| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑥 = ∅ → ((𝑀 Sat 𝐸)‘𝑥) = ((𝑀 Sat 𝐸)‘∅)) |
| 2 | 1 | dmeqd 5916 |
. . . . . 6
⊢ (𝑥 = ∅ → dom ((𝑀 Sat 𝐸)‘𝑥) = dom ((𝑀 Sat 𝐸)‘∅)) |
| 3 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑥 = ∅ → ((𝑁 Sat 𝐹)‘𝑥) = ((𝑁 Sat 𝐹)‘∅)) |
| 4 | 3 | dmeqd 5916 |
. . . . . 6
⊢ (𝑥 = ∅ → dom ((𝑁 Sat 𝐹)‘𝑥) = dom ((𝑁 Sat 𝐹)‘∅)) |
| 5 | 2, 4 | eqeq12d 2753 |
. . . . 5
⊢ (𝑥 = ∅ → (dom ((𝑀 Sat 𝐸)‘𝑥) = dom ((𝑁 Sat 𝐹)‘𝑥) ↔ dom ((𝑀 Sat 𝐸)‘∅) = dom ((𝑁 Sat 𝐹)‘∅))) |
| 6 | 5 | imbi2d 340 |
. . . 4
⊢ (𝑥 = ∅ → ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌)) → dom ((𝑀 Sat 𝐸)‘𝑥) = dom ((𝑁 Sat 𝐹)‘𝑥)) ↔ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌)) → dom ((𝑀 Sat 𝐸)‘∅) = dom ((𝑁 Sat 𝐹)‘∅)))) |
| 7 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝑀 Sat 𝐸)‘𝑥) = ((𝑀 Sat 𝐸)‘𝑦)) |
| 8 | 7 | dmeqd 5916 |
. . . . . 6
⊢ (𝑥 = 𝑦 → dom ((𝑀 Sat 𝐸)‘𝑥) = dom ((𝑀 Sat 𝐸)‘𝑦)) |
| 9 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝑁 Sat 𝐹)‘𝑥) = ((𝑁 Sat 𝐹)‘𝑦)) |
| 10 | 9 | dmeqd 5916 |
. . . . . 6
⊢ (𝑥 = 𝑦 → dom ((𝑁 Sat 𝐹)‘𝑥) = dom ((𝑁 Sat 𝐹)‘𝑦)) |
| 11 | 8, 10 | eqeq12d 2753 |
. . . . 5
⊢ (𝑥 = 𝑦 → (dom ((𝑀 Sat 𝐸)‘𝑥) = dom ((𝑁 Sat 𝐹)‘𝑥) ↔ dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦))) |
| 12 | 11 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 𝑦 → ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌)) → dom ((𝑀 Sat 𝐸)‘𝑥) = dom ((𝑁 Sat 𝐹)‘𝑥)) ↔ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌)) → dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)))) |
| 13 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑥 = suc 𝑦 → ((𝑀 Sat 𝐸)‘𝑥) = ((𝑀 Sat 𝐸)‘suc 𝑦)) |
| 14 | 13 | dmeqd 5916 |
. . . . . 6
⊢ (𝑥 = suc 𝑦 → dom ((𝑀 Sat 𝐸)‘𝑥) = dom ((𝑀 Sat 𝐸)‘suc 𝑦)) |
| 15 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑥 = suc 𝑦 → ((𝑁 Sat 𝐹)‘𝑥) = ((𝑁 Sat 𝐹)‘suc 𝑦)) |
| 16 | 15 | dmeqd 5916 |
. . . . . 6
⊢ (𝑥 = suc 𝑦 → dom ((𝑁 Sat 𝐹)‘𝑥) = dom ((𝑁 Sat 𝐹)‘suc 𝑦)) |
| 17 | 14, 16 | eqeq12d 2753 |
. . . . 5
⊢ (𝑥 = suc 𝑦 → (dom ((𝑀 Sat 𝐸)‘𝑥) = dom ((𝑁 Sat 𝐹)‘𝑥) ↔ dom ((𝑀 Sat 𝐸)‘suc 𝑦) = dom ((𝑁 Sat 𝐹)‘suc 𝑦))) |
| 18 | 17 | imbi2d 340 |
. . . 4
⊢ (𝑥 = suc 𝑦 → ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌)) → dom ((𝑀 Sat 𝐸)‘𝑥) = dom ((𝑁 Sat 𝐹)‘𝑥)) ↔ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌)) → dom ((𝑀 Sat 𝐸)‘suc 𝑦) = dom ((𝑁 Sat 𝐹)‘suc 𝑦)))) |
| 19 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → ((𝑀 Sat 𝐸)‘𝑥) = ((𝑀 Sat 𝐸)‘𝑛)) |
| 20 | 19 | dmeqd 5916 |
. . . . . 6
⊢ (𝑥 = 𝑛 → dom ((𝑀 Sat 𝐸)‘𝑥) = dom ((𝑀 Sat 𝐸)‘𝑛)) |
| 21 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → ((𝑁 Sat 𝐹)‘𝑥) = ((𝑁 Sat 𝐹)‘𝑛)) |
| 22 | 21 | dmeqd 5916 |
. . . . . 6
⊢ (𝑥 = 𝑛 → dom ((𝑁 Sat 𝐹)‘𝑥) = dom ((𝑁 Sat 𝐹)‘𝑛)) |
| 23 | 20, 22 | eqeq12d 2753 |
. . . . 5
⊢ (𝑥 = 𝑛 → (dom ((𝑀 Sat 𝐸)‘𝑥) = dom ((𝑁 Sat 𝐹)‘𝑥) ↔ dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((𝑁 Sat 𝐹)‘𝑛))) |
| 24 | 23 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 𝑛 → ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌)) → dom ((𝑀 Sat 𝐸)‘𝑥) = dom ((𝑁 Sat 𝐹)‘𝑥)) ↔ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌)) → dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((𝑁 Sat 𝐹)‘𝑛)))) |
| 25 | | rexcom4 3288 |
. . . . . . . . . 10
⊢
(∃𝑣 ∈
ω ∃𝑦(𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑢)𝐸(𝑎‘𝑣)}) ↔ ∃𝑦∃𝑣 ∈ ω (𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑢)𝐸(𝑎‘𝑣)})) |
| 26 | 25 | rexbii 3094 |
. . . . . . . . 9
⊢
(∃𝑢 ∈
ω ∃𝑣 ∈
ω ∃𝑦(𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑢)𝐸(𝑎‘𝑣)}) ↔ ∃𝑢 ∈ ω ∃𝑦∃𝑣 ∈ ω (𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑢)𝐸(𝑎‘𝑣)})) |
| 27 | | ovex 7464 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ↑m ω)
∈ V |
| 28 | 27 | rabex 5339 |
. . . . . . . . . . . . . . 15
⊢ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑢)𝐸(𝑎‘𝑣)} ∈ V |
| 29 | 28 | isseti 3498 |
. . . . . . . . . . . . . 14
⊢
∃𝑦 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑢)𝐸(𝑎‘𝑣)} |
| 30 | | ovex 7464 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ↑m ω)
∈ V |
| 31 | 30 | rabex 5339 |
. . . . . . . . . . . . . . 15
⊢ {𝑎 ∈ (𝑁 ↑m ω) ∣ (𝑎‘𝑢)𝐹(𝑎‘𝑣)} ∈ V |
| 32 | 31 | isseti 3498 |
. . . . . . . . . . . . . 14
⊢
∃𝑧 𝑧 = {𝑎 ∈ (𝑁 ↑m ω) ∣ (𝑎‘𝑢)𝐹(𝑎‘𝑣)} |
| 33 | 29, 32 | 2th 264 |
. . . . . . . . . . . . 13
⊢
(∃𝑦 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑢)𝐸(𝑎‘𝑣)} ↔ ∃𝑧 𝑧 = {𝑎 ∈ (𝑁 ↑m ω) ∣ (𝑎‘𝑢)𝐹(𝑎‘𝑣)}) |
| 34 | 33 | anbi2i 623 |
. . . . . . . . . . . 12
⊢ ((𝑥 = (𝑢∈𝑔𝑣) ∧ ∃𝑦 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑢)𝐸(𝑎‘𝑣)}) ↔ (𝑥 = (𝑢∈𝑔𝑣) ∧ ∃𝑧 𝑧 = {𝑎 ∈ (𝑁 ↑m ω) ∣ (𝑎‘𝑢)𝐹(𝑎‘𝑣)})) |
| 35 | | 19.42v 1953 |
. . . . . . . . . . . 12
⊢
(∃𝑦(𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑢)𝐸(𝑎‘𝑣)}) ↔ (𝑥 = (𝑢∈𝑔𝑣) ∧ ∃𝑦 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑢)𝐸(𝑎‘𝑣)})) |
| 36 | | 19.42v 1953 |
. . . . . . . . . . . 12
⊢
(∃𝑧(𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁 ↑m ω) ∣ (𝑎‘𝑢)𝐹(𝑎‘𝑣)}) ↔ (𝑥 = (𝑢∈𝑔𝑣) ∧ ∃𝑧 𝑧 = {𝑎 ∈ (𝑁 ↑m ω) ∣ (𝑎‘𝑢)𝐹(𝑎‘𝑣)})) |
| 37 | 34, 35, 36 | 3bitr4i 303 |
. . . . . . . . . . 11
⊢
(∃𝑦(𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑢)𝐸(𝑎‘𝑣)}) ↔ ∃𝑧(𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁 ↑m ω) ∣ (𝑎‘𝑢)𝐹(𝑎‘𝑣)})) |
| 38 | 37 | rexbii 3094 |
. . . . . . . . . 10
⊢
(∃𝑣 ∈
ω ∃𝑦(𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑢)𝐸(𝑎‘𝑣)}) ↔ ∃𝑣 ∈ ω ∃𝑧(𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁 ↑m ω) ∣ (𝑎‘𝑢)𝐹(𝑎‘𝑣)})) |
| 39 | 38 | rexbii 3094 |
. . . . . . . . 9
⊢
(∃𝑢 ∈
ω ∃𝑣 ∈
ω ∃𝑦(𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑢)𝐸(𝑎‘𝑣)}) ↔ ∃𝑢 ∈ ω ∃𝑣 ∈ ω ∃𝑧(𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁 ↑m ω) ∣ (𝑎‘𝑢)𝐹(𝑎‘𝑣)})) |
| 40 | | rexcom4 3288 |
. . . . . . . . 9
⊢
(∃𝑢 ∈
ω ∃𝑦∃𝑣 ∈ ω (𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑢)𝐸(𝑎‘𝑣)}) ↔ ∃𝑦∃𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑢)𝐸(𝑎‘𝑣)})) |
| 41 | 26, 39, 40 | 3bitr3ri 302 |
. . . . . . . 8
⊢
(∃𝑦∃𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑢)𝐸(𝑎‘𝑣)}) ↔ ∃𝑢 ∈ ω ∃𝑣 ∈ ω ∃𝑧(𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁 ↑m ω) ∣ (𝑎‘𝑢)𝐹(𝑎‘𝑣)})) |
| 42 | | rexcom4 3288 |
. . . . . . . . 9
⊢
(∃𝑣 ∈
ω ∃𝑧(𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁 ↑m ω) ∣ (𝑎‘𝑢)𝐹(𝑎‘𝑣)}) ↔ ∃𝑧∃𝑣 ∈ ω (𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁 ↑m ω) ∣ (𝑎‘𝑢)𝐹(𝑎‘𝑣)})) |
| 43 | 42 | rexbii 3094 |
. . . . . . . 8
⊢
(∃𝑢 ∈
ω ∃𝑣 ∈
ω ∃𝑧(𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁 ↑m ω) ∣ (𝑎‘𝑢)𝐹(𝑎‘𝑣)}) ↔ ∃𝑢 ∈ ω ∃𝑧∃𝑣 ∈ ω (𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁 ↑m ω) ∣ (𝑎‘𝑢)𝐹(𝑎‘𝑣)})) |
| 44 | 41, 43 | bitri 275 |
. . . . . . 7
⊢
(∃𝑦∃𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑢)𝐸(𝑎‘𝑣)}) ↔ ∃𝑢 ∈ ω ∃𝑧∃𝑣 ∈ ω (𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁 ↑m ω) ∣ (𝑎‘𝑢)𝐹(𝑎‘𝑣)})) |
| 45 | | rexcom4 3288 |
. . . . . . 7
⊢
(∃𝑢 ∈
ω ∃𝑧∃𝑣 ∈ ω (𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁 ↑m ω) ∣ (𝑎‘𝑢)𝐹(𝑎‘𝑣)}) ↔ ∃𝑧∃𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁 ↑m ω) ∣ (𝑎‘𝑢)𝐹(𝑎‘𝑣)})) |
| 46 | 44, 45 | bitri 275 |
. . . . . 6
⊢
(∃𝑦∃𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑢)𝐸(𝑎‘𝑣)}) ↔ ∃𝑧∃𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁 ↑m ω) ∣ (𝑎‘𝑢)𝐹(𝑎‘𝑣)})) |
| 47 | 46 | abbii 2809 |
. . . . 5
⊢ {𝑥 ∣ ∃𝑦∃𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑢)𝐸(𝑎‘𝑣)})} = {𝑥 ∣ ∃𝑧∃𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁 ↑m ω) ∣ (𝑎‘𝑢)𝐹(𝑎‘𝑣)})} |
| 48 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑀 Sat 𝐸) = (𝑀 Sat 𝐸) |
| 49 | 48 | satfv0 35363 |
. . . . . . . 8
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ((𝑀 Sat 𝐸)‘∅) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑢)𝐸(𝑎‘𝑣)})}) |
| 50 | 49 | dmeqd 5916 |
. . . . . . 7
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → dom ((𝑀 Sat 𝐸)‘∅) = dom {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑢)𝐸(𝑎‘𝑣)})}) |
| 51 | | dmopab 5926 |
. . . . . . 7
⊢ dom
{〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑢)𝐸(𝑎‘𝑣)})} = {𝑥 ∣ ∃𝑦∃𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑢)𝐸(𝑎‘𝑣)})} |
| 52 | 50, 51 | eqtrdi 2793 |
. . . . . 6
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → dom ((𝑀 Sat 𝐸)‘∅) = {𝑥 ∣ ∃𝑦∃𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑢)𝐸(𝑎‘𝑣)})}) |
| 53 | 52 | adantr 480 |
. . . . 5
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌)) → dom ((𝑀 Sat 𝐸)‘∅) = {𝑥 ∣ ∃𝑦∃𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑢)𝐸(𝑎‘𝑣)})}) |
| 54 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑁 Sat 𝐹) = (𝑁 Sat 𝐹) |
| 55 | 54 | satfv0 35363 |
. . . . . . . 8
⊢ ((𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌) → ((𝑁 Sat 𝐹)‘∅) = {〈𝑥, 𝑧〉 ∣ ∃𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁 ↑m ω) ∣ (𝑎‘𝑢)𝐹(𝑎‘𝑣)})}) |
| 56 | 55 | dmeqd 5916 |
. . . . . . 7
⊢ ((𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌) → dom ((𝑁 Sat 𝐹)‘∅) = dom {〈𝑥, 𝑧〉 ∣ ∃𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁 ↑m ω) ∣ (𝑎‘𝑢)𝐹(𝑎‘𝑣)})}) |
| 57 | | dmopab 5926 |
. . . . . . 7
⊢ dom
{〈𝑥, 𝑧〉 ∣ ∃𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁 ↑m ω) ∣ (𝑎‘𝑢)𝐹(𝑎‘𝑣)})} = {𝑥 ∣ ∃𝑧∃𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁 ↑m ω) ∣ (𝑎‘𝑢)𝐹(𝑎‘𝑣)})} |
| 58 | 56, 57 | eqtrdi 2793 |
. . . . . 6
⊢ ((𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌) → dom ((𝑁 Sat 𝐹)‘∅) = {𝑥 ∣ ∃𝑧∃𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁 ↑m ω) ∣ (𝑎‘𝑢)𝐹(𝑎‘𝑣)})}) |
| 59 | 58 | adantl 481 |
. . . . 5
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌)) → dom ((𝑁 Sat 𝐹)‘∅) = {𝑥 ∣ ∃𝑧∃𝑢 ∈ ω ∃𝑣 ∈ ω (𝑥 = (𝑢∈𝑔𝑣) ∧ 𝑧 = {𝑎 ∈ (𝑁 ↑m ω) ∣ (𝑎‘𝑢)𝐹(𝑎‘𝑣)})}) |
| 60 | 47, 53, 59 | 3eqtr4a 2803 |
. . . 4
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌)) → dom ((𝑀 Sat 𝐸)‘∅) = dom ((𝑁 Sat 𝐹)‘∅)) |
| 61 | | pm2.27 42 |
. . . . . . . 8
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌)) → ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌)) → dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦))) |
| 62 | 61 | adantl 481 |
. . . . . . 7
⊢ ((𝑦 ∈ ω ∧ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌))) → ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌)) → dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦))) |
| 63 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ ω ∧ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌))) ∧ dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) |
| 64 | | simprl 771 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ω ∧ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌))) → (𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊)) |
| 65 | | simpl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ω ∧ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌))) → 𝑦 ∈ ω) |
| 66 | | df-3an 1089 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑦 ∈ ω) ↔ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑦 ∈ ω)) |
| 67 | 64, 65, 66 | sylanbrc 583 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ω ∧ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌))) → (𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑦 ∈ ω)) |
| 68 | | satfdmlem 35373 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑦 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑎)))) |
| 69 | 67, 68 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∈ ω ∧ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌))) ∧ dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑎)))) |
| 70 | | simprr 773 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ω ∧ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌))) → (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌)) |
| 71 | | df-3an 1089 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌 ∧ 𝑦 ∈ ω) ↔ ((𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌) ∧ 𝑦 ∈ ω)) |
| 72 | 70, 65, 71 | sylanbrc 583 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ω ∧ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌))) → (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌 ∧ 𝑦 ∈ ω)) |
| 73 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ (dom
((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦) → dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) |
| 74 | 73 | eqcomd 2743 |
. . . . . . . . . . . . . . . . 17
⊢ (dom
((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦) → dom ((𝑁 Sat 𝐹)‘𝑦) = dom ((𝑀 Sat 𝐸)‘𝑦)) |
| 75 | | satfdmlem 35373 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌 ∧ 𝑦 ∈ ω) ∧ dom ((𝑁 Sat 𝐹)‘𝑦) = dom ((𝑀 Sat 𝐸)‘𝑦)) → (∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑎)) → ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))) |
| 76 | 72, 74, 75 | syl2an 596 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∈ ω ∧ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌))) ∧ dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → (∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑎)) → ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))) |
| 77 | 69, 76 | impbid 212 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 ∈ ω ∧ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌))) ∧ dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)) ↔ ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑎)))) |
| 78 | 27 | difexi 5330 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑀 ↑m ω)
∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣))) ∈ V |
| 79 | 78 | isseti 3498 |
. . . . . . . . . . . . . . . . . . . 20
⊢
∃𝑤 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣))) |
| 80 | 79 | biantru 529 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ↔ (𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧
∃𝑤 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣))))) |
| 81 | 80 | bicomi 224 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧
∃𝑤 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ↔ 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣))) |
| 82 | 81 | rexbii 3094 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑣 ∈
((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧
∃𝑤 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ↔ ∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣))) |
| 83 | 27 | rabex 5339 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)} ∈ V |
| 84 | 83 | isseti 3498 |
. . . . . . . . . . . . . . . . . . . 20
⊢
∃𝑤 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)} |
| 85 | 84 | biantru 529 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 =
∀𝑔𝑖(1st ‘𝑢) ↔ (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ ∃𝑤 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})) |
| 86 | 85 | bicomi 224 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 =
∀𝑔𝑖(1st ‘𝑢) ∧ ∃𝑤 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}) ↔ 𝑥 = ∀𝑔𝑖(1st ‘𝑢)) |
| 87 | 86 | rexbii 3094 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑖 ∈
ω (𝑥 =
∀𝑔𝑖(1st ‘𝑢) ∧ ∃𝑤 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}) ↔ ∃𝑖 ∈ ω 𝑥 =
∀𝑔𝑖(1st ‘𝑢)) |
| 88 | 82, 87 | orbi12i 915 |
. . . . . . . . . . . . . . . 16
⊢
((∃𝑣 ∈
((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧
∃𝑤 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ ∃𝑤 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})) ↔ (∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢))) |
| 89 | 88 | rexbii 3094 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑢 ∈
((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧
∃𝑤 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ ∃𝑤 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})) ↔ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢))) |
| 90 | 30 | difexi 5330 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 ↑m ω)
∖ ((2nd ‘𝑎) ∩ (2nd ‘𝑏))) ∈ V |
| 91 | 90 | isseti 3498 |
. . . . . . . . . . . . . . . . . . . 20
⊢
∃𝑧 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏))) |
| 92 | 91 | biantru 529 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ↔ (𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧
∃𝑧 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏))))) |
| 93 | 92 | bicomi 224 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧
∃𝑧 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ↔ 𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏))) |
| 94 | 93 | rexbii 3094 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑏 ∈
((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧
∃𝑧 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ↔ ∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏))) |
| 95 | 30 | rabex 5339 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)} ∈ V |
| 96 | 95 | isseti 3498 |
. . . . . . . . . . . . . . . . . . . 20
⊢
∃𝑧 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)} |
| 97 | 96 | biantru 529 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 =
∀𝑔𝑖(1st ‘𝑎) ↔ (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ ∃𝑧 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)})) |
| 98 | 97 | bicomi 224 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 =
∀𝑔𝑖(1st ‘𝑎) ∧ ∃𝑧 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)}) ↔ 𝑥 = ∀𝑔𝑖(1st ‘𝑎)) |
| 99 | 98 | rexbii 3094 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑖 ∈
ω (𝑥 =
∀𝑔𝑖(1st ‘𝑎) ∧ ∃𝑧 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)}) ↔ ∃𝑖 ∈ ω 𝑥 =
∀𝑔𝑖(1st ‘𝑎)) |
| 100 | 94, 99 | orbi12i 915 |
. . . . . . . . . . . . . . . 16
⊢
((∃𝑏 ∈
((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧
∃𝑧 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ ∃𝑧 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)})) ↔ (∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑎))) |
| 101 | 100 | rexbii 3094 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑎 ∈
((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧
∃𝑧 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ ∃𝑧 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)})) ↔ ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑎))) |
| 102 | 77, 89, 101 | 3bitr4g 314 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ ω ∧ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌))) ∧ dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧
∃𝑤 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ ∃𝑤 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})) ↔ ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧
∃𝑧 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ ∃𝑧 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)})))) |
| 103 | | 19.42v 1953 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃𝑤(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ↔ (𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧
∃𝑤 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣))))) |
| 104 | 103 | bicomi 224 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧
∃𝑤 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ↔ ∃𝑤(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣))))) |
| 105 | 104 | rexbii 3094 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑣 ∈
((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧
∃𝑤 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ↔ ∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)∃𝑤(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣))))) |
| 106 | | rexcom4 3288 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑣 ∈
((𝑀 Sat 𝐸)‘𝑦)∃𝑤(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ↔ ∃𝑤∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣))))) |
| 107 | 105, 106 | bitri 275 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑣 ∈
((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧
∃𝑤 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ↔ ∃𝑤∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣))))) |
| 108 | | 19.42v 1953 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃𝑤(𝑥 =
∀𝑔𝑖(1st ‘𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}) ↔ (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ ∃𝑤 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})) |
| 109 | 108 | bicomi 224 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 =
∀𝑔𝑖(1st ‘𝑢) ∧ ∃𝑤 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}) ↔ ∃𝑤(𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})) |
| 110 | 109 | rexbii 3094 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑖 ∈
ω (𝑥 =
∀𝑔𝑖(1st ‘𝑢) ∧ ∃𝑤 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}) ↔ ∃𝑖 ∈ ω ∃𝑤(𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})) |
| 111 | | rexcom4 3288 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑖 ∈
ω ∃𝑤(𝑥 =
∀𝑔𝑖(1st ‘𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}) ↔ ∃𝑤∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})) |
| 112 | 110, 111 | bitri 275 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑖 ∈
ω (𝑥 =
∀𝑔𝑖(1st ‘𝑢) ∧ ∃𝑤 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}) ↔ ∃𝑤∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})) |
| 113 | 107, 112 | orbi12i 915 |
. . . . . . . . . . . . . . . . 17
⊢
((∃𝑣 ∈
((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧
∃𝑤 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ ∃𝑤 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})) ↔ (∃𝑤∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑤∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))) |
| 114 | | 19.43 1882 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑤(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})) ↔ (∃𝑤∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑤∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))) |
| 115 | 114 | bicomi 224 |
. . . . . . . . . . . . . . . . 17
⊢
((∃𝑤∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑤∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})) ↔ ∃𝑤(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))) |
| 116 | 113, 115 | bitri 275 |
. . . . . . . . . . . . . . . 16
⊢
((∃𝑣 ∈
((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧
∃𝑤 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ ∃𝑤 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})) ↔ ∃𝑤(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))) |
| 117 | 116 | rexbii 3094 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑢 ∈
((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧
∃𝑤 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ ∃𝑤 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})) ↔ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)∃𝑤(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))) |
| 118 | | rexcom4 3288 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑢 ∈
((𝑀 Sat 𝐸)‘𝑦)∃𝑤(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})) ↔ ∃𝑤∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))) |
| 119 | 117, 118 | bitri 275 |
. . . . . . . . . . . . . 14
⊢
(∃𝑢 ∈
((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧
∃𝑤 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ ∃𝑤 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})) ↔ ∃𝑤∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))) |
| 120 | | 19.42v 1953 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃𝑧(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧ 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ↔ (𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧
∃𝑧 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏))))) |
| 121 | 120 | bicomi 224 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧
∃𝑧 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ↔ ∃𝑧(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧ 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏))))) |
| 122 | 121 | rexbii 3094 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑏 ∈
((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧
∃𝑧 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ↔ ∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)∃𝑧(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧ 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏))))) |
| 123 | | rexcom4 3288 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑏 ∈
((𝑁 Sat 𝐹)‘𝑦)∃𝑧(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧ 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ↔ ∃𝑧∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧ 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏))))) |
| 124 | 122, 123 | bitri 275 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑏 ∈
((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧
∃𝑧 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ↔ ∃𝑧∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧ 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏))))) |
| 125 | | 19.42v 1953 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃𝑧(𝑥 =
∀𝑔𝑖(1st ‘𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)}) ↔ (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ ∃𝑧 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)})) |
| 126 | 125 | bicomi 224 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 =
∀𝑔𝑖(1st ‘𝑎) ∧ ∃𝑧 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)}) ↔ ∃𝑧(𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)})) |
| 127 | 126 | rexbii 3094 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑖 ∈
ω (𝑥 =
∀𝑔𝑖(1st ‘𝑎) ∧ ∃𝑧 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)}) ↔ ∃𝑖 ∈ ω ∃𝑧(𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)})) |
| 128 | | rexcom4 3288 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑖 ∈
ω ∃𝑧(𝑥 =
∀𝑔𝑖(1st ‘𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)}) ↔ ∃𝑧∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)})) |
| 129 | 127, 128 | bitri 275 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑖 ∈
ω (𝑥 =
∀𝑔𝑖(1st ‘𝑎) ∧ ∃𝑧 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)}) ↔ ∃𝑧∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)})) |
| 130 | 124, 129 | orbi12i 915 |
. . . . . . . . . . . . . . . . 17
⊢
((∃𝑏 ∈
((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧
∃𝑧 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ ∃𝑧 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)})) ↔ (∃𝑧∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧ 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ∨ ∃𝑧∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)}))) |
| 131 | | 19.43 1882 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑧(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧ 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)})) ↔ (∃𝑧∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧ 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ∨ ∃𝑧∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)}))) |
| 132 | 131 | bicomi 224 |
. . . . . . . . . . . . . . . . 17
⊢
((∃𝑧∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧ 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ∨ ∃𝑧∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)})) ↔ ∃𝑧(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧ 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)}))) |
| 133 | 130, 132 | bitri 275 |
. . . . . . . . . . . . . . . 16
⊢
((∃𝑏 ∈
((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧
∃𝑧 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ ∃𝑧 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)})) ↔ ∃𝑧(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧ 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)}))) |
| 134 | 133 | rexbii 3094 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑎 ∈
((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧
∃𝑧 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ ∃𝑧 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)})) ↔ ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)∃𝑧(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧ 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)}))) |
| 135 | | rexcom4 3288 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑎 ∈
((𝑁 Sat 𝐹)‘𝑦)∃𝑧(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧ 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)})) ↔ ∃𝑧∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧ 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)}))) |
| 136 | 134, 135 | bitri 275 |
. . . . . . . . . . . . . 14
⊢
(∃𝑎 ∈
((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧
∃𝑧 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ ∃𝑧 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)})) ↔ ∃𝑧∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧ 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)}))) |
| 137 | 102, 119,
136 | 3bitr3g 313 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ ω ∧ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌))) ∧ dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → (∃𝑤∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})) ↔ ∃𝑧∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧ 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)})))) |
| 138 | 137 | abbidv 2808 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ ω ∧ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌))) ∧ dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → {𝑥 ∣ ∃𝑤∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))} = {𝑥 ∣ ∃𝑧∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧ 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)}))}) |
| 139 | | dmopab 5926 |
. . . . . . . . . . . 12
⊢ dom
{〈𝑥, 𝑤〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))} = {𝑥 ∣ ∃𝑤∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))} |
| 140 | | dmopab 5926 |
. . . . . . . . . . . 12
⊢ dom
{〈𝑥, 𝑧〉 ∣ ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧ 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)}))} = {𝑥 ∣ ∃𝑧∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧ 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)}))} |
| 141 | 138, 139,
140 | 3eqtr4g 2802 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ ω ∧ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌))) ∧ dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → dom {〈𝑥, 𝑤〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))} = dom {〈𝑥, 𝑧〉 ∣ ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧ 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)}))}) |
| 142 | 63, 141 | uneq12d 4169 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ ω ∧ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌))) ∧ dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → (dom ((𝑀 Sat 𝐸)‘𝑦) ∪ dom {〈𝑥, 𝑤〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))}) = (dom ((𝑁 Sat 𝐹)‘𝑦) ∪ dom {〈𝑥, 𝑧〉 ∣ ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧ 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)}))})) |
| 143 | | dmun 5921 |
. . . . . . . . . 10
⊢ dom
(((𝑀 Sat 𝐸)‘𝑦) ∪ {〈𝑥, 𝑤〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))}) = (dom ((𝑀 Sat 𝐸)‘𝑦) ∪ dom {〈𝑥, 𝑤〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))}) |
| 144 | | dmun 5921 |
. . . . . . . . . 10
⊢ dom
(((𝑁 Sat 𝐹)‘𝑦) ∪ {〈𝑥, 𝑧〉 ∣ ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧ 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)}))}) = (dom ((𝑁 Sat 𝐹)‘𝑦) ∪ dom {〈𝑥, 𝑧〉 ∣ ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧ 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)}))}) |
| 145 | 142, 143,
144 | 3eqtr4g 2802 |
. . . . . . . . 9
⊢ (((𝑦 ∈ ω ∧ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌))) ∧ dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → dom (((𝑀 Sat 𝐸)‘𝑦) ∪ {〈𝑥, 𝑤〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))}) = dom (((𝑁 Sat 𝐹)‘𝑦) ∪ {〈𝑥, 𝑧〉 ∣ ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧ 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)}))})) |
| 146 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → 𝑀 ∈ 𝑉) |
| 147 | 146 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌)) → 𝑀 ∈ 𝑉) |
| 148 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → 𝐸 ∈ 𝑊) |
| 149 | 148 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌)) → 𝐸 ∈ 𝑊) |
| 150 | 48 | satfvsuc 35366 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑦 ∈ ω) → ((𝑀 Sat 𝐸)‘suc 𝑦) = (((𝑀 Sat 𝐸)‘𝑦) ∪ {〈𝑥, 𝑤〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})) |
| 151 | 147, 149,
65, 150 | syl2an23an 1425 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ω ∧ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌))) → ((𝑀 Sat 𝐸)‘suc 𝑦) = (((𝑀 Sat 𝐸)‘𝑦) ∪ {〈𝑥, 𝑤〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})) |
| 152 | 151 | dmeqd 5916 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ω ∧ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌))) → dom ((𝑀 Sat 𝐸)‘suc 𝑦) = dom (((𝑀 Sat 𝐸)‘𝑦) ∪ {〈𝑥, 𝑤〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})) |
| 153 | | simprl 771 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌)) → 𝑁 ∈ 𝑋) |
| 154 | | simprr 773 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌)) → 𝐹 ∈ 𝑌) |
| 155 | 54 | satfvsuc 35366 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌 ∧ 𝑦 ∈ ω) → ((𝑁 Sat 𝐹)‘suc 𝑦) = (((𝑁 Sat 𝐹)‘𝑦) ∪ {〈𝑥, 𝑧〉 ∣ ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧ 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)}))})) |
| 156 | 153, 154,
65, 155 | syl2an23an 1425 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ω ∧ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌))) → ((𝑁 Sat 𝐹)‘suc 𝑦) = (((𝑁 Sat 𝐹)‘𝑦) ∪ {〈𝑥, 𝑧〉 ∣ ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧ 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)}))})) |
| 157 | 156 | dmeqd 5916 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ω ∧ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌))) → dom ((𝑁 Sat 𝐹)‘suc 𝑦) = dom (((𝑁 Sat 𝐹)‘𝑦) ∪ {〈𝑥, 𝑧〉 ∣ ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧ 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)}))})) |
| 158 | 152, 157 | eqeq12d 2753 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ω ∧ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌))) → (dom ((𝑀 Sat 𝐸)‘suc 𝑦) = dom ((𝑁 Sat 𝐹)‘suc 𝑦) ↔ dom (((𝑀 Sat 𝐸)‘𝑦) ∪ {〈𝑥, 𝑤〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))}) = dom (((𝑁 Sat 𝐹)‘𝑦) ∪ {〈𝑥, 𝑧〉 ∣ ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧ 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)}))}))) |
| 159 | 158 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑦 ∈ ω ∧ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌))) ∧ dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → (dom ((𝑀 Sat 𝐸)‘suc 𝑦) = dom ((𝑁 Sat 𝐹)‘suc 𝑦) ↔ dom (((𝑀 Sat 𝐸)‘𝑦) ∪ {〈𝑥, 𝑤〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑦)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑦)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑤 = {𝑚 ∈ (𝑀 ↑m ω) ∣
∀𝑓 ∈ 𝑀 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))}) = dom (((𝑁 Sat 𝐹)‘𝑦) ∪ {〈𝑥, 𝑧〉 ∣ ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑦)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑦)(𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∧ 𝑧 = ((𝑁 ↑m ω) ∖
((2nd ‘𝑎)
∩ (2nd ‘𝑏)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑎) ∧ 𝑧 = {𝑚 ∈ (𝑁 ↑m ω) ∣
∀𝑓 ∈ 𝑁 ({〈𝑖, 𝑓〉} ∪ (𝑚 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑎)}))}))) |
| 160 | 145, 159 | mpbird 257 |
. . . . . . . 8
⊢ (((𝑦 ∈ ω ∧ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌))) ∧ dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → dom ((𝑀 Sat 𝐸)‘suc 𝑦) = dom ((𝑁 Sat 𝐹)‘suc 𝑦)) |
| 161 | 160 | ex 412 |
. . . . . . 7
⊢ ((𝑦 ∈ ω ∧ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌))) → (dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦) → dom ((𝑀 Sat 𝐸)‘suc 𝑦) = dom ((𝑁 Sat 𝐹)‘suc 𝑦))) |
| 162 | 62, 161 | syld 47 |
. . . . . 6
⊢ ((𝑦 ∈ ω ∧ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌))) → ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌)) → dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → dom ((𝑀 Sat 𝐸)‘suc 𝑦) = dom ((𝑁 Sat 𝐹)‘suc 𝑦))) |
| 163 | 162 | ex 412 |
. . . . 5
⊢ (𝑦 ∈ ω → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌)) → ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌)) → dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → dom ((𝑀 Sat 𝐸)‘suc 𝑦) = dom ((𝑁 Sat 𝐹)‘suc 𝑦)))) |
| 164 | 163 | com23 86 |
. . . 4
⊢ (𝑦 ∈ ω → ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌)) → dom ((𝑀 Sat 𝐸)‘𝑦) = dom ((𝑁 Sat 𝐹)‘𝑦)) → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌)) → dom ((𝑀 Sat 𝐸)‘suc 𝑦) = dom ((𝑁 Sat 𝐹)‘suc 𝑦)))) |
| 165 | 6, 12, 18, 24, 60, 164 | finds 7918 |
. . 3
⊢ (𝑛 ∈ ω → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌)) → dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((𝑁 Sat 𝐹)‘𝑛))) |
| 166 | 165 | impcom 407 |
. 2
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌)) ∧ 𝑛 ∈ ω) → dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((𝑁 Sat 𝐹)‘𝑛)) |
| 167 | 166 | ralrimiva 3146 |
1
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌)) → ∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((𝑁 Sat 𝐹)‘𝑛)) |