MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fldivp1 Structured version   Visualization version   GIF version

Theorem fldivp1 16769
Description: The difference between the floors of adjacent fractions is either 1 or 0. (Contributed by Mario Carneiro, 8-Mar-2014.)
Assertion
Ref Expression
fldivp1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = if(𝑁 ∥ (𝑀 + 1), 1, 0))

Proof of Theorem fldivp1
StepHypRef Expression
1 nnz 12520 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
2 nnne0 12187 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
3 peano2z 12544 . . . . . . . . . 10 (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ)
43adantr 481 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + 1) ∈ ℤ)
5 dvdsval2 16139 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ (𝑀 + 1) ∈ ℤ) → (𝑁 ∥ (𝑀 + 1) ↔ ((𝑀 + 1) / 𝑁) ∈ ℤ))
61, 2, 4, 5syl2an23an 1423 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 ∥ (𝑀 + 1) ↔ ((𝑀 + 1) / 𝑁) ∈ ℤ))
76biimpa 477 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((𝑀 + 1) / 𝑁) ∈ ℤ)
8 flid 13713 . . . . . . 7 (((𝑀 + 1) / 𝑁) ∈ ℤ → (⌊‘((𝑀 + 1) / 𝑁)) = ((𝑀 + 1) / 𝑁))
97, 8syl 17 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → (⌊‘((𝑀 + 1) / 𝑁)) = ((𝑀 + 1) / 𝑁))
10 nnm1nn0 12454 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
1110nn0red 12474 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ)
1210nn0ge0d 12476 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 ≤ (𝑁 − 1))
13 nnre 12160 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
14 nngt0 12184 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 < 𝑁)
15 divge0 12024 . . . . . . . . 9 ((((𝑁 − 1) ∈ ℝ ∧ 0 ≤ (𝑁 − 1)) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ ((𝑁 − 1) / 𝑁))
1611, 12, 13, 14, 15syl22anc 837 . . . . . . . 8 (𝑁 ∈ ℕ → 0 ≤ ((𝑁 − 1) / 𝑁))
1716ad2antlr 725 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → 0 ≤ ((𝑁 − 1) / 𝑁))
1813ltm1d 12087 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 − 1) < 𝑁)
19 nncn 12161 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2019mulid1d 11172 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 · 1) = 𝑁)
2118, 20breqtrrd 5133 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) < (𝑁 · 1))
22 1re 11155 . . . . . . . . . . 11 1 ∈ ℝ
2322a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → 1 ∈ ℝ)
24 ltdivmul 12030 . . . . . . . . . 10 (((𝑁 − 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (((𝑁 − 1) / 𝑁) < 1 ↔ (𝑁 − 1) < (𝑁 · 1)))
2511, 23, 13, 14, 24syl112anc 1374 . . . . . . . . 9 (𝑁 ∈ ℕ → (((𝑁 − 1) / 𝑁) < 1 ↔ (𝑁 − 1) < (𝑁 · 1)))
2621, 25mpbird 256 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 − 1) / 𝑁) < 1)
2726ad2antlr 725 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((𝑁 − 1) / 𝑁) < 1)
28 nndivre 12194 . . . . . . . . . 10 (((𝑁 − 1) ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1) / 𝑁) ∈ ℝ)
2911, 28mpancom 686 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑁 − 1) / 𝑁) ∈ ℝ)
3029ad2antlr 725 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((𝑁 − 1) / 𝑁) ∈ ℝ)
31 flbi2 13722 . . . . . . . 8 ((((𝑀 + 1) / 𝑁) ∈ ℤ ∧ ((𝑁 − 1) / 𝑁) ∈ ℝ) → ((⌊‘(((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁))) = ((𝑀 + 1) / 𝑁) ↔ (0 ≤ ((𝑁 − 1) / 𝑁) ∧ ((𝑁 − 1) / 𝑁) < 1)))
327, 30, 31syl2anc 584 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘(((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁))) = ((𝑀 + 1) / 𝑁) ↔ (0 ≤ ((𝑁 − 1) / 𝑁) ∧ ((𝑁 − 1) / 𝑁) < 1)))
3317, 27, 32mpbir2and 711 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → (⌊‘(((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁))) = ((𝑀 + 1) / 𝑁))
349, 33eqtr4d 2779 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → (⌊‘((𝑀 + 1) / 𝑁)) = (⌊‘(((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁))))
35 zcn 12504 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
3635adantr 481 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℂ)
37 ax-1cn 11109 . . . . . . . . . . . . 13 1 ∈ ℂ
3837a1i 11 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 1 ∈ ℂ)
3919adantl 482 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
4036, 38, 39ppncand 11552 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) + (𝑁 − 1)) = (𝑀 + 𝑁))
4140oveq1d 7372 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) + (𝑁 − 1)) / 𝑁) = ((𝑀 + 𝑁) / 𝑁))
424zcnd 12608 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + 1) ∈ ℂ)
43 subcl 11400 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 − 1) ∈ ℂ)
4419, 37, 43sylancl 586 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℂ)
4544adantl 482 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℂ)
462adantl 482 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
4742, 45, 39, 46divdird 11969 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) + (𝑁 − 1)) / 𝑁) = (((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁)))
4841, 47eqtr3d 2778 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 𝑁) / 𝑁) = (((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁)))
4936, 39, 39, 46divdird 11969 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 𝑁) / 𝑁) = ((𝑀 / 𝑁) + (𝑁 / 𝑁)))
5048, 49eqtr3d 2778 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁)) = ((𝑀 / 𝑁) + (𝑁 / 𝑁)))
5139, 46dividd 11929 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 / 𝑁) = 1)
5251oveq2d 7373 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 / 𝑁) + (𝑁 / 𝑁)) = ((𝑀 / 𝑁) + 1))
5350, 52eqtrd 2776 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁)) = ((𝑀 / 𝑁) + 1))
5453fveq2d 6846 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁))) = (⌊‘((𝑀 / 𝑁) + 1)))
5554adantr 481 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → (⌊‘(((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁))) = (⌊‘((𝑀 / 𝑁) + 1)))
56 zre 12503 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
57 nndivre 12194 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℝ)
5856, 57sylan 580 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℝ)
59 1z 12533 . . . . . . 7 1 ∈ ℤ
60 fladdz 13730 . . . . . . 7 (((𝑀 / 𝑁) ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘((𝑀 / 𝑁) + 1)) = ((⌊‘(𝑀 / 𝑁)) + 1))
6158, 59, 60sylancl 586 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝑀 / 𝑁) + 1)) = ((⌊‘(𝑀 / 𝑁)) + 1))
6261adantr 481 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → (⌊‘((𝑀 / 𝑁) + 1)) = ((⌊‘(𝑀 / 𝑁)) + 1))
6334, 55, 623eqtrrd 2781 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘(𝑀 / 𝑁)) + 1) = (⌊‘((𝑀 + 1) / 𝑁)))
64 zre 12503 . . . . . . . . . 10 ((𝑀 + 1) ∈ ℤ → (𝑀 + 1) ∈ ℝ)
653, 64syl 17 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℝ)
66 nndivre 12194 . . . . . . . . 9 (((𝑀 + 1) ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) / 𝑁) ∈ ℝ)
6765, 66sylan 580 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) / 𝑁) ∈ ℝ)
6867flcld 13703 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝑀 + 1) / 𝑁)) ∈ ℤ)
6968zcnd 12608 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝑀 + 1) / 𝑁)) ∈ ℂ)
7058flcld 13703 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝑀 / 𝑁)) ∈ ℤ)
7170zcnd 12608 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝑀 / 𝑁)) ∈ ℂ)
7269, 71, 38subaddd 11530 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = 1 ↔ ((⌊‘(𝑀 / 𝑁)) + 1) = (⌊‘((𝑀 + 1) / 𝑁))))
7372adantr 481 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → (((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = 1 ↔ ((⌊‘(𝑀 / 𝑁)) + 1) = (⌊‘((𝑀 + 1) / 𝑁))))
7463, 73mpbird 256 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = 1)
75 iftrue 4492 . . . 4 (𝑁 ∥ (𝑀 + 1) → if(𝑁 ∥ (𝑀 + 1), 1, 0) = 1)
7675adantl 482 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → if(𝑁 ∥ (𝑀 + 1), 1, 0) = 1)
7774, 76eqtr4d 2779 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = if(𝑁 ∥ (𝑀 + 1), 1, 0))
78 zmodcl 13796 . . . . . . . . . . 11 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) mod 𝑁) ∈ ℕ0)
793, 78sylan 580 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) mod 𝑁) ∈ ℕ0)
8079nn0red 12474 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) mod 𝑁) ∈ ℝ)
81 resubcl 11465 . . . . . . . . 9 ((((𝑀 + 1) mod 𝑁) ∈ ℝ ∧ 1 ∈ ℝ) → (((𝑀 + 1) mod 𝑁) − 1) ∈ ℝ)
8280, 22, 81sylancl 586 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) ∈ ℝ)
8382adantr 481 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → (((𝑀 + 1) mod 𝑁) − 1) ∈ ℝ)
84 elnn0 12415 . . . . . . . . . . . . . 14 (((𝑀 + 1) mod 𝑁) ∈ ℕ0 ↔ (((𝑀 + 1) mod 𝑁) ∈ ℕ ∨ ((𝑀 + 1) mod 𝑁) = 0))
8579, 84sylib 217 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) ∈ ℕ ∨ ((𝑀 + 1) mod 𝑁) = 0))
8685ord 862 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (¬ ((𝑀 + 1) mod 𝑁) ∈ ℕ → ((𝑀 + 1) mod 𝑁) = 0))
87 id 22 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
88 dvdsval3 16140 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑀 + 1) ∈ ℤ) → (𝑁 ∥ (𝑀 + 1) ↔ ((𝑀 + 1) mod 𝑁) = 0))
8987, 3, 88syl2anr 597 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 ∥ (𝑀 + 1) ↔ ((𝑀 + 1) mod 𝑁) = 0))
9086, 89sylibrd 258 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (¬ ((𝑀 + 1) mod 𝑁) ∈ ℕ → 𝑁 ∥ (𝑀 + 1)))
9190con1d 145 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (¬ 𝑁 ∥ (𝑀 + 1) → ((𝑀 + 1) mod 𝑁) ∈ ℕ))
9291imp 407 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → ((𝑀 + 1) mod 𝑁) ∈ ℕ)
93 nnm1nn0 12454 . . . . . . . . 9 (((𝑀 + 1) mod 𝑁) ∈ ℕ → (((𝑀 + 1) mod 𝑁) − 1) ∈ ℕ0)
9492, 93syl 17 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → (((𝑀 + 1) mod 𝑁) − 1) ∈ ℕ0)
9594nn0ge0d 12476 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → 0 ≤ (((𝑀 + 1) mod 𝑁) − 1))
9613, 14jca 512 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
9796ad2antlr 725 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
98 divge0 12024 . . . . . . 7 ((((((𝑀 + 1) mod 𝑁) − 1) ∈ ℝ ∧ 0 ≤ (((𝑀 + 1) mod 𝑁) − 1)) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))
9983, 95, 97, 98syl21anc 836 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → 0 ≤ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))
10013adantl 482 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
10180ltm1d 12087 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) < ((𝑀 + 1) mod 𝑁))
102 nnrp 12926 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
103 modlt 13785 . . . . . . . . . . 11 (((𝑀 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝑀 + 1) mod 𝑁) < 𝑁)
10465, 102, 103syl2an 596 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) mod 𝑁) < 𝑁)
10582, 80, 100, 101, 104lttrd 11316 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) < 𝑁)
10639mulid1d 11172 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · 1) = 𝑁)
107105, 106breqtrrd 5133 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) < (𝑁 · 1))
10822a1i 11 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 1 ∈ ℝ)
10914adantl 482 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 < 𝑁)
110 ltdivmul 12030 . . . . . . . . 9 (((((𝑀 + 1) mod 𝑁) − 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1 ↔ (((𝑀 + 1) mod 𝑁) − 1) < (𝑁 · 1)))
11182, 108, 100, 109, 110syl112anc 1374 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1 ↔ (((𝑀 + 1) mod 𝑁) − 1) < (𝑁 · 1)))
112107, 111mpbird 256 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1)
113112adantr 481 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1)
114 nndivre 12194 . . . . . . . . 9 (((((𝑀 + 1) mod 𝑁) − 1) ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∈ ℝ)
11582, 114sylancom 588 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∈ ℝ)
116 flbi2 13722 . . . . . . . 8 (((⌊‘((𝑀 + 1) / 𝑁)) ∈ ℤ ∧ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∈ ℝ) → ((⌊‘((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))) = (⌊‘((𝑀 + 1) / 𝑁)) ↔ (0 ≤ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∧ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1)))
11768, 115, 116syl2anc 584 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((⌊‘((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))) = (⌊‘((𝑀 + 1) / 𝑁)) ↔ (0 ≤ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∧ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1)))
118117adantr 481 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))) = (⌊‘((𝑀 + 1) / 𝑁)) ↔ (0 ≤ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∧ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1)))
11999, 113, 118mpbir2and 711 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → (⌊‘((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))) = (⌊‘((𝑀 + 1) / 𝑁)))
120 modval 13776 . . . . . . . . . . . . . 14 (((𝑀 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝑀 + 1) mod 𝑁) = ((𝑀 + 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))))
12165, 102, 120syl2an 596 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) mod 𝑁) = ((𝑀 + 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))))
122121oveq1d 7372 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) = (((𝑀 + 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))) − 1))
12339, 69mulcld 11175 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · (⌊‘((𝑀 + 1) / 𝑁))) ∈ ℂ)
12442, 38, 123sub32d 11544 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) − 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))) = (((𝑀 + 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))) − 1))
125122, 124eqtr4d 2779 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) = (((𝑀 + 1) − 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))))
126 pncan 11407 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 1) = 𝑀)
12736, 37, 126sylancl 586 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) − 1) = 𝑀)
128127oveq1d 7372 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) − 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))) = (𝑀 − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))))
129125, 128eqtrd 2776 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) = (𝑀 − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))))
130129oveq1d 7372 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) = ((𝑀 − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))) / 𝑁))
13136, 123, 39, 46divsubdird 11970 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))) / 𝑁) = ((𝑀 / 𝑁) − ((𝑁 · (⌊‘((𝑀 + 1) / 𝑁))) / 𝑁)))
13269, 39, 46divcan3d 11936 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 · (⌊‘((𝑀 + 1) / 𝑁))) / 𝑁) = (⌊‘((𝑀 + 1) / 𝑁)))
133132oveq2d 7373 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 / 𝑁) − ((𝑁 · (⌊‘((𝑀 + 1) / 𝑁))) / 𝑁)) = ((𝑀 / 𝑁) − (⌊‘((𝑀 + 1) / 𝑁))))
134130, 131, 1333eqtrrd 2781 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 / 𝑁) − (⌊‘((𝑀 + 1) / 𝑁))) = ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))
13558recnd 11183 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℂ)
136115recnd 11183 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∈ ℂ)
137135, 69, 136subaddd 11530 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 / 𝑁) − (⌊‘((𝑀 + 1) / 𝑁))) = ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ↔ ((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁)) = (𝑀 / 𝑁)))
138134, 137mpbid 231 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁)) = (𝑀 / 𝑁))
139138adantr 481 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁)) = (𝑀 / 𝑁))
140139fveq2d 6846 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → (⌊‘((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))) = (⌊‘(𝑀 / 𝑁)))
141119, 140eqtr3d 2778 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → (⌊‘((𝑀 + 1) / 𝑁)) = (⌊‘(𝑀 / 𝑁)))
14269, 71subeq0ad 11522 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = 0 ↔ (⌊‘((𝑀 + 1) / 𝑁)) = (⌊‘(𝑀 / 𝑁))))
143142adantr 481 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → (((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = 0 ↔ (⌊‘((𝑀 + 1) / 𝑁)) = (⌊‘(𝑀 / 𝑁))))
144141, 143mpbird 256 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = 0)
145 iffalse 4495 . . . 4 𝑁 ∥ (𝑀 + 1) → if(𝑁 ∥ (𝑀 + 1), 1, 0) = 0)
146145adantl 482 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → if(𝑁 ∥ (𝑀 + 1), 1, 0) = 0)
147144, 146eqtr4d 2779 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = if(𝑁 ∥ (𝑀 + 1), 1, 0))
14877, 147pm2.61dan 811 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = if(𝑁 ∥ (𝑀 + 1), 1, 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2943  ifcif 4486   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  0cn0 12413  cz 12499  +crp 12915  cfl 13695   mod cmo 13774  cdvds 16136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fl 13697  df-mod 13775  df-dvds 16137
This theorem is referenced by:  pcfac  16771
  Copyright terms: Public domain W3C validator