MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwidxmod Structured version   Visualization version   GIF version

Theorem cshwidxmod 14727
Description: The symbol at a given index of a cyclically shifted nonempty word is the symbol at the shifted index of the original word. (Contributed by AV, 13-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.) (Proof shortened by AV, 12-Oct-2022.)
Assertion
Ref Expression
cshwidxmod ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊))))

Proof of Theorem cshwidxmod
StepHypRef Expression
1 elfzo0 13621 . . . 4 (𝐼 ∈ (0..^(♯‘𝑊)) ↔ (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)))
2 nnne0 12180 . . . . . 6 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ≠ 0)
3 eqneqall 2936 . . . . . 6 ((♯‘𝑊) = 0 → ((♯‘𝑊) ≠ 0 → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊)))))
42, 3syl5com 31 . . . . 5 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) = 0 → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊)))))
543ad2ant2 1134 . . . 4 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)) → ((♯‘𝑊) = 0 → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊)))))
61, 5sylbi 217 . . 3 (𝐼 ∈ (0..^(♯‘𝑊)) → ((♯‘𝑊) = 0 → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊)))))
763ad2ant3 1135 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((♯‘𝑊) = 0 → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊)))))
8 lencl 14458 . . . . 5 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
9 elnnne0 12416 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0))
10 simprl 770 . . . . . . . . . . . . 13 (((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))) → 𝑁 ∈ ℤ)
11 cshword 14715 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
1210, 11sylan2 593 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (𝑊 cyclShift 𝑁) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
1312fveq1d 6828 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → ((𝑊 cyclShift 𝑁)‘𝐼) = (((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))‘𝐼))
14 swrdcl 14570 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Word 𝑉 → (𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ∈ Word 𝑉)
1514adantr 480 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ∈ Word 𝑉)
16 pfxcl 14602 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Word 𝑉 → (𝑊 prefix (𝑁 mod (♯‘𝑊))) ∈ Word 𝑉)
1716adantr 480 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (𝑊 prefix (𝑁 mod (♯‘𝑊))) ∈ Word 𝑉)
18 simpl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → 𝑊 ∈ Word 𝑉)
19 simpl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℤ)
2019anim2i 617 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))) → ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ))
2120adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ))
2221ancomd 461 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
23 zmodfzp1 13817 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝑁 mod (♯‘𝑊)) ∈ (0...(♯‘𝑊)))
2422, 23syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (𝑁 mod (♯‘𝑊)) ∈ (0...(♯‘𝑊)))
25 nn0fz0 13546 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑊) ∈ ℕ0 ↔ (♯‘𝑊) ∈ (0...(♯‘𝑊)))
268, 25sylib 218 . . . . . . . . . . . . . . . . . . . 20 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
2726adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
28 swrdlen 14572 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 mod (♯‘𝑊)) ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) = ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))
2918, 24, 27, 28syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) = ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))
3020ancomd 461 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))) → (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
3130, 23syl 17 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))) → (𝑁 mod (♯‘𝑊)) ∈ (0...(♯‘𝑊)))
32 pfxlen 14608 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 mod (♯‘𝑊)) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊)))) = (𝑁 mod (♯‘𝑊)))
3331, 32sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊)))) = (𝑁 mod (♯‘𝑊)))
3429, 33oveq12d 7371 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → ((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) + (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊))))) = (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))))
3529, 34oveq12d 7371 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → ((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩))..^((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) + (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊)))))) = (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))))
3635eleq2d 2814 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (𝐼 ∈ ((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩))..^((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) + (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊)))))) ↔ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))))))
3736biimparc 479 . . . . . . . . . . . . . . 15 ((𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))))) → 𝐼 ∈ ((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩))..^((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) + (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊)))))))
38 ccatval2 14503 . . . . . . . . . . . . . . 15 (((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ∈ Word 𝑉 ∧ (𝑊 prefix (𝑁 mod (♯‘𝑊))) ∈ Word 𝑉𝐼 ∈ ((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩))..^((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) + (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊))))))) → (((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))‘𝐼) = ((𝑊 prefix (𝑁 mod (♯‘𝑊)))‘(𝐼 − (♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)))))
3915, 17, 37, 38syl2an23an 1425 . . . . . . . . . . . . . 14 ((𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))))) → (((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))‘𝐼) = ((𝑊 prefix (𝑁 mod (♯‘𝑊)))‘(𝐼 − (♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)))))
4026ad2antrl 728 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))))) → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
4118, 24, 40, 28syl2an23an 1425 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))))) → (♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) = ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))
4241oveq2d 7369 . . . . . . . . . . . . . . 15 ((𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))))) → (𝐼 − (♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩))) = (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))))
4342fveq2d 6830 . . . . . . . . . . . . . 14 ((𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))))) → ((𝑊 prefix (𝑁 mod (♯‘𝑊)))‘(𝐼 − (♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)))) = ((𝑊 prefix (𝑁 mod (♯‘𝑊)))‘(𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))))
44 elfzo2 13583 . . . . . . . . . . . . . . . . . . . . . 22 (𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ↔ (𝐼 ∈ (ℤ‘((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∧ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))) ∈ ℤ ∧ 𝐼 < (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))))
45 eluz2 12759 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼 ∈ (ℤ‘((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ↔ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼))
46 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐼 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)) → 𝐼 ∈ ℤ)
47 nnz 12510 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℤ)
4847adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (♯‘𝑊) ∈ ℤ)
49 zmodcl 13813 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝑁 mod (♯‘𝑊)) ∈ ℕ0)
5049nn0zd 12515 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝑁 mod (♯‘𝑊)) ∈ ℤ)
5148, 50zsubcld 12603 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ∈ ℤ)
5251adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐼 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)) → ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ∈ ℤ)
5346, 52zsubcld 12603 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐼 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ ℤ)
5453adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐼 ∈ ℤ ∧ ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼) ∧ (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ ℤ)
55 zre 12493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ)
56 nnre 12153 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ)
5756adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (♯‘𝑊) ∈ ℝ)
5849nn0red 12464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝑁 mod (♯‘𝑊)) ∈ ℝ)
5957, 58resubcld 11566 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ∈ ℝ)
60 subge0 11651 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐼 ∈ ℝ ∧ ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ∈ ℝ) → (0 ≤ (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ↔ ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼))
6155, 59, 60syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐼 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)) → (0 ≤ (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ↔ ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼))
6261exbiri 810 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐼 ∈ ℤ → ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼 → 0 ≤ (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))))))
6362com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐼 ∈ ℤ → (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼 → ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → 0 ≤ (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))))))
6463imp31 417 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐼 ∈ ℤ ∧ ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼) ∧ (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)) → 0 ≤ (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))))
65 elnn0uz 12798 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ ℕ0 ↔ (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (ℤ‘0))
66 elnn0z 12502 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ ℕ0 ↔ ((𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ ℤ ∧ 0 ≤ (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))))
6765, 66bitr3i 277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (ℤ‘0) ↔ ((𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ ℤ ∧ 0 ≤ (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))))
6854, 64, 67sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐼 ∈ ℤ ∧ ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼) ∧ (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (ℤ‘0))
6968adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐼 ∈ ℤ ∧ ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼) ∧ 𝐼 < (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (ℤ‘0))
7050adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐼 ∈ ℤ ∧ ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼) ∧ 𝐼 < (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)) → (𝑁 mod (♯‘𝑊)) ∈ ℤ)
7155adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐼 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)) → 𝐼 ∈ ℝ)
7259adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐼 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)) → ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ∈ ℝ)
7358adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐼 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)) → (𝑁 mod (♯‘𝑊)) ∈ ℝ)
7471, 72, 73ltsubadd2d 11736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐼 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)) → ((𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) < (𝑁 mod (♯‘𝑊)) ↔ 𝐼 < (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))))
7574adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐼 ∈ ℤ ∧ ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼) ∧ (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)) → ((𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) < (𝑁 mod (♯‘𝑊)) ↔ 𝐼 < (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))))
7675exbiri 810 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐼 ∈ ℤ ∧ ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼) → ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝐼 < (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) < (𝑁 mod (♯‘𝑊)))))
7776com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐼 ∈ ℤ ∧ ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼) → (𝐼 < (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))) → ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) < (𝑁 mod (♯‘𝑊)))))
7877imp31 417 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐼 ∈ ℤ ∧ ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼) ∧ 𝐼 < (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) < (𝑁 mod (♯‘𝑊)))
79 elfzo2 13583 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (0..^(𝑁 mod (♯‘𝑊))) ↔ ((𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (ℤ‘0) ∧ (𝑁 mod (♯‘𝑊)) ∈ ℤ ∧ (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) < (𝑁 mod (♯‘𝑊))))
8069, 70, 78, 79syl3anbrc 1344 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐼 ∈ ℤ ∧ ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼) ∧ 𝐼 < (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (0..^(𝑁 mod (♯‘𝑊))))
8180exp31 419 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐼 ∈ ℤ ∧ ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼) → (𝐼 < (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))) → ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (0..^(𝑁 mod (♯‘𝑊))))))
82813adant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) ≤ 𝐼) → (𝐼 < (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))) → ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (0..^(𝑁 mod (♯‘𝑊))))))
8345, 82sylbi 217 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐼 ∈ (ℤ‘((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) → (𝐼 < (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))) → ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (0..^(𝑁 mod (♯‘𝑊))))))
8483imp 406 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐼 ∈ (ℤ‘((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∧ 𝐼 < (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) → ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (0..^(𝑁 mod (♯‘𝑊)))))
85843adant2 1131 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼 ∈ (ℤ‘((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∧ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))) ∈ ℤ ∧ 𝐼 < (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) → ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (0..^(𝑁 mod (♯‘𝑊)))))
8644, 85sylbi 217 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) → ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (0..^(𝑁 mod (♯‘𝑊)))))
8786expdcom 414 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℤ → ((♯‘𝑊) ∈ ℕ → (𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (0..^(𝑁 mod (♯‘𝑊))))))
8887adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((♯‘𝑊) ∈ ℕ → (𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (0..^(𝑁 mod (♯‘𝑊))))))
8988impcom 407 . . . . . . . . . . . . . . . . . 18 (((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))) → (𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (0..^(𝑁 mod (♯‘𝑊)))))
9089adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (0..^(𝑁 mod (♯‘𝑊)))))
9190impcom 407 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))))) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (0..^(𝑁 mod (♯‘𝑊))))
92 pfxfv 14607 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 mod (♯‘𝑊)) ∈ (0...(♯‘𝑊)) ∧ (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) ∈ (0..^(𝑁 mod (♯‘𝑊)))) → ((𝑊 prefix (𝑁 mod (♯‘𝑊)))‘(𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))) = (𝑊‘(𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))))
9318, 24, 91, 92syl2an23an 1425 . . . . . . . . . . . . . . 15 ((𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))))) → ((𝑊 prefix (𝑁 mod (♯‘𝑊)))‘(𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))) = (𝑊‘(𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))))
94 elfzoelz 13580 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ (0..^(♯‘𝑊)) → 𝐼 ∈ ℤ)
9594zcnd 12599 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ (0..^(♯‘𝑊)) → 𝐼 ∈ ℂ)
9695ad2antll 729 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))) → 𝐼 ∈ ℂ)
97 nncn 12154 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℂ)
9897adantr 480 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))) → (♯‘𝑊) ∈ ℂ)
9930, 49syl 17 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))) → (𝑁 mod (♯‘𝑊)) ∈ ℕ0)
10099nn0cnd 12465 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))) → (𝑁 mod (♯‘𝑊)) ∈ ℂ)
10196, 98, 100subsub3d 11523 . . . . . . . . . . . . . . . . . 18 (((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) = ((𝐼 + (𝑁 mod (♯‘𝑊))) − (♯‘𝑊)))
102101ad2antll 729 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))))) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) = ((𝐼 + (𝑁 mod (♯‘𝑊))) − (♯‘𝑊)))
10330ad2antll 729 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))))) → (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
10497adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (♯‘𝑊) ∈ ℂ)
10549nn0cnd 12465 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝑁 mod (♯‘𝑊)) ∈ ℂ)
106104, 105npcand 11497 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))) = (♯‘𝑊))
107106ex 412 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℤ → ((♯‘𝑊) ∈ ℕ → (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))) = (♯‘𝑊)))
108107adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((♯‘𝑊) ∈ ℕ → (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))) = (♯‘𝑊)))
109108impcom 407 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))) → (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))) = (♯‘𝑊))
110109adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))) = (♯‘𝑊))
111110oveq2d 7369 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) = (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊)))
112111eleq2d 2814 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ↔ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))))
113112biimpac 478 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))))) → 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊)))
114 modaddmodup 13859 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊)) → ((𝐼 + (𝑁 mod (♯‘𝑊))) − (♯‘𝑊)) = ((𝐼 + 𝑁) mod (♯‘𝑊))))
115103, 113, 114sylc 65 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))))) → ((𝐼 + (𝑁 mod (♯‘𝑊))) − (♯‘𝑊)) = ((𝐼 + 𝑁) mod (♯‘𝑊)))
116102, 115eqtrd 2764 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))))) → (𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) = ((𝐼 + 𝑁) mod (♯‘𝑊)))
117116fveq2d 6830 . . . . . . . . . . . . . . 15 ((𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))))) → (𝑊‘(𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊))))
11893, 117eqtrd 2764 . . . . . . . . . . . . . 14 ((𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))))) → ((𝑊 prefix (𝑁 mod (♯‘𝑊)))‘(𝐼 − ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊))))
11939, 43, 1183eqtrd 2768 . . . . . . . . . . . . 13 ((𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ∧ (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))))) → (((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊))))
120119ex 412 . . . . . . . . . . . 12 (𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) → ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊)))))
121112notbid 318 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) ↔ ¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))))
12214ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) ∧ ¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))) → (𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ∈ Word 𝑉)
12316ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) ∧ ¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))) → (𝑊 prefix (𝑁 mod (♯‘𝑊))) ∈ Word 𝑉)
12449ancoms 458 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod (♯‘𝑊)) ∈ ℕ0)
125124nn0zd 12515 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod (♯‘𝑊)) ∈ ℤ)
126125adantrr 717 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))) → (𝑁 mod (♯‘𝑊)) ∈ ℤ)
127 zre 12493 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
128127adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℝ)
129 nnrp 12923 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+)
130 modlt 13802 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) → (𝑁 mod (♯‘𝑊)) < (♯‘𝑊))
131128, 129, 130syl2anr 597 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊)))) → (𝑁 mod (♯‘𝑊)) < (♯‘𝑊))
132 simprrr 781 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → 𝐼 ∈ (0..^(♯‘𝑊)))
133 fzonfzoufzol 13691 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 mod (♯‘𝑊)) ∈ ℤ ∧ (𝑁 mod (♯‘𝑊)) < (♯‘𝑊) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → (¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊)) → 𝐼 ∈ (0..^((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))))
134126, 131, 132, 133syl2an23an 1425 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊)) → 𝐼 ∈ (0..^((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))))
135134imp 406 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) ∧ ¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))) → 𝐼 ∈ (0..^((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))))
136 simpll 766 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) ∧ ¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
13724adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) ∧ ¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))) → (𝑁 mod (♯‘𝑊)) ∈ (0...(♯‘𝑊)))
13826ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) ∧ ¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))) → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
139136, 137, 138, 28syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) ∧ ¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))) → (♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) = ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))
140139oveq2d 7369 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) ∧ ¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))) → (0..^(♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩))) = (0..^((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))))
141135, 140eleqtrrd 2831 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) ∧ ¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))) → 𝐼 ∈ (0..^(♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩))))
142 ccatval1 14502 . . . . . . . . . . . . . . . . 17 (((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ∈ Word 𝑉 ∧ (𝑊 prefix (𝑁 mod (♯‘𝑊))) ∈ Word 𝑉𝐼 ∈ (0..^(♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)))) → (((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))‘𝐼) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)‘𝐼))
143122, 123, 141, 142syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) ∧ ¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))) → (((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))‘𝐼) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)‘𝐼))
144 swrdfv 14573 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word 𝑉 ∧ (𝑁 mod (♯‘𝑊)) ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘𝑊))) ∧ 𝐼 ∈ (0..^((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))) → ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)‘𝐼) = (𝑊‘(𝐼 + (𝑁 mod (♯‘𝑊)))))
145136, 137, 138, 135, 144syl31anc 1375 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) ∧ ¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))) → ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)‘𝐼) = (𝑊‘(𝐼 + (𝑁 mod (♯‘𝑊)))))
14630ad2antlr 727 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) ∧ ¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))) → (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
147 modaddmodlo 13860 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝐼 ∈ (0..^((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))) → (𝐼 + (𝑁 mod (♯‘𝑊))) = ((𝐼 + 𝑁) mod (♯‘𝑊))))
148146, 135, 147sylc 65 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) ∧ ¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))) → (𝐼 + (𝑁 mod (♯‘𝑊))) = ((𝐼 + 𝑁) mod (♯‘𝑊)))
149148fveq2d 6830 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) ∧ ¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))) → (𝑊‘(𝐼 + (𝑁 mod (♯‘𝑊)))) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊))))
150143, 145, 1493eqtrd 2768 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) ∧ ¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊))) → (((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊))))
151150ex 412 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(♯‘𝑊)) → (((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊)))))
152121, 151sylbid 240 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (¬ 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) → (((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊)))))
153152com12 32 . . . . . . . . . . . 12 𝐼 ∈ (((♯‘𝑊) − (𝑁 mod (♯‘𝑊)))..^(((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊)))) → ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊)))))
154120, 153pm2.61i 182 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → (((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊))))
15513, 154eqtrd 2764 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))))) → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊))))
156155exp32 420 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) ∈ ℕ → ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊))))))
157156com12 32 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ → (𝑊 ∈ Word 𝑉 → ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊))))))
1589, 157sylbir 235 . . . . . . 7 (((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0) → (𝑊 ∈ Word 𝑉 → ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊))))))
159158ex 412 . . . . . 6 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) ≠ 0 → (𝑊 ∈ Word 𝑉 → ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊)))))))
160159com23 86 . . . . 5 ((♯‘𝑊) ∈ ℕ0 → (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) ≠ 0 → ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊)))))))
1618, 160mpcom 38 . . . 4 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) ≠ 0 → ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊))))))
162161com23 86 . . 3 (𝑊 ∈ Word 𝑉 → ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((♯‘𝑊) ≠ 0 → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊))))))
1631623impib 1116 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((♯‘𝑊) ≠ 0 → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊)))))
1647, 163pm2.61dne 3011 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cop 4585   class class class wbr 5095  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028   + caddc 11031   < clt 11168  cle 11169  cmin 11365  cn 12146  0cn0 12402  cz 12489  cuz 12753  +crp 12911  ...cfz 13428  ..^cfzo 13575   mod cmo 13791  chash 14255  Word cword 14438   ++ cconcat 14495   substr csubstr 14565   prefix cpfx 14595   cyclShift ccsh 14712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-hash 14256  df-word 14439  df-concat 14496  df-substr 14566  df-pfx 14596  df-csh 14713
This theorem is referenced by:  cshwidxmodr  14728  cshwidx0mod  14729  cshwidxm1  14731  cshwidxm  14732  cshwidxn  14733  cshf1  14734  2cshw  14737  cshweqrep  14745  cshimadifsn  14754  cshimadifsn0  14755  cshco  14761  crctcshwlkn0lem4  29776  crctcshwlkn0lem5  29777  crctcshwlkn0lem6  29778  clwwisshclwwslem  29976  eucrctshift  30205  cycpmfv1  33068  cycpmfv2  33069
  Copyright terms: Public domain W3C validator