MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwidxmod Structured version   Visualization version   GIF version

Theorem cshwidxmod 14777
Description: The symbol at a given index of a cyclically shifted nonempty word is the symbol at the shifted index of the original word. (Contributed by AV, 13-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.) (Proof shortened by AV, 12-Oct-2022.)
Assertion
Ref Expression
cshwidxmod ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊))))

Proof of Theorem cshwidxmod
StepHypRef Expression
1 elfzo0 13697 . . . 4 (𝐼 ∈ (0..^(♯‘𝑊)) ↔ (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)))
2 nnne0 12268 . . . . . 6 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ≠ 0)
3 eqneqall 2946 . . . . . 6 ((♯‘𝑊) = 0 → ((♯‘𝑊) ≠ 0 → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊)))))
42, 3syl5com 31 . . . . 5 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) = 0 → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊)))))
543ad2ant2 1132 . . . 4 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)) → ((♯‘𝑊) = 0 → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊)))))
61, 5sylbi 216 . . 3 (𝐼 ∈ (0..^(♯‘𝑊)) → ((♯‘𝑊) = 0 → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊)))))
763ad2ant3 1133 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((♯‘𝑊) = 0 → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊)))))
8 lencl 14507 . . . . 5 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
9 elnnne0 12508 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0))
10 simprl 770 . . . . . . . . . . . . 13 (((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))) → 𝑁 ∈ ℤ)
11 cshword 14765 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
1210, 11sylan2 592 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (𝑊 cyclShift 𝑁) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
1312fveq1d 6893 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → ((𝑊 cyclShift 𝑁)‘𝐼) = (((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))‘𝐼))
14 swrdcl 14619 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Word 𝑉 → (𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ∈ Word 𝑉)
1514adantr 480 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ∈ Word 𝑉)
16 pfxcl 14651 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Word 𝑉 → (𝑊 prefix (𝑁 mod (♯‘𝑊))) ∈ Word 𝑉)
1716adantr 480 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (𝑊 prefix (𝑁 mod (♯‘𝑊))) ∈ Word 𝑉)
18 simpl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → 𝑊 ∈ Word 𝑉)
19 simpl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℤ)
2019anim2i 616 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))) → ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ))
2120adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ))
2221ancomd 461 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
23 zmodfzp1 13884 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝑁 mod (♯‘𝑊)) ∈ (0...(♯‘𝑊)))
2422, 23syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (𝑁 mod (♯‘𝑊)) ∈ (0...(♯‘𝑊)))
25 nn0fz0 13623 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑊) ∈ ℕ0 ↔ (♯‘𝑊) ∈ (0...(♯‘𝑊)))
268, 25sylib 217 . . . . . . . . . . . . . . . . . . . 20 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
2726adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
28 swrdlen 14621 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 mod (♯‘𝑊)) ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) = ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))
2918, 24, 27, 28syl3anc 1369 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) = ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))
3020ancomd 461 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))) → (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
3130, 23syl 17 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))) → (𝑁 mod (♯‘𝑊)) ∈ (0...(♯‘𝑊)))
32 pfxlen 14657 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 mod (♯‘𝑊)) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊)))) = (𝑁 mod (♯‘𝑊)))
3331, 32sylan2 592 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊)))) = (𝑁 mod (♯‘𝑊)))
3429, 33oveq12d 7432 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → ((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) + (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊))))) = (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))))
3529, 34oveq12d 7432 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → ((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩))..^((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) + (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊)))))) = (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))))
3635eleq2d 2814 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (𝐼 ∈ ((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩))..^((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) + (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊)))))) ↔ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))))))
3736biimparc 479 . . . . . . . . . . . . . . 15 ((𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))))) → 𝐼 ∈ ((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩))..^((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) + (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊)))))))
38 ccatval2 14552 . . . . . . . . . . . . . . 15 (((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ∈ Word 𝑉 ∧ (𝑊 prefix (𝑁 mod (♯‘𝑊))) ∈ Word 𝑉𝐼 ∈ ((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩))..^((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) + (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊))))))) → (((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))‘𝐼) = ((𝑊 prefix (𝑁 mod (♯‘𝑊)))‘(𝐼 − (♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)))))
3915, 17, 37, 38syl2an23an 1421 . . . . . . . . . . . . . 14 ((𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))))) → (((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))‘𝐼) = ((𝑊 prefix (𝑁 mod (♯‘𝑊)))‘(𝐼 − (♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)))))
4026ad2antrl 727 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))))) → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
4118, 24, 40, 28syl2an23an 1421 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))))) → (♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) = ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))
4241oveq2d 7430 . . . . . . . . . . . . . . 15 ((𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))))) → (𝐼 − (♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩))) = (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))))
4342fveq2d 6895 . . . . . . . . . . . . . 14 ((𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))))) → ((𝑊 prefix (𝑁 mod (♯‘𝑊)))‘(𝐼 − (♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)))) = ((𝑊 prefix (𝑁 mod (♯‘𝑊)))‘(𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))))
44 elfzo2 13659 . . . . . . . . . . . . . . . . . . . . . 22 (𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ↔ (𝐼 ∈ (ℤ‘((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∧ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))) ∈ ℤ ∧ 𝐼 < (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))))
45 eluz2 12850 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼 ∈ (ℤ‘((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ↔ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼))
46 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐼 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)) → 𝐼 ∈ ℤ)
47 nnz 12601 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℤ)
4847adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (♯‘𝑊) ∈ ℤ)
49 zmodcl 13880 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝑁 mod (♯‘𝑊)) ∈ ℕ0)
5049nn0zd 12606 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝑁 mod (♯‘𝑊)) ∈ ℤ)
5148, 50zsubcld 12693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ∈ ℤ)
5251adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐼 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)) → ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ∈ ℤ)
5346, 52zsubcld 12693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐼 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ ℤ)
5453adantlr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐼 ∈ ℤ ∧ ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼) ∧ (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ ℤ)
55 zre 12584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ)
56 nnre 12241 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ)
5756adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (♯‘𝑊) ∈ ℝ)
5849nn0red 12555 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝑁 mod (♯‘𝑊)) ∈ ℝ)
5957, 58resubcld 11664 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ∈ ℝ)
60 subge0 11749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐼 ∈ ℝ ∧ ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ∈ ℝ) → (0 ≤ (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ↔ ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼))
6155, 59, 60syl2an 595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐼 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)) → (0 ≤ (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ↔ ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼))
6261exbiri 810 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐼 ∈ ℤ → ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼 → 0 ≤ (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))))))
6362com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐼 ∈ ℤ → (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼 → ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → 0 ≤ (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))))))
6463imp31 417 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐼 ∈ ℤ ∧ ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼) ∧ (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)) → 0 ≤ (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))))
65 elnn0uz 12889 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ ℕ0 ↔ (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (ℤ‘0))
66 elnn0z 12593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ ℕ0 ↔ ((𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ ℤ ∧ 0 ≤ (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))))
6765, 66bitr3i 277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (ℤ‘0) ↔ ((𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ ℤ ∧ 0 ≤ (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))))
6854, 64, 67sylanbrc 582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐼 ∈ ℤ ∧ ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼) ∧ (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (ℤ‘0))
6968adantlr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐼 ∈ ℤ ∧ ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼) ∧ 𝐼 < (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (ℤ‘0))
7050adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐼 ∈ ℤ ∧ ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼) ∧ 𝐼 < (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)) → (𝑁 mod (♯‘𝑊)) ∈ ℤ)
7155adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐼 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)) → 𝐼 ∈ ℝ)
7259adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐼 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)) → ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ∈ ℝ)
7358adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐼 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)) → (𝑁 mod (♯‘𝑊)) ∈ ℝ)
7471, 72, 73ltsubadd2d 11834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐼 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)) → ((𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) < (𝑁 mod (♯‘𝑊)) ↔ 𝐼 < (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))))
7574adantlr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐼 ∈ ℤ ∧ ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼) ∧ (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)) → ((𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) < (𝑁 mod (♯‘𝑊)) ↔ 𝐼 < (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))))
7675exbiri 810 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐼 ∈ ℤ ∧ ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼) → ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝐼 < (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) < (𝑁 mod (♯‘𝑊)))))
7776com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐼 ∈ ℤ ∧ ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼) → (𝐼 < (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))) → ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) < (𝑁 mod (♯‘𝑊)))))
7877imp31 417 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐼 ∈ ℤ ∧ ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼) ∧ 𝐼 < (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) < (𝑁 mod (♯‘𝑊)))
79 elfzo2 13659 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (0..^(𝑁 mod (♯‘𝑊))) ↔ ((𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (ℤ‘0) ∧ (𝑁 mod (♯‘𝑊)) ∈ ℤ ∧ (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) < (𝑁 mod (♯‘𝑊))))
8069, 70, 78, 79syl3anbrc 1341 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐼 ∈ ℤ ∧ ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼) ∧ 𝐼 < (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (0..^(𝑁 mod (♯‘𝑊))))
8180exp31 419 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐼 ∈ ℤ ∧ ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼) → (𝐼 < (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))) → ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (0..^(𝑁 mod (♯‘𝑊))))))
82813adant1 1128 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼) → (𝐼 < (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))) → ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (0..^(𝑁 mod (♯‘𝑊))))))
8345, 82sylbi 216 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐼 ∈ (ℤ‘((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) → (𝐼 < (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))) → ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (0..^(𝑁 mod (♯‘𝑊))))))
8483imp 406 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐼 ∈ (ℤ‘((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∧ 𝐼 < (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) → ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (0..^(𝑁 mod (♯‘𝑊)))))
85843adant2 1129 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼 ∈ (ℤ‘((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∧ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))) ∈ ℤ ∧ 𝐼 < (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) → ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (0..^(𝑁 mod (♯‘𝑊)))))
8644, 85sylbi 216 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) → ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (0..^(𝑁 mod (♯‘𝑊)))))
8786expdcom 414 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℤ → ((♯‘𝑊) ∈ ℕ → (𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (0..^(𝑁 mod (♯‘𝑊))))))
8887adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((♯‘𝑊) ∈ ℕ → (𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (0..^(𝑁 mod (♯‘𝑊))))))
8988impcom 407 . . . . . . . . . . . . . . . . . 18 (((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))) → (𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (0..^(𝑁 mod (♯‘𝑊)))))
9089adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (0..^(𝑁 mod (♯‘𝑊)))))
9190impcom 407 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))))) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (0..^(𝑁 mod (♯‘𝑊))))
92 pfxfv 14656 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 mod (♯‘𝑊)) ∈ (0...(♯‘𝑊)) ∧ (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (0..^(𝑁 mod (♯‘𝑊)))) → ((𝑊 prefix (𝑁 mod (♯‘𝑊)))‘(𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))) = (𝑊‘(𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))))
9318, 24, 91, 92syl2an23an 1421 . . . . . . . . . . . . . . 15 ((𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))))) → ((𝑊 prefix (𝑁 mod (♯‘𝑊)))‘(𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))) = (𝑊‘(𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))))
94 elfzoelz 13656 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ (0..^(♯‘𝑊)) → 𝐼 ∈ ℤ)
9594zcnd 12689 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ (0..^(♯‘𝑊)) → 𝐼 ∈ ℂ)
9695ad2antll 728 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))) → 𝐼 ∈ ℂ)
97 nncn 12242 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℂ)
9897adantr 480 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))) → (♯‘𝑊) ∈ ℂ)
9930, 49syl 17 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))) → (𝑁 mod (♯‘𝑊)) ∈ ℕ0)
10099nn0cnd 12556 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))) → (𝑁 mod (♯‘𝑊)) ∈ ℂ)
10196, 98, 100subsub3d 11623 . . . . . . . . . . . . . . . . . 18 (((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) = ((𝐼 + (𝑁 mod (♯‘𝑊))) − (♯‘𝑊)))
102101ad2antll 728 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))))) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) = ((𝐼 + (𝑁 mod (♯‘𝑊))) − (♯‘𝑊)))
10330ad2antll 728 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))))) → (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
10497adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (♯‘𝑊) ∈ ℂ)
10549nn0cnd 12556 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝑁 mod (♯‘𝑊)) ∈ ℂ)
106104, 105npcand 11597 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))) = (♯‘𝑊))
107106ex 412 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℤ → ((♯‘𝑊) ∈ ℕ → (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))) = (♯‘𝑊)))
108107adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((♯‘𝑊) ∈ ℕ → (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))) = (♯‘𝑊)))
109108impcom 407 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))) → (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))) = (♯‘𝑊))
110109adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))) = (♯‘𝑊))
111110oveq2d 7430 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) = (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊)))
112111eleq2d 2814 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ↔ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))))
113112biimpac 478 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))))) → 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊)))
114 modaddmodup 13923 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊)) → ((𝐼 + (𝑁 mod (♯‘𝑊))) − (♯‘𝑊)) = ((𝐼 + 𝑁) mod (♯‘𝑊))))
115103, 113, 114sylc 65 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))))) → ((𝐼 + (𝑁 mod (♯‘𝑊))) − (♯‘𝑊)) = ((𝐼 + 𝑁) mod (♯‘𝑊)))
116102, 115eqtrd 2767 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))))) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) = ((𝐼 + 𝑁) mod (♯‘𝑊)))
117116fveq2d 6895 . . . . . . . . . . . . . . 15 ((𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))))) → (𝑊‘(𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊))))
11893, 117eqtrd 2767 . . . . . . . . . . . . . 14 ((𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))))) → ((𝑊 prefix (𝑁 mod (♯‘𝑊)))‘(𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊))))
11939, 43, 1183eqtrd 2771 . . . . . . . . . . . . 13 ((𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))))) → (((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊))))
120119ex 412 . . . . . . . . . . . 12 (𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) → ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊)))))
121112notbid 318 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ↔ ¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))))
12214ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) ∧ ¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))) → (𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ∈ Word 𝑉)
12316ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) ∧ ¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))) → (𝑊 prefix (𝑁 mod (♯‘𝑊))) ∈ Word 𝑉)
12449ancoms 458 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod (♯‘𝑊)) ∈ ℕ0)
125124nn0zd 12606 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod (♯‘𝑊)) ∈ ℤ)
126125adantrr 716 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))) → (𝑁 mod (♯‘𝑊)) ∈ ℤ)
127 zre 12584 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
128127adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℝ)
129 nnrp 13009 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+)
130 modlt 13869 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) → (𝑁 mod (♯‘𝑊)) < (♯‘𝑊))
131128, 129, 130syl2anr 596 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))) → (𝑁 mod (♯‘𝑊)) < (♯‘𝑊))
132 simprrr 781 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → 𝐼 ∈ (0..^(♯‘𝑊)))
133 fzonfzoufzol 13759 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 mod (♯‘𝑊)) ∈ ℤ ∧ (𝑁 mod (♯‘𝑊)) < (♯‘𝑊) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → (¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊)) → 𝐼 ∈ (0..^((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))))
134126, 131, 132, 133syl2an23an 1421 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊)) → 𝐼 ∈ (0..^((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))))
135134imp 406 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) ∧ ¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))) → 𝐼 ∈ (0..^((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))))
136 simpll 766 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) ∧ ¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
13724adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) ∧ ¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))) → (𝑁 mod (♯‘𝑊)) ∈ (0...(♯‘𝑊)))
13826ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) ∧ ¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))) → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
139136, 137, 138, 28syl3anc 1369 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) ∧ ¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))) → (♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) = ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))
140139oveq2d 7430 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) ∧ ¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))) → (0..^(♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩))) = (0..^((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))))
141135, 140eleqtrrd 2831 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) ∧ ¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))) → 𝐼 ∈ (0..^(♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩))))
142 ccatval1 14551 . . . . . . . . . . . . . . . . 17 (((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ∈ Word 𝑉 ∧ (𝑊 prefix (𝑁 mod (♯‘𝑊))) ∈ Word 𝑉𝐼 ∈ (0..^(♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)))) → (((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))‘𝐼) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)‘𝐼))
143122, 123, 141, 142syl3anc 1369 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) ∧ ¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))) → (((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))‘𝐼) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)‘𝐼))
144 swrdfv 14622 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word 𝑉 ∧ (𝑁 mod (♯‘𝑊)) ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘𝑊))) ∧ 𝐼 ∈ (0..^((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))) → ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)‘𝐼) = (𝑊‘(𝐼 + (𝑁 mod (♯‘𝑊)))))
145136, 137, 138, 135, 144syl31anc 1371 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) ∧ ¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))) → ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)‘𝐼) = (𝑊‘(𝐼 + (𝑁 mod (♯‘𝑊)))))
14630ad2antlr 726 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) ∧ ¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))) → (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
147 modaddmodlo 13924 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝐼 ∈ (0..^((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) → (𝐼 + (𝑁 mod (♯‘𝑊))) = ((𝐼 + 𝑁) mod (♯‘𝑊))))
148146, 135, 147sylc 65 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) ∧ ¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))) → (𝐼 + (𝑁 mod (♯‘𝑊))) = ((𝐼 + 𝑁) mod (♯‘𝑊)))
149148fveq2d 6895 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) ∧ ¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))) → (𝑊‘(𝐼 + (𝑁 mod (♯‘𝑊)))) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊))))
150143, 145, 1493eqtrd 2771 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) ∧ ¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))) → (((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊))))
151150ex 412 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊)) → (((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊)))))
152121, 151sylbid 239 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) → (((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊)))))
153152com12 32 . . . . . . . . . . . 12 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) → ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊)))))
154120, 153pm2.61i 182 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊))))
15513, 154eqtrd 2767 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊))))
156155exp32 420 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) ∈ ℕ → ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊))))))
157156com12 32 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ → (𝑊 ∈ Word 𝑉 → ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊))))))
1589, 157sylbir 234 . . . . . . 7 (((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0) → (𝑊 ∈ Word 𝑉 → ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊))))))
159158ex 412 . . . . . 6 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) ≠ 0 → (𝑊 ∈ Word 𝑉 → ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊)))))))
160159com23 86 . . . . 5 ((♯‘𝑊) ∈ ℕ0 → (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) ≠ 0 → ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊)))))))
1618, 160mpcom 38 . . . 4 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) ≠ 0 → ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊))))))
162161com23 86 . . 3 (𝑊 ∈ Word 𝑉 → ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((♯‘𝑊) ≠ 0 → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊))))))
1631623impib 1114 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((♯‘𝑊) ≠ 0 → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊)))))
1647, 163pm2.61dne 3023 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2935  cop 4630   class class class wbr 5142  cfv 6542  (class class class)co 7414  cc 11128  cr 11129  0cc0 11130   + caddc 11133   < clt 11270  cle 11271  cmin 11466  cn 12234  0cn0 12494  cz 12580  cuz 12844  +crp 12998  ...cfz 13508  ..^cfzo 13651   mod cmo 13858  chash 14313  Word cword 14488   ++ cconcat 14544   substr csubstr 14614   prefix cpfx 14644   cyclShift ccsh 14762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-sup 9457  df-inf 9458  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-n0 12495  df-z 12581  df-uz 12845  df-rp 12999  df-fz 13509  df-fzo 13652  df-fl 13781  df-mod 13859  df-hash 14314  df-word 14489  df-concat 14545  df-substr 14615  df-pfx 14645  df-csh 14763
This theorem is referenced by:  cshwidxmodr  14778  cshwidx0mod  14779  cshwidxm1  14781  cshwidxm  14782  cshwidxn  14783  cshf1  14784  2cshw  14787  cshweqrep  14795  cshimadifsn  14804  cshimadifsn0  14805  cshco  14811  crctcshwlkn0lem4  29611  crctcshwlkn0lem5  29612  crctcshwlkn0lem6  29613  clwwisshclwwslem  29811  eucrctshift  30040  cycpmfv1  32812  cycpmfv2  32813
  Copyright terms: Public domain W3C validator