘suc 𝑦) = dom ((𝑁 Sat 𝐹)‘suc 𝑦) ↔ dom (((𝑀 Sat 𝐸)‘𝑦) ∪ {⟨𝑥, 𝑤⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}) = dom (((𝑁 Sat 𝐹)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)}))})))
159158adantr 484 . . . . . . . . 9 (((𝑦 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌))) ∧ dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → (dom ((𝑀 Sat 𝐸)‘suc 𝑦) = dom ((𝑁 Sat 𝐹)‘suc 𝑦) ↔ dom (((𝑀 Sat 𝐸)‘𝑦) ∪ {⟨𝑥, 𝑤⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑤 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀m ω) ∣ ∀𝑓𝑀 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}) = dom (((𝑁 Sat 𝐹)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∧ 𝑧 = ((𝑁m ω) ∖ ((2nd𝑎) ∩ (2nd𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁m ω) ∣ ∀𝑓𝑁 ({⟨𝑖, 𝑓⟩} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑎)}))})))
160145, 159mpbird 260 . . . . . . . 8 (((𝑦 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌))) ∧ dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → dom ((𝑀 Sat 𝐸)‘suc 𝑦) = dom ((𝑁 Sat 𝐹)‘suc 𝑦))
161160ex 416 . . . . . . 7 ((𝑦 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌))) → (dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦) → dom ((𝑀 Sat 𝐸)‘suc 𝑦) = dom ((𝑁 Sat 𝐹)‘suc 𝑦)))
16262, 161syld 47 . . . . . 6 ((𝑦 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌))) → ((((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌)) → dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → dom ((𝑀 Sat 𝐸)‘suc 𝑦) = dom ((𝑁 Sat 𝐹)‘suc 𝑦)))
163162ex 416 . . . . 5 (𝑦 ∈ ω → (((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌)) → ((((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌)) → dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → dom ((𝑀 Sat 𝐸)‘suc 𝑦) = dom ((𝑁 Sat 𝐹)‘suc 𝑦))))
164163com23 86 . . . 4 (𝑦 ∈ ω → ((((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌)) → dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → (((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌)) → dom ((𝑀 Sat 𝐸)‘suc 𝑦) = dom ((𝑁 Sat 𝐹)‘suc 𝑦))))
1656, 12, 18, 24, 60, 164finds 7589 . . 3 (𝑛 ∈ ω → (((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌)) → dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((𝑁 Sat 𝐹)‘𝑛)))
166165impcom 411 . 2 ((((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌)) ∧ 𝑛 ∈ ω) → dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((𝑁 Sat 𝐹)‘𝑛))
167166ralrimiva 3149 1 (((𝑀𝑉𝐸𝑊) ∧ (𝑁𝑋𝐹𝑌)) → ∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((𝑁 Sat 𝐹)‘𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wex 1781  wcel 2111  {cab 2776  wral 3106  wrex 3107  {crab 3110  cdif 3878  cun 3879  cin 3880  c0 4243  {csn 4525  cop 4531   class class class wbr 5030  {copab 5092  dom cdm 5519  cres 5521  suc csuc 6161  cfv 6324  (class class class)co 7135  ωcom 7560  1st c1st 7669  2nd c2nd 7670  m cmap 8389  𝑔cgoe 32693  𝑔cgna 32694  𝑔cgol 32695   Sat csat 32696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-goel 32700  df-goal 32702  df-sat 32703
This theorem is referenced by:  satfdmfmla  32760
  Copyright terms: Public domain W3C validator