MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fldivp1 Structured version   Visualization version   GIF version

Theorem fldivp1 16935
Description: The difference between the floors of adjacent fractions is either 1 or 0. (Contributed by Mario Carneiro, 8-Mar-2014.)
Assertion
Ref Expression
fldivp1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = if(𝑁 ∥ (𝑀 + 1), 1, 0))

Proof of Theorem fldivp1
StepHypRef Expression
1 nnz 12634 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
2 nnne0 12300 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
3 peano2z 12658 . . . . . . . . . 10 (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ)
43adantr 480 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + 1) ∈ ℤ)
5 dvdsval2 16293 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ (𝑀 + 1) ∈ ℤ) → (𝑁 ∥ (𝑀 + 1) ↔ ((𝑀 + 1) / 𝑁) ∈ ℤ))
61, 2, 4, 5syl2an23an 1425 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 ∥ (𝑀 + 1) ↔ ((𝑀 + 1) / 𝑁) ∈ ℤ))
76biimpa 476 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((𝑀 + 1) / 𝑁) ∈ ℤ)
8 flid 13848 . . . . . . 7 (((𝑀 + 1) / 𝑁) ∈ ℤ → (⌊‘((𝑀 + 1) / 𝑁)) = ((𝑀 + 1) / 𝑁))
97, 8syl 17 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → (⌊‘((𝑀 + 1) / 𝑁)) = ((𝑀 + 1) / 𝑁))
10 nnm1nn0 12567 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
1110nn0red 12588 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ)
1210nn0ge0d 12590 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 ≤ (𝑁 − 1))
13 nnre 12273 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
14 nngt0 12297 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 < 𝑁)
15 divge0 12137 . . . . . . . . 9 ((((𝑁 − 1) ∈ ℝ ∧ 0 ≤ (𝑁 − 1)) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ ((𝑁 − 1) / 𝑁))
1611, 12, 13, 14, 15syl22anc 839 . . . . . . . 8 (𝑁 ∈ ℕ → 0 ≤ ((𝑁 − 1) / 𝑁))
1716ad2antlr 727 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → 0 ≤ ((𝑁 − 1) / 𝑁))
1813ltm1d 12200 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 − 1) < 𝑁)
19 nncn 12274 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2019mulridd 11278 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 · 1) = 𝑁)
2118, 20breqtrrd 5171 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) < (𝑁 · 1))
22 1re 11261 . . . . . . . . . . 11 1 ∈ ℝ
2322a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → 1 ∈ ℝ)
24 ltdivmul 12143 . . . . . . . . . 10 (((𝑁 − 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (((𝑁 − 1) / 𝑁) < 1 ↔ (𝑁 − 1) < (𝑁 · 1)))
2511, 23, 13, 14, 24syl112anc 1376 . . . . . . . . 9 (𝑁 ∈ ℕ → (((𝑁 − 1) / 𝑁) < 1 ↔ (𝑁 − 1) < (𝑁 · 1)))
2621, 25mpbird 257 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 − 1) / 𝑁) < 1)
2726ad2antlr 727 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((𝑁 − 1) / 𝑁) < 1)
28 nndivre 12307 . . . . . . . . . 10 (((𝑁 − 1) ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1) / 𝑁) ∈ ℝ)
2911, 28mpancom 688 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑁 − 1) / 𝑁) ∈ ℝ)
3029ad2antlr 727 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((𝑁 − 1) / 𝑁) ∈ ℝ)
31 flbi2 13857 . . . . . . . 8 ((((𝑀 + 1) / 𝑁) ∈ ℤ ∧ ((𝑁 − 1) / 𝑁) ∈ ℝ) → ((⌊‘(((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁))) = ((𝑀 + 1) / 𝑁) ↔ (0 ≤ ((𝑁 − 1) / 𝑁) ∧ ((𝑁 − 1) / 𝑁) < 1)))
327, 30, 31syl2anc 584 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘(((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁))) = ((𝑀 + 1) / 𝑁) ↔ (0 ≤ ((𝑁 − 1) / 𝑁) ∧ ((𝑁 − 1) / 𝑁) < 1)))
3317, 27, 32mpbir2and 713 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → (⌊‘(((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁))) = ((𝑀 + 1) / 𝑁))
349, 33eqtr4d 2780 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → (⌊‘((𝑀 + 1) / 𝑁)) = (⌊‘(((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁))))
35 zcn 12618 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
3635adantr 480 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℂ)
37 ax-1cn 11213 . . . . . . . . . . . . 13 1 ∈ ℂ
3837a1i 11 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 1 ∈ ℂ)
3919adantl 481 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
4036, 38, 39ppncand 11660 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) + (𝑁 − 1)) = (𝑀 + 𝑁))
4140oveq1d 7446 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) + (𝑁 − 1)) / 𝑁) = ((𝑀 + 𝑁) / 𝑁))
424zcnd 12723 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + 1) ∈ ℂ)
43 subcl 11507 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 − 1) ∈ ℂ)
4419, 37, 43sylancl 586 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℂ)
4544adantl 481 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℂ)
462adantl 481 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
4742, 45, 39, 46divdird 12081 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) + (𝑁 − 1)) / 𝑁) = (((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁)))
4841, 47eqtr3d 2779 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 𝑁) / 𝑁) = (((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁)))
4936, 39, 39, 46divdird 12081 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 𝑁) / 𝑁) = ((𝑀 / 𝑁) + (𝑁 / 𝑁)))
5048, 49eqtr3d 2779 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁)) = ((𝑀 / 𝑁) + (𝑁 / 𝑁)))
5139, 46dividd 12041 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 / 𝑁) = 1)
5251oveq2d 7447 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 / 𝑁) + (𝑁 / 𝑁)) = ((𝑀 / 𝑁) + 1))
5350, 52eqtrd 2777 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁)) = ((𝑀 / 𝑁) + 1))
5453fveq2d 6910 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁))) = (⌊‘((𝑀 / 𝑁) + 1)))
5554adantr 480 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → (⌊‘(((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁))) = (⌊‘((𝑀 / 𝑁) + 1)))
56 zre 12617 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
57 nndivre 12307 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℝ)
5856, 57sylan 580 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℝ)
59 1z 12647 . . . . . . 7 1 ∈ ℤ
60 fladdz 13865 . . . . . . 7 (((𝑀 / 𝑁) ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘((𝑀 / 𝑁) + 1)) = ((⌊‘(𝑀 / 𝑁)) + 1))
6158, 59, 60sylancl 586 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝑀 / 𝑁) + 1)) = ((⌊‘(𝑀 / 𝑁)) + 1))
6261adantr 480 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → (⌊‘((𝑀 / 𝑁) + 1)) = ((⌊‘(𝑀 / 𝑁)) + 1))
6334, 55, 623eqtrrd 2782 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘(𝑀 / 𝑁)) + 1) = (⌊‘((𝑀 + 1) / 𝑁)))
64 zre 12617 . . . . . . . . . 10 ((𝑀 + 1) ∈ ℤ → (𝑀 + 1) ∈ ℝ)
653, 64syl 17 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℝ)
66 nndivre 12307 . . . . . . . . 9 (((𝑀 + 1) ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) / 𝑁) ∈ ℝ)
6765, 66sylan 580 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) / 𝑁) ∈ ℝ)
6867flcld 13838 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝑀 + 1) / 𝑁)) ∈ ℤ)
6968zcnd 12723 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝑀 + 1) / 𝑁)) ∈ ℂ)
7058flcld 13838 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝑀 / 𝑁)) ∈ ℤ)
7170zcnd 12723 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝑀 / 𝑁)) ∈ ℂ)
7269, 71, 38subaddd 11638 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = 1 ↔ ((⌊‘(𝑀 / 𝑁)) + 1) = (⌊‘((𝑀 + 1) / 𝑁))))
7372adantr 480 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → (((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = 1 ↔ ((⌊‘(𝑀 / 𝑁)) + 1) = (⌊‘((𝑀 + 1) / 𝑁))))
7463, 73mpbird 257 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = 1)
75 iftrue 4531 . . . 4 (𝑁 ∥ (𝑀 + 1) → if(𝑁 ∥ (𝑀 + 1), 1, 0) = 1)
7675adantl 481 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → if(𝑁 ∥ (𝑀 + 1), 1, 0) = 1)
7774, 76eqtr4d 2780 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = if(𝑁 ∥ (𝑀 + 1), 1, 0))
78 zmodcl 13931 . . . . . . . . . . 11 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) mod 𝑁) ∈ ℕ0)
793, 78sylan 580 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) mod 𝑁) ∈ ℕ0)
8079nn0red 12588 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) mod 𝑁) ∈ ℝ)
81 resubcl 11573 . . . . . . . . 9 ((((𝑀 + 1) mod 𝑁) ∈ ℝ ∧ 1 ∈ ℝ) → (((𝑀 + 1) mod 𝑁) − 1) ∈ ℝ)
8280, 22, 81sylancl 586 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) ∈ ℝ)
8382adantr 480 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → (((𝑀 + 1) mod 𝑁) − 1) ∈ ℝ)
84 elnn0 12528 . . . . . . . . . . . . . 14 (((𝑀 + 1) mod 𝑁) ∈ ℕ0 ↔ (((𝑀 + 1) mod 𝑁) ∈ ℕ ∨ ((𝑀 + 1) mod 𝑁) = 0))
8579, 84sylib 218 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) ∈ ℕ ∨ ((𝑀 + 1) mod 𝑁) = 0))
8685ord 865 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (¬ ((𝑀 + 1) mod 𝑁) ∈ ℕ → ((𝑀 + 1) mod 𝑁) = 0))
87 id 22 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
88 dvdsval3 16294 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑀 + 1) ∈ ℤ) → (𝑁 ∥ (𝑀 + 1) ↔ ((𝑀 + 1) mod 𝑁) = 0))
8987, 3, 88syl2anr 597 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 ∥ (𝑀 + 1) ↔ ((𝑀 + 1) mod 𝑁) = 0))
9086, 89sylibrd 259 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (¬ ((𝑀 + 1) mod 𝑁) ∈ ℕ → 𝑁 ∥ (𝑀 + 1)))
9190con1d 145 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (¬ 𝑁 ∥ (𝑀 + 1) → ((𝑀 + 1) mod 𝑁) ∈ ℕ))
9291imp 406 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → ((𝑀 + 1) mod 𝑁) ∈ ℕ)
93 nnm1nn0 12567 . . . . . . . . 9 (((𝑀 + 1) mod 𝑁) ∈ ℕ → (((𝑀 + 1) mod 𝑁) − 1) ∈ ℕ0)
9492, 93syl 17 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → (((𝑀 + 1) mod 𝑁) − 1) ∈ ℕ0)
9594nn0ge0d 12590 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → 0 ≤ (((𝑀 + 1) mod 𝑁) − 1))
9613, 14jca 511 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
9796ad2antlr 727 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
98 divge0 12137 . . . . . . 7 ((((((𝑀 + 1) mod 𝑁) − 1) ∈ ℝ ∧ 0 ≤ (((𝑀 + 1) mod 𝑁) − 1)) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))
9983, 95, 97, 98syl21anc 838 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → 0 ≤ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))
10013adantl 481 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
10180ltm1d 12200 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) < ((𝑀 + 1) mod 𝑁))
102 nnrp 13046 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
103 modlt 13920 . . . . . . . . . . 11 (((𝑀 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝑀 + 1) mod 𝑁) < 𝑁)
10465, 102, 103syl2an 596 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) mod 𝑁) < 𝑁)
10582, 80, 100, 101, 104lttrd 11422 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) < 𝑁)
10639mulridd 11278 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · 1) = 𝑁)
107105, 106breqtrrd 5171 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) < (𝑁 · 1))
10822a1i 11 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 1 ∈ ℝ)
10914adantl 481 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 < 𝑁)
110 ltdivmul 12143 . . . . . . . . 9 (((((𝑀 + 1) mod 𝑁) − 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1 ↔ (((𝑀 + 1) mod 𝑁) − 1) < (𝑁 · 1)))
11182, 108, 100, 109, 110syl112anc 1376 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1 ↔ (((𝑀 + 1) mod 𝑁) − 1) < (𝑁 · 1)))
112107, 111mpbird 257 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1)
113112adantr 480 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1)
114 nndivre 12307 . . . . . . . . 9 (((((𝑀 + 1) mod 𝑁) − 1) ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∈ ℝ)
11582, 114sylancom 588 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∈ ℝ)
116 flbi2 13857 . . . . . . . 8 (((⌊‘((𝑀 + 1) / 𝑁)) ∈ ℤ ∧ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∈ ℝ) → ((⌊‘((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))) = (⌊‘((𝑀 + 1) / 𝑁)) ↔ (0 ≤ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∧ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1)))
11768, 115, 116syl2anc 584 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((⌊‘((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))) = (⌊‘((𝑀 + 1) / 𝑁)) ↔ (0 ≤ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∧ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1)))
118117adantr 480 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))) = (⌊‘((𝑀 + 1) / 𝑁)) ↔ (0 ≤ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∧ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1)))
11999, 113, 118mpbir2and 713 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → (⌊‘((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))) = (⌊‘((𝑀 + 1) / 𝑁)))
120 modval 13911 . . . . . . . . . . . . . 14 (((𝑀 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝑀 + 1) mod 𝑁) = ((𝑀 + 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))))
12165, 102, 120syl2an 596 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) mod 𝑁) = ((𝑀 + 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))))
122121oveq1d 7446 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) = (((𝑀 + 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))) − 1))
12339, 69mulcld 11281 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · (⌊‘((𝑀 + 1) / 𝑁))) ∈ ℂ)
12442, 38, 123sub32d 11652 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) − 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))) = (((𝑀 + 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))) − 1))
125122, 124eqtr4d 2780 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) = (((𝑀 + 1) − 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))))
126 pncan 11514 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 1) = 𝑀)
12736, 37, 126sylancl 586 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) − 1) = 𝑀)
128127oveq1d 7446 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) − 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))) = (𝑀 − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))))
129125, 128eqtrd 2777 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) = (𝑀 − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))))
130129oveq1d 7446 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) = ((𝑀 − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))) / 𝑁))
13136, 123, 39, 46divsubdird 12082 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))) / 𝑁) = ((𝑀 / 𝑁) − ((𝑁 · (⌊‘((𝑀 + 1) / 𝑁))) / 𝑁)))
13269, 39, 46divcan3d 12048 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 · (⌊‘((𝑀 + 1) / 𝑁))) / 𝑁) = (⌊‘((𝑀 + 1) / 𝑁)))
133132oveq2d 7447 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 / 𝑁) − ((𝑁 · (⌊‘((𝑀 + 1) / 𝑁))) / 𝑁)) = ((𝑀 / 𝑁) − (⌊‘((𝑀 + 1) / 𝑁))))
134130, 131, 1333eqtrrd 2782 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 / 𝑁) − (⌊‘((𝑀 + 1) / 𝑁))) = ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))
13558recnd 11289 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℂ)
136115recnd 11289 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∈ ℂ)
137135, 69, 136subaddd 11638 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 / 𝑁) − (⌊‘((𝑀 + 1) / 𝑁))) = ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ↔ ((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁)) = (𝑀 / 𝑁)))
138134, 137mpbid 232 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁)) = (𝑀 / 𝑁))
139138adantr 480 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁)) = (𝑀 / 𝑁))
140139fveq2d 6910 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → (⌊‘((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))) = (⌊‘(𝑀 / 𝑁)))
141119, 140eqtr3d 2779 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → (⌊‘((𝑀 + 1) / 𝑁)) = (⌊‘(𝑀 / 𝑁)))
14269, 71subeq0ad 11630 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = 0 ↔ (⌊‘((𝑀 + 1) / 𝑁)) = (⌊‘(𝑀 / 𝑁))))
143142adantr 480 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → (((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = 0 ↔ (⌊‘((𝑀 + 1) / 𝑁)) = (⌊‘(𝑀 / 𝑁))))
144141, 143mpbird 257 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = 0)
145 iffalse 4534 . . . 4 𝑁 ∥ (𝑀 + 1) → if(𝑁 ∥ (𝑀 + 1), 1, 0) = 0)
146145adantl 481 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → if(𝑁 ∥ (𝑀 + 1), 1, 0) = 0)
147144, 146eqtr4d 2780 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = if(𝑁 ∥ (𝑀 + 1), 1, 0))
14877, 147pm2.61dan 813 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = if(𝑁 ∥ (𝑀 + 1), 1, 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940  ifcif 4525   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  cn 12266  0cn0 12526  cz 12613  +crp 13034  cfl 13830   mod cmo 13909  cdvds 16290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fl 13832  df-mod 13910  df-dvds 16291
This theorem is referenced by:  pcfac  16937
  Copyright terms: Public domain W3C validator