Proof of Theorem fldivp1
| Step | Hyp | Ref
| Expression |
| 1 | | nnz 12634 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
| 2 | | nnne0 12300 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) |
| 3 | | peano2z 12658 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℤ → (𝑀 + 1) ∈
ℤ) |
| 4 | 3 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + 1) ∈
ℤ) |
| 5 | | dvdsval2 16293 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ (𝑀 + 1) ∈ ℤ) → (𝑁 ∥ (𝑀 + 1) ↔ ((𝑀 + 1) / 𝑁) ∈ ℤ)) |
| 6 | 1, 2, 4, 5 | syl2an23an 1425 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 ∥ (𝑀 + 1) ↔ ((𝑀 + 1) / 𝑁) ∈ ℤ)) |
| 7 | 6 | biimpa 476 |
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((𝑀 + 1) / 𝑁) ∈ ℤ) |
| 8 | | flid 13848 |
. . . . . . 7
⊢ (((𝑀 + 1) / 𝑁) ∈ ℤ →
(⌊‘((𝑀 + 1) /
𝑁)) = ((𝑀 + 1) / 𝑁)) |
| 9 | 7, 8 | syl 17 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → (⌊‘((𝑀 + 1) / 𝑁)) = ((𝑀 + 1) / 𝑁)) |
| 10 | | nnm1nn0 12567 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℕ0) |
| 11 | 10 | nn0red 12588 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℝ) |
| 12 | 10 | nn0ge0d 12590 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 0 ≤
(𝑁 −
1)) |
| 13 | | nnre 12273 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ) |
| 14 | | nngt0 12297 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 0 <
𝑁) |
| 15 | | divge0 12137 |
. . . . . . . . 9
⊢ ((((𝑁 − 1) ∈ ℝ ∧
0 ≤ (𝑁 − 1)) ∧
(𝑁 ∈ ℝ ∧ 0
< 𝑁)) → 0 ≤
((𝑁 − 1) / 𝑁)) |
| 16 | 11, 12, 13, 14, 15 | syl22anc 839 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 0 ≤
((𝑁 − 1) / 𝑁)) |
| 17 | 16 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → 0 ≤ ((𝑁 − 1) / 𝑁)) |
| 18 | 13 | ltm1d 12200 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) < 𝑁) |
| 19 | | nncn 12274 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
| 20 | 19 | mulridd 11278 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → (𝑁 · 1) = 𝑁) |
| 21 | 18, 20 | breqtrrd 5171 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) < (𝑁 · 1)) |
| 22 | | 1re 11261 |
. . . . . . . . . . 11
⊢ 1 ∈
ℝ |
| 23 | 22 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 1 ∈
ℝ) |
| 24 | | ltdivmul 12143 |
. . . . . . . . . 10
⊢ (((𝑁 − 1) ∈ ℝ ∧
1 ∈ ℝ ∧ (𝑁
∈ ℝ ∧ 0 < 𝑁)) → (((𝑁 − 1) / 𝑁) < 1 ↔ (𝑁 − 1) < (𝑁 · 1))) |
| 25 | 11, 23, 13, 14, 24 | syl112anc 1376 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → (((𝑁 − 1) / 𝑁) < 1 ↔ (𝑁 − 1) < (𝑁 · 1))) |
| 26 | 21, 25 | mpbird 257 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) / 𝑁) < 1) |
| 27 | 26 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((𝑁 − 1) / 𝑁) < 1) |
| 28 | | nndivre 12307 |
. . . . . . . . . 10
⊢ (((𝑁 − 1) ∈ ℝ ∧
𝑁 ∈ ℕ) →
((𝑁 − 1) / 𝑁) ∈
ℝ) |
| 29 | 11, 28 | mpancom 688 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) / 𝑁) ∈ ℝ) |
| 30 | 29 | ad2antlr 727 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((𝑁 − 1) / 𝑁) ∈ ℝ) |
| 31 | | flbi2 13857 |
. . . . . . . 8
⊢ ((((𝑀 + 1) / 𝑁) ∈ ℤ ∧ ((𝑁 − 1) / 𝑁) ∈ ℝ) →
((⌊‘(((𝑀 + 1) /
𝑁) + ((𝑁 − 1) / 𝑁))) = ((𝑀 + 1) / 𝑁) ↔ (0 ≤ ((𝑁 − 1) / 𝑁) ∧ ((𝑁 − 1) / 𝑁) < 1))) |
| 32 | 7, 30, 31 | syl2anc 584 |
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘(((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁))) = ((𝑀 + 1) / 𝑁) ↔ (0 ≤ ((𝑁 − 1) / 𝑁) ∧ ((𝑁 − 1) / 𝑁) < 1))) |
| 33 | 17, 27, 32 | mpbir2and 713 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → (⌊‘(((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁))) = ((𝑀 + 1) / 𝑁)) |
| 34 | 9, 33 | eqtr4d 2780 |
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → (⌊‘((𝑀 + 1) / 𝑁)) = (⌊‘(((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁)))) |
| 35 | | zcn 12618 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℂ) |
| 36 | 35 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈
ℂ) |
| 37 | | ax-1cn 11213 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℂ |
| 38 | 37 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 1 ∈
ℂ) |
| 39 | 19 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
ℂ) |
| 40 | 36, 38, 39 | ppncand 11660 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) + (𝑁 − 1)) = (𝑀 + 𝑁)) |
| 41 | 40 | oveq1d 7446 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) + (𝑁 − 1)) / 𝑁) = ((𝑀 + 𝑁) / 𝑁)) |
| 42 | 4 | zcnd 12723 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + 1) ∈
ℂ) |
| 43 | | subcl 11507 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑁 −
1) ∈ ℂ) |
| 44 | 19, 37, 43 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℂ) |
| 45 | 44 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈
ℂ) |
| 46 | 2 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0) |
| 47 | 42, 45, 39, 46 | divdird 12081 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) + (𝑁 − 1)) / 𝑁) = (((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁))) |
| 48 | 41, 47 | eqtr3d 2779 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 𝑁) / 𝑁) = (((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁))) |
| 49 | 36, 39, 39, 46 | divdird 12081 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 𝑁) / 𝑁) = ((𝑀 / 𝑁) + (𝑁 / 𝑁))) |
| 50 | 48, 49 | eqtr3d 2779 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁)) = ((𝑀 / 𝑁) + (𝑁 / 𝑁))) |
| 51 | 39, 46 | dividd 12041 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 / 𝑁) = 1) |
| 52 | 51 | oveq2d 7447 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 / 𝑁) + (𝑁 / 𝑁)) = ((𝑀 / 𝑁) + 1)) |
| 53 | 50, 52 | eqtrd 2777 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁)) = ((𝑀 / 𝑁) + 1)) |
| 54 | 53 | fveq2d 6910 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
(⌊‘(((𝑀 + 1) /
𝑁) + ((𝑁 − 1) / 𝑁))) = (⌊‘((𝑀 / 𝑁) + 1))) |
| 55 | 54 | adantr 480 |
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → (⌊‘(((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁))) = (⌊‘((𝑀 / 𝑁) + 1))) |
| 56 | | zre 12617 |
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℝ) |
| 57 | | nndivre 12307 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℝ) |
| 58 | 56, 57 | sylan 580 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℝ) |
| 59 | | 1z 12647 |
. . . . . . 7
⊢ 1 ∈
ℤ |
| 60 | | fladdz 13865 |
. . . . . . 7
⊢ (((𝑀 / 𝑁) ∈ ℝ ∧ 1 ∈ ℤ)
→ (⌊‘((𝑀 /
𝑁) + 1)) =
((⌊‘(𝑀 / 𝑁)) + 1)) |
| 61 | 58, 59, 60 | sylancl 586 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
(⌊‘((𝑀 / 𝑁) + 1)) = ((⌊‘(𝑀 / 𝑁)) + 1)) |
| 62 | 61 | adantr 480 |
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → (⌊‘((𝑀 / 𝑁) + 1)) = ((⌊‘(𝑀 / 𝑁)) + 1)) |
| 63 | 34, 55, 62 | 3eqtrrd 2782 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘(𝑀 / 𝑁)) + 1) = (⌊‘((𝑀 + 1) / 𝑁))) |
| 64 | | zre 12617 |
. . . . . . . . . 10
⊢ ((𝑀 + 1) ∈ ℤ →
(𝑀 + 1) ∈
ℝ) |
| 65 | 3, 64 | syl 17 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → (𝑀 + 1) ∈
ℝ) |
| 66 | | nndivre 12307 |
. . . . . . . . 9
⊢ (((𝑀 + 1) ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) / 𝑁) ∈ ℝ) |
| 67 | 65, 66 | sylan 580 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) / 𝑁) ∈ ℝ) |
| 68 | 67 | flcld 13838 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
(⌊‘((𝑀 + 1) /
𝑁)) ∈
ℤ) |
| 69 | 68 | zcnd 12723 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
(⌊‘((𝑀 + 1) /
𝑁)) ∈
ℂ) |
| 70 | 58 | flcld 13838 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
(⌊‘(𝑀 / 𝑁)) ∈
ℤ) |
| 71 | 70 | zcnd 12723 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
(⌊‘(𝑀 / 𝑁)) ∈
ℂ) |
| 72 | 69, 71, 38 | subaddd 11638 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
(((⌊‘((𝑀 + 1) /
𝑁)) −
(⌊‘(𝑀 / 𝑁))) = 1 ↔
((⌊‘(𝑀 / 𝑁)) + 1) = (⌊‘((𝑀 + 1) / 𝑁)))) |
| 73 | 72 | adantr 480 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → (((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = 1 ↔ ((⌊‘(𝑀 / 𝑁)) + 1) = (⌊‘((𝑀 + 1) / 𝑁)))) |
| 74 | 63, 73 | mpbird 257 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = 1) |
| 75 | | iftrue 4531 |
. . . 4
⊢ (𝑁 ∥ (𝑀 + 1) → if(𝑁 ∥ (𝑀 + 1), 1, 0) = 1) |
| 76 | 75 | adantl 481 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → if(𝑁 ∥ (𝑀 + 1), 1, 0) = 1) |
| 77 | 74, 76 | eqtr4d 2780 |
. 2
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = if(𝑁 ∥ (𝑀 + 1), 1, 0)) |
| 78 | | zmodcl 13931 |
. . . . . . . . . . 11
⊢ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) mod 𝑁) ∈
ℕ0) |
| 79 | 3, 78 | sylan 580 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) mod 𝑁) ∈
ℕ0) |
| 80 | 79 | nn0red 12588 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) mod 𝑁) ∈ ℝ) |
| 81 | | resubcl 11573 |
. . . . . . . . 9
⊢ ((((𝑀 + 1) mod 𝑁) ∈ ℝ ∧ 1 ∈ ℝ)
→ (((𝑀 + 1) mod 𝑁) − 1) ∈
ℝ) |
| 82 | 80, 22, 81 | sylancl 586 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) ∈
ℝ) |
| 83 | 82 | adantr 480 |
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
𝑁 ∥ (𝑀 + 1)) → (((𝑀 + 1) mod 𝑁) − 1) ∈
ℝ) |
| 84 | | elnn0 12528 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 + 1) mod 𝑁) ∈ ℕ0 ↔ (((𝑀 + 1) mod 𝑁) ∈ ℕ ∨ ((𝑀 + 1) mod 𝑁) = 0)) |
| 85 | 79, 84 | sylib 218 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) ∈ ℕ ∨ ((𝑀 + 1) mod 𝑁) = 0)) |
| 86 | 85 | ord 865 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (¬
((𝑀 + 1) mod 𝑁) ∈ ℕ → ((𝑀 + 1) mod 𝑁) = 0)) |
| 87 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ) |
| 88 | | dvdsval3 16294 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ (𝑀 + 1) ∈ ℤ) →
(𝑁 ∥ (𝑀 + 1) ↔ ((𝑀 + 1) mod 𝑁) = 0)) |
| 89 | 87, 3, 88 | syl2anr 597 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 ∥ (𝑀 + 1) ↔ ((𝑀 + 1) mod 𝑁) = 0)) |
| 90 | 86, 89 | sylibrd 259 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (¬
((𝑀 + 1) mod 𝑁) ∈ ℕ → 𝑁 ∥ (𝑀 + 1))) |
| 91 | 90 | con1d 145 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (¬
𝑁 ∥ (𝑀 + 1) → ((𝑀 + 1) mod 𝑁) ∈ ℕ)) |
| 92 | 91 | imp 406 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
𝑁 ∥ (𝑀 + 1)) → ((𝑀 + 1) mod 𝑁) ∈ ℕ) |
| 93 | | nnm1nn0 12567 |
. . . . . . . . 9
⊢ (((𝑀 + 1) mod 𝑁) ∈ ℕ → (((𝑀 + 1) mod 𝑁) − 1) ∈
ℕ0) |
| 94 | 92, 93 | syl 17 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
𝑁 ∥ (𝑀 + 1)) → (((𝑀 + 1) mod 𝑁) − 1) ∈
ℕ0) |
| 95 | 94 | nn0ge0d 12590 |
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
𝑁 ∥ (𝑀 + 1)) → 0 ≤ (((𝑀 + 1) mod 𝑁) − 1)) |
| 96 | 13, 14 | jca 511 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 0 <
𝑁)) |
| 97 | 96 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
𝑁 ∥ (𝑀 + 1)) → (𝑁 ∈ ℝ ∧ 0 < 𝑁)) |
| 98 | | divge0 12137 |
. . . . . . 7
⊢
((((((𝑀 + 1) mod
𝑁) − 1) ∈
ℝ ∧ 0 ≤ (((𝑀 +
1) mod 𝑁) − 1)) ∧
(𝑁 ∈ ℝ ∧ 0
< 𝑁)) → 0 ≤
((((𝑀 + 1) mod 𝑁) − 1) / 𝑁)) |
| 99 | 83, 95, 97, 98 | syl21anc 838 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
𝑁 ∥ (𝑀 + 1)) → 0 ≤ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁)) |
| 100 | 13 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
ℝ) |
| 101 | 80 | ltm1d 12200 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) < ((𝑀 + 1) mod 𝑁)) |
| 102 | | nnrp 13046 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ+) |
| 103 | | modlt 13920 |
. . . . . . . . . . 11
⊢ (((𝑀 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+)
→ ((𝑀 + 1) mod 𝑁) < 𝑁) |
| 104 | 65, 102, 103 | syl2an 596 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) mod 𝑁) < 𝑁) |
| 105 | 82, 80, 100, 101, 104 | lttrd 11422 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) < 𝑁) |
| 106 | 39 | mulridd 11278 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · 1) = 𝑁) |
| 107 | 105, 106 | breqtrrd 5171 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) < (𝑁 · 1)) |
| 108 | 22 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 1 ∈
ℝ) |
| 109 | 14 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 <
𝑁) |
| 110 | | ltdivmul 12143 |
. . . . . . . . 9
⊢
(((((𝑀 + 1) mod
𝑁) − 1) ∈
ℝ ∧ 1 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1 ↔ (((𝑀 + 1) mod 𝑁) − 1) < (𝑁 · 1))) |
| 111 | 82, 108, 100, 109, 110 | syl112anc 1376 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
(((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1 ↔ (((𝑀 + 1) mod 𝑁) − 1) < (𝑁 · 1))) |
| 112 | 107, 111 | mpbird 257 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1) |
| 113 | 112 | adantr 480 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
𝑁 ∥ (𝑀 + 1)) → ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1) |
| 114 | | nndivre 12307 |
. . . . . . . . 9
⊢
(((((𝑀 + 1) mod
𝑁) − 1) ∈
ℝ ∧ 𝑁 ∈
ℕ) → ((((𝑀 + 1)
mod 𝑁) − 1) / 𝑁) ∈
ℝ) |
| 115 | 82, 114 | sylancom 588 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∈ ℝ) |
| 116 | | flbi2 13857 |
. . . . . . . 8
⊢
(((⌊‘((𝑀
+ 1) / 𝑁)) ∈ ℤ
∧ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∈ ℝ) →
((⌊‘((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))) = (⌊‘((𝑀 + 1) / 𝑁)) ↔ (0 ≤ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∧ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1))) |
| 117 | 68, 115, 116 | syl2anc 584 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
((⌊‘((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))) = (⌊‘((𝑀 + 1) / 𝑁)) ↔ (0 ≤ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∧ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1))) |
| 118 | 117 | adantr 480 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
𝑁 ∥ (𝑀 + 1)) →
((⌊‘((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))) = (⌊‘((𝑀 + 1) / 𝑁)) ↔ (0 ≤ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∧ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1))) |
| 119 | 99, 113, 118 | mpbir2and 713 |
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
𝑁 ∥ (𝑀 + 1)) →
(⌊‘((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))) = (⌊‘((𝑀 + 1) / 𝑁))) |
| 120 | | modval 13911 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+)
→ ((𝑀 + 1) mod 𝑁) = ((𝑀 + 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁))))) |
| 121 | 65, 102, 120 | syl2an 596 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) mod 𝑁) = ((𝑀 + 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁))))) |
| 122 | 121 | oveq1d 7446 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) = (((𝑀 + 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))) − 1)) |
| 123 | 39, 69 | mulcld 11281 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · (⌊‘((𝑀 + 1) / 𝑁))) ∈ ℂ) |
| 124 | 42, 38, 123 | sub32d 11652 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) − 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))) = (((𝑀 + 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))) − 1)) |
| 125 | 122, 124 | eqtr4d 2780 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) = (((𝑀 + 1) − 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁))))) |
| 126 | | pncan 11514 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑀 + 1)
− 1) = 𝑀) |
| 127 | 36, 37, 126 | sylancl 586 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) − 1) = 𝑀) |
| 128 | 127 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) − 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))) = (𝑀 − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁))))) |
| 129 | 125, 128 | eqtrd 2777 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) = (𝑀 − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁))))) |
| 130 | 129 | oveq1d 7446 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) = ((𝑀 − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))) / 𝑁)) |
| 131 | 36, 123, 39, 46 | divsubdird 12082 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))) / 𝑁) = ((𝑀 / 𝑁) − ((𝑁 · (⌊‘((𝑀 + 1) / 𝑁))) / 𝑁))) |
| 132 | 69, 39, 46 | divcan3d 12048 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 · (⌊‘((𝑀 + 1) / 𝑁))) / 𝑁) = (⌊‘((𝑀 + 1) / 𝑁))) |
| 133 | 132 | oveq2d 7447 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 / 𝑁) − ((𝑁 · (⌊‘((𝑀 + 1) / 𝑁))) / 𝑁)) = ((𝑀 / 𝑁) − (⌊‘((𝑀 + 1) / 𝑁)))) |
| 134 | 130, 131,
133 | 3eqtrrd 2782 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 / 𝑁) − (⌊‘((𝑀 + 1) / 𝑁))) = ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁)) |
| 135 | 58 | recnd 11289 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℂ) |
| 136 | 115 | recnd 11289 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∈ ℂ) |
| 137 | 135, 69, 136 | subaddd 11638 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 / 𝑁) − (⌊‘((𝑀 + 1) / 𝑁))) = ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ↔ ((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁)) = (𝑀 / 𝑁))) |
| 138 | 134, 137 | mpbid 232 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
((⌊‘((𝑀 + 1) /
𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁)) = (𝑀 / 𝑁)) |
| 139 | 138 | adantr 480 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
𝑁 ∥ (𝑀 + 1)) →
((⌊‘((𝑀 + 1) /
𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁)) = (𝑀 / 𝑁)) |
| 140 | 139 | fveq2d 6910 |
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
𝑁 ∥ (𝑀 + 1)) →
(⌊‘((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))) = (⌊‘(𝑀 / 𝑁))) |
| 141 | 119, 140 | eqtr3d 2779 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
𝑁 ∥ (𝑀 + 1)) →
(⌊‘((𝑀 + 1) /
𝑁)) = (⌊‘(𝑀 / 𝑁))) |
| 142 | 69, 71 | subeq0ad 11630 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
(((⌊‘((𝑀 + 1) /
𝑁)) −
(⌊‘(𝑀 / 𝑁))) = 0 ↔
(⌊‘((𝑀 + 1) /
𝑁)) = (⌊‘(𝑀 / 𝑁)))) |
| 143 | 142 | adantr 480 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
𝑁 ∥ (𝑀 + 1)) →
(((⌊‘((𝑀 + 1) /
𝑁)) −
(⌊‘(𝑀 / 𝑁))) = 0 ↔
(⌊‘((𝑀 + 1) /
𝑁)) = (⌊‘(𝑀 / 𝑁)))) |
| 144 | 141, 143 | mpbird 257 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
𝑁 ∥ (𝑀 + 1)) →
((⌊‘((𝑀 + 1) /
𝑁)) −
(⌊‘(𝑀 / 𝑁))) = 0) |
| 145 | | iffalse 4534 |
. . . 4
⊢ (¬
𝑁 ∥ (𝑀 + 1) → if(𝑁 ∥ (𝑀 + 1), 1, 0) = 0) |
| 146 | 145 | adantl 481 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
𝑁 ∥ (𝑀 + 1)) → if(𝑁 ∥ (𝑀 + 1), 1, 0) = 0) |
| 147 | 144, 146 | eqtr4d 2780 |
. 2
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
𝑁 ∥ (𝑀 + 1)) →
((⌊‘((𝑀 + 1) /
𝑁)) −
(⌊‘(𝑀 / 𝑁))) = if(𝑁 ∥ (𝑀 + 1), 1, 0)) |
| 148 | 77, 147 | pm2.61dan 813 |
1
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
((⌊‘((𝑀 + 1) /
𝑁)) −
(⌊‘(𝑀 / 𝑁))) = if(𝑁 ∥ (𝑀 + 1), 1, 0)) |