MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fldivp1 Structured version   Visualization version   GIF version

Theorem fldivp1 16227
Description: The difference between the floors of adjacent fractions is either 1 or 0. (Contributed by Mario Carneiro, 8-Mar-2014.)
Assertion
Ref Expression
fldivp1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = if(𝑁 ∥ (𝑀 + 1), 1, 0))

Proof of Theorem fldivp1
StepHypRef Expression
1 nnz 11996 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
2 nnne0 11663 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
3 peano2z 12015 . . . . . . . . . 10 (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ)
43adantr 484 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + 1) ∈ ℤ)
5 dvdsval2 15606 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ (𝑀 + 1) ∈ ℤ) → (𝑁 ∥ (𝑀 + 1) ↔ ((𝑀 + 1) / 𝑁) ∈ ℤ))
61, 2, 4, 5syl2an23an 1420 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 ∥ (𝑀 + 1) ↔ ((𝑀 + 1) / 𝑁) ∈ ℤ))
76biimpa 480 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((𝑀 + 1) / 𝑁) ∈ ℤ)
8 flid 13177 . . . . . . 7 (((𝑀 + 1) / 𝑁) ∈ ℤ → (⌊‘((𝑀 + 1) / 𝑁)) = ((𝑀 + 1) / 𝑁))
97, 8syl 17 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → (⌊‘((𝑀 + 1) / 𝑁)) = ((𝑀 + 1) / 𝑁))
10 nnm1nn0 11930 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
1110nn0red 11948 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ)
1210nn0ge0d 11950 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 ≤ (𝑁 − 1))
13 nnre 11636 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
14 nngt0 11660 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 < 𝑁)
15 divge0 11502 . . . . . . . . 9 ((((𝑁 − 1) ∈ ℝ ∧ 0 ≤ (𝑁 − 1)) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ ((𝑁 − 1) / 𝑁))
1611, 12, 13, 14, 15syl22anc 837 . . . . . . . 8 (𝑁 ∈ ℕ → 0 ≤ ((𝑁 − 1) / 𝑁))
1716ad2antlr 726 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → 0 ≤ ((𝑁 − 1) / 𝑁))
1813ltm1d 11565 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 − 1) < 𝑁)
19 nncn 11637 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2019mulid1d 10651 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 · 1) = 𝑁)
2118, 20breqtrrd 5061 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) < (𝑁 · 1))
22 1re 10634 . . . . . . . . . . 11 1 ∈ ℝ
2322a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → 1 ∈ ℝ)
24 ltdivmul 11508 . . . . . . . . . 10 (((𝑁 − 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (((𝑁 − 1) / 𝑁) < 1 ↔ (𝑁 − 1) < (𝑁 · 1)))
2511, 23, 13, 14, 24syl112anc 1371 . . . . . . . . 9 (𝑁 ∈ ℕ → (((𝑁 − 1) / 𝑁) < 1 ↔ (𝑁 − 1) < (𝑁 · 1)))
2621, 25mpbird 260 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 − 1) / 𝑁) < 1)
2726ad2antlr 726 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((𝑁 − 1) / 𝑁) < 1)
28 nndivre 11670 . . . . . . . . . 10 (((𝑁 − 1) ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1) / 𝑁) ∈ ℝ)
2911, 28mpancom 687 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑁 − 1) / 𝑁) ∈ ℝ)
3029ad2antlr 726 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((𝑁 − 1) / 𝑁) ∈ ℝ)
31 flbi2 13186 . . . . . . . 8 ((((𝑀 + 1) / 𝑁) ∈ ℤ ∧ ((𝑁 − 1) / 𝑁) ∈ ℝ) → ((⌊‘(((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁))) = ((𝑀 + 1) / 𝑁) ↔ (0 ≤ ((𝑁 − 1) / 𝑁) ∧ ((𝑁 − 1) / 𝑁) < 1)))
327, 30, 31syl2anc 587 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘(((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁))) = ((𝑀 + 1) / 𝑁) ↔ (0 ≤ ((𝑁 − 1) / 𝑁) ∧ ((𝑁 − 1) / 𝑁) < 1)))
3317, 27, 32mpbir2and 712 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → (⌊‘(((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁))) = ((𝑀 + 1) / 𝑁))
349, 33eqtr4d 2839 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → (⌊‘((𝑀 + 1) / 𝑁)) = (⌊‘(((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁))))
35 zcn 11978 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
3635adantr 484 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℂ)
37 ax-1cn 10588 . . . . . . . . . . . . 13 1 ∈ ℂ
3837a1i 11 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 1 ∈ ℂ)
3919adantl 485 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
4036, 38, 39ppncand 11030 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) + (𝑁 − 1)) = (𝑀 + 𝑁))
4140oveq1d 7154 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) + (𝑁 − 1)) / 𝑁) = ((𝑀 + 𝑁) / 𝑁))
424zcnd 12080 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + 1) ∈ ℂ)
43 subcl 10878 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 − 1) ∈ ℂ)
4419, 37, 43sylancl 589 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℂ)
4544adantl 485 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℂ)
462adantl 485 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
4742, 45, 39, 46divdird 11447 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) + (𝑁 − 1)) / 𝑁) = (((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁)))
4841, 47eqtr3d 2838 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 𝑁) / 𝑁) = (((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁)))
4936, 39, 39, 46divdird 11447 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 𝑁) / 𝑁) = ((𝑀 / 𝑁) + (𝑁 / 𝑁)))
5048, 49eqtr3d 2838 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁)) = ((𝑀 / 𝑁) + (𝑁 / 𝑁)))
5139, 46dividd 11407 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 / 𝑁) = 1)
5251oveq2d 7155 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 / 𝑁) + (𝑁 / 𝑁)) = ((𝑀 / 𝑁) + 1))
5350, 52eqtrd 2836 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁)) = ((𝑀 / 𝑁) + 1))
5453fveq2d 6653 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁))) = (⌊‘((𝑀 / 𝑁) + 1)))
5554adantr 484 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → (⌊‘(((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁))) = (⌊‘((𝑀 / 𝑁) + 1)))
56 zre 11977 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
57 nndivre 11670 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℝ)
5856, 57sylan 583 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℝ)
59 1z 12004 . . . . . . 7 1 ∈ ℤ
60 fladdz 13194 . . . . . . 7 (((𝑀 / 𝑁) ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘((𝑀 / 𝑁) + 1)) = ((⌊‘(𝑀 / 𝑁)) + 1))
6158, 59, 60sylancl 589 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝑀 / 𝑁) + 1)) = ((⌊‘(𝑀 / 𝑁)) + 1))
6261adantr 484 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → (⌊‘((𝑀 / 𝑁) + 1)) = ((⌊‘(𝑀 / 𝑁)) + 1))
6334, 55, 623eqtrrd 2841 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘(𝑀 / 𝑁)) + 1) = (⌊‘((𝑀 + 1) / 𝑁)))
64 zre 11977 . . . . . . . . . 10 ((𝑀 + 1) ∈ ℤ → (𝑀 + 1) ∈ ℝ)
653, 64syl 17 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℝ)
66 nndivre 11670 . . . . . . . . 9 (((𝑀 + 1) ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) / 𝑁) ∈ ℝ)
6765, 66sylan 583 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) / 𝑁) ∈ ℝ)
6867flcld 13167 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝑀 + 1) / 𝑁)) ∈ ℤ)
6968zcnd 12080 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝑀 + 1) / 𝑁)) ∈ ℂ)
7058flcld 13167 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝑀 / 𝑁)) ∈ ℤ)
7170zcnd 12080 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝑀 / 𝑁)) ∈ ℂ)
7269, 71, 38subaddd 11008 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = 1 ↔ ((⌊‘(𝑀 / 𝑁)) + 1) = (⌊‘((𝑀 + 1) / 𝑁))))
7372adantr 484 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → (((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = 1 ↔ ((⌊‘(𝑀 / 𝑁)) + 1) = (⌊‘((𝑀 + 1) / 𝑁))))
7463, 73mpbird 260 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = 1)
75 iftrue 4434 . . . 4 (𝑁 ∥ (𝑀 + 1) → if(𝑁 ∥ (𝑀 + 1), 1, 0) = 1)
7675adantl 485 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → if(𝑁 ∥ (𝑀 + 1), 1, 0) = 1)
7774, 76eqtr4d 2839 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = if(𝑁 ∥ (𝑀 + 1), 1, 0))
78 zmodcl 13258 . . . . . . . . . . 11 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) mod 𝑁) ∈ ℕ0)
793, 78sylan 583 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) mod 𝑁) ∈ ℕ0)
8079nn0red 11948 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) mod 𝑁) ∈ ℝ)
81 resubcl 10943 . . . . . . . . 9 ((((𝑀 + 1) mod 𝑁) ∈ ℝ ∧ 1 ∈ ℝ) → (((𝑀 + 1) mod 𝑁) − 1) ∈ ℝ)
8280, 22, 81sylancl 589 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) ∈ ℝ)
8382adantr 484 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → (((𝑀 + 1) mod 𝑁) − 1) ∈ ℝ)
84 elnn0 11891 . . . . . . . . . . . . . 14 (((𝑀 + 1) mod 𝑁) ∈ ℕ0 ↔ (((𝑀 + 1) mod 𝑁) ∈ ℕ ∨ ((𝑀 + 1) mod 𝑁) = 0))
8579, 84sylib 221 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) ∈ ℕ ∨ ((𝑀 + 1) mod 𝑁) = 0))
8685ord 861 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (¬ ((𝑀 + 1) mod 𝑁) ∈ ℕ → ((𝑀 + 1) mod 𝑁) = 0))
87 id 22 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
88 dvdsval3 15607 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑀 + 1) ∈ ℤ) → (𝑁 ∥ (𝑀 + 1) ↔ ((𝑀 + 1) mod 𝑁) = 0))
8987, 3, 88syl2anr 599 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 ∥ (𝑀 + 1) ↔ ((𝑀 + 1) mod 𝑁) = 0))
9086, 89sylibrd 262 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (¬ ((𝑀 + 1) mod 𝑁) ∈ ℕ → 𝑁 ∥ (𝑀 + 1)))
9190con1d 147 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (¬ 𝑁 ∥ (𝑀 + 1) → ((𝑀 + 1) mod 𝑁) ∈ ℕ))
9291imp 410 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → ((𝑀 + 1) mod 𝑁) ∈ ℕ)
93 nnm1nn0 11930 . . . . . . . . 9 (((𝑀 + 1) mod 𝑁) ∈ ℕ → (((𝑀 + 1) mod 𝑁) − 1) ∈ ℕ0)
9492, 93syl 17 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → (((𝑀 + 1) mod 𝑁) − 1) ∈ ℕ0)
9594nn0ge0d 11950 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → 0 ≤ (((𝑀 + 1) mod 𝑁) − 1))
9613, 14jca 515 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
9796ad2antlr 726 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
98 divge0 11502 . . . . . . 7 ((((((𝑀 + 1) mod 𝑁) − 1) ∈ ℝ ∧ 0 ≤ (((𝑀 + 1) mod 𝑁) − 1)) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))
9983, 95, 97, 98syl21anc 836 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → 0 ≤ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))
10013adantl 485 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
10180ltm1d 11565 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) < ((𝑀 + 1) mod 𝑁))
102 nnrp 12392 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
103 modlt 13247 . . . . . . . . . . 11 (((𝑀 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝑀 + 1) mod 𝑁) < 𝑁)
10465, 102, 103syl2an 598 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) mod 𝑁) < 𝑁)
10582, 80, 100, 101, 104lttrd 10794 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) < 𝑁)
10639mulid1d 10651 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · 1) = 𝑁)
107105, 106breqtrrd 5061 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) < (𝑁 · 1))
10822a1i 11 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 1 ∈ ℝ)
10914adantl 485 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 < 𝑁)
110 ltdivmul 11508 . . . . . . . . 9 (((((𝑀 + 1) mod 𝑁) − 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1 ↔ (((𝑀 + 1) mod 𝑁) − 1) < (𝑁 · 1)))
11182, 108, 100, 109, 110syl112anc 1371 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1 ↔ (((𝑀 + 1) mod 𝑁) − 1) < (𝑁 · 1)))
112107, 111mpbird 260 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1)
113112adantr 484 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1)
114 nndivre 11670 . . . . . . . . 9 (((((𝑀 + 1) mod 𝑁) − 1) ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∈ ℝ)
11582, 114sylancom 591 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∈ ℝ)
116 flbi2 13186 . . . . . . . 8 (((⌊‘((𝑀 + 1) / 𝑁)) ∈ ℤ ∧ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∈ ℝ) → ((⌊‘((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))) = (⌊‘((𝑀 + 1) / 𝑁)) ↔ (0 ≤ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∧ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1)))
11768, 115, 116syl2anc 587 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((⌊‘((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))) = (⌊‘((𝑀 + 1) / 𝑁)) ↔ (0 ≤ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∧ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1)))
118117adantr 484 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))) = (⌊‘((𝑀 + 1) / 𝑁)) ↔ (0 ≤ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∧ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1)))
11999, 113, 118mpbir2and 712 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → (⌊‘((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))) = (⌊‘((𝑀 + 1) / 𝑁)))
120 modval 13238 . . . . . . . . . . . . . 14 (((𝑀 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝑀 + 1) mod 𝑁) = ((𝑀 + 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))))
12165, 102, 120syl2an 598 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) mod 𝑁) = ((𝑀 + 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))))
122121oveq1d 7154 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) = (((𝑀 + 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))) − 1))
12339, 69mulcld 10654 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · (⌊‘((𝑀 + 1) / 𝑁))) ∈ ℂ)
12442, 38, 123sub32d 11022 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) − 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))) = (((𝑀 + 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))) − 1))
125122, 124eqtr4d 2839 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) = (((𝑀 + 1) − 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))))
126 pncan 10885 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 1) = 𝑀)
12736, 37, 126sylancl 589 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) − 1) = 𝑀)
128127oveq1d 7154 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) − 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))) = (𝑀 − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))))
129125, 128eqtrd 2836 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) = (𝑀 − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))))
130129oveq1d 7154 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) = ((𝑀 − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))) / 𝑁))
13136, 123, 39, 46divsubdird 11448 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))) / 𝑁) = ((𝑀 / 𝑁) − ((𝑁 · (⌊‘((𝑀 + 1) / 𝑁))) / 𝑁)))
13269, 39, 46divcan3d 11414 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 · (⌊‘((𝑀 + 1) / 𝑁))) / 𝑁) = (⌊‘((𝑀 + 1) / 𝑁)))
133132oveq2d 7155 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 / 𝑁) − ((𝑁 · (⌊‘((𝑀 + 1) / 𝑁))) / 𝑁)) = ((𝑀 / 𝑁) − (⌊‘((𝑀 + 1) / 𝑁))))
134130, 131, 1333eqtrrd 2841 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 / 𝑁) − (⌊‘((𝑀 + 1) / 𝑁))) = ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))
13558recnd 10662 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℂ)
136115recnd 10662 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∈ ℂ)
137135, 69, 136subaddd 11008 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 / 𝑁) − (⌊‘((𝑀 + 1) / 𝑁))) = ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ↔ ((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁)) = (𝑀 / 𝑁)))
138134, 137mpbid 235 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁)) = (𝑀 / 𝑁))
139138adantr 484 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁)) = (𝑀 / 𝑁))
140139fveq2d 6653 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → (⌊‘((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))) = (⌊‘(𝑀 / 𝑁)))
141119, 140eqtr3d 2838 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → (⌊‘((𝑀 + 1) / 𝑁)) = (⌊‘(𝑀 / 𝑁)))
14269, 71subeq0ad 11000 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = 0 ↔ (⌊‘((𝑀 + 1) / 𝑁)) = (⌊‘(𝑀 / 𝑁))))
143142adantr 484 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → (((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = 0 ↔ (⌊‘((𝑀 + 1) / 𝑁)) = (⌊‘(𝑀 / 𝑁))))
144141, 143mpbird 260 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = 0)
145 iffalse 4437 . . . 4 𝑁 ∥ (𝑀 + 1) → if(𝑁 ∥ (𝑀 + 1), 1, 0) = 0)
146145adantl 485 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → if(𝑁 ∥ (𝑀 + 1), 1, 0) = 0)
147144, 146eqtr4d 2839 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = if(𝑁 ∥ (𝑀 + 1), 1, 0))
14877, 147pm2.61dan 812 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = if(𝑁 ∥ (𝑀 + 1), 1, 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2112  wne 2990  ifcif 4428   class class class wbr 5033  cfv 6328  (class class class)co 7139  cc 10528  cr 10529  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535   < clt 10668  cle 10669  cmin 10863   / cdiv 11290  cn 11629  0cn0 11889  cz 11973  +crp 12381  cfl 13159   mod cmo 13236  cdvds 15603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fl 13161  df-mod 13237  df-dvds 15604
This theorem is referenced by:  pcfac  16229
  Copyright terms: Public domain W3C validator