MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fldivp1 Structured version   Visualization version   GIF version

Theorem fldivp1 16598
Description: The difference between the floors of adjacent fractions is either 1 or 0. (Contributed by Mario Carneiro, 8-Mar-2014.)
Assertion
Ref Expression
fldivp1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = if(𝑁 ∥ (𝑀 + 1), 1, 0))

Proof of Theorem fldivp1
StepHypRef Expression
1 nnz 12342 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
2 nnne0 12007 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
3 peano2z 12361 . . . . . . . . . 10 (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ)
43adantr 481 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + 1) ∈ ℤ)
5 dvdsval2 15966 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ (𝑀 + 1) ∈ ℤ) → (𝑁 ∥ (𝑀 + 1) ↔ ((𝑀 + 1) / 𝑁) ∈ ℤ))
61, 2, 4, 5syl2an23an 1422 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 ∥ (𝑀 + 1) ↔ ((𝑀 + 1) / 𝑁) ∈ ℤ))
76biimpa 477 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((𝑀 + 1) / 𝑁) ∈ ℤ)
8 flid 13528 . . . . . . 7 (((𝑀 + 1) / 𝑁) ∈ ℤ → (⌊‘((𝑀 + 1) / 𝑁)) = ((𝑀 + 1) / 𝑁))
97, 8syl 17 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → (⌊‘((𝑀 + 1) / 𝑁)) = ((𝑀 + 1) / 𝑁))
10 nnm1nn0 12274 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
1110nn0red 12294 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ)
1210nn0ge0d 12296 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 ≤ (𝑁 − 1))
13 nnre 11980 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
14 nngt0 12004 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 < 𝑁)
15 divge0 11844 . . . . . . . . 9 ((((𝑁 − 1) ∈ ℝ ∧ 0 ≤ (𝑁 − 1)) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ ((𝑁 − 1) / 𝑁))
1611, 12, 13, 14, 15syl22anc 836 . . . . . . . 8 (𝑁 ∈ ℕ → 0 ≤ ((𝑁 − 1) / 𝑁))
1716ad2antlr 724 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → 0 ≤ ((𝑁 − 1) / 𝑁))
1813ltm1d 11907 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 − 1) < 𝑁)
19 nncn 11981 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2019mulid1d 10992 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 · 1) = 𝑁)
2118, 20breqtrrd 5102 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) < (𝑁 · 1))
22 1re 10975 . . . . . . . . . . 11 1 ∈ ℝ
2322a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → 1 ∈ ℝ)
24 ltdivmul 11850 . . . . . . . . . 10 (((𝑁 − 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (((𝑁 − 1) / 𝑁) < 1 ↔ (𝑁 − 1) < (𝑁 · 1)))
2511, 23, 13, 14, 24syl112anc 1373 . . . . . . . . 9 (𝑁 ∈ ℕ → (((𝑁 − 1) / 𝑁) < 1 ↔ (𝑁 − 1) < (𝑁 · 1)))
2621, 25mpbird 256 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 − 1) / 𝑁) < 1)
2726ad2antlr 724 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((𝑁 − 1) / 𝑁) < 1)
28 nndivre 12014 . . . . . . . . . 10 (((𝑁 − 1) ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1) / 𝑁) ∈ ℝ)
2911, 28mpancom 685 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑁 − 1) / 𝑁) ∈ ℝ)
3029ad2antlr 724 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((𝑁 − 1) / 𝑁) ∈ ℝ)
31 flbi2 13537 . . . . . . . 8 ((((𝑀 + 1) / 𝑁) ∈ ℤ ∧ ((𝑁 − 1) / 𝑁) ∈ ℝ) → ((⌊‘(((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁))) = ((𝑀 + 1) / 𝑁) ↔ (0 ≤ ((𝑁 − 1) / 𝑁) ∧ ((𝑁 − 1) / 𝑁) < 1)))
327, 30, 31syl2anc 584 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘(((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁))) = ((𝑀 + 1) / 𝑁) ↔ (0 ≤ ((𝑁 − 1) / 𝑁) ∧ ((𝑁 − 1) / 𝑁) < 1)))
3317, 27, 32mpbir2and 710 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → (⌊‘(((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁))) = ((𝑀 + 1) / 𝑁))
349, 33eqtr4d 2781 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → (⌊‘((𝑀 + 1) / 𝑁)) = (⌊‘(((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁))))
35 zcn 12324 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
3635adantr 481 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℂ)
37 ax-1cn 10929 . . . . . . . . . . . . 13 1 ∈ ℂ
3837a1i 11 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 1 ∈ ℂ)
3919adantl 482 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
4036, 38, 39ppncand 11372 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) + (𝑁 − 1)) = (𝑀 + 𝑁))
4140oveq1d 7290 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) + (𝑁 − 1)) / 𝑁) = ((𝑀 + 𝑁) / 𝑁))
424zcnd 12427 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + 1) ∈ ℂ)
43 subcl 11220 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 − 1) ∈ ℂ)
4419, 37, 43sylancl 586 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℂ)
4544adantl 482 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℂ)
462adantl 482 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
4742, 45, 39, 46divdird 11789 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) + (𝑁 − 1)) / 𝑁) = (((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁)))
4841, 47eqtr3d 2780 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 𝑁) / 𝑁) = (((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁)))
4936, 39, 39, 46divdird 11789 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 𝑁) / 𝑁) = ((𝑀 / 𝑁) + (𝑁 / 𝑁)))
5048, 49eqtr3d 2780 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁)) = ((𝑀 / 𝑁) + (𝑁 / 𝑁)))
5139, 46dividd 11749 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 / 𝑁) = 1)
5251oveq2d 7291 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 / 𝑁) + (𝑁 / 𝑁)) = ((𝑀 / 𝑁) + 1))
5350, 52eqtrd 2778 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁)) = ((𝑀 / 𝑁) + 1))
5453fveq2d 6778 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁))) = (⌊‘((𝑀 / 𝑁) + 1)))
5554adantr 481 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → (⌊‘(((𝑀 + 1) / 𝑁) + ((𝑁 − 1) / 𝑁))) = (⌊‘((𝑀 / 𝑁) + 1)))
56 zre 12323 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
57 nndivre 12014 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℝ)
5856, 57sylan 580 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℝ)
59 1z 12350 . . . . . . 7 1 ∈ ℤ
60 fladdz 13545 . . . . . . 7 (((𝑀 / 𝑁) ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘((𝑀 / 𝑁) + 1)) = ((⌊‘(𝑀 / 𝑁)) + 1))
6158, 59, 60sylancl 586 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝑀 / 𝑁) + 1)) = ((⌊‘(𝑀 / 𝑁)) + 1))
6261adantr 481 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → (⌊‘((𝑀 / 𝑁) + 1)) = ((⌊‘(𝑀 / 𝑁)) + 1))
6334, 55, 623eqtrrd 2783 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘(𝑀 / 𝑁)) + 1) = (⌊‘((𝑀 + 1) / 𝑁)))
64 zre 12323 . . . . . . . . . 10 ((𝑀 + 1) ∈ ℤ → (𝑀 + 1) ∈ ℝ)
653, 64syl 17 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℝ)
66 nndivre 12014 . . . . . . . . 9 (((𝑀 + 1) ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) / 𝑁) ∈ ℝ)
6765, 66sylan 580 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) / 𝑁) ∈ ℝ)
6867flcld 13518 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝑀 + 1) / 𝑁)) ∈ ℤ)
6968zcnd 12427 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝑀 + 1) / 𝑁)) ∈ ℂ)
7058flcld 13518 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝑀 / 𝑁)) ∈ ℤ)
7170zcnd 12427 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝑀 / 𝑁)) ∈ ℂ)
7269, 71, 38subaddd 11350 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = 1 ↔ ((⌊‘(𝑀 / 𝑁)) + 1) = (⌊‘((𝑀 + 1) / 𝑁))))
7372adantr 481 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → (((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = 1 ↔ ((⌊‘(𝑀 / 𝑁)) + 1) = (⌊‘((𝑀 + 1) / 𝑁))))
7463, 73mpbird 256 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = 1)
75 iftrue 4465 . . . 4 (𝑁 ∥ (𝑀 + 1) → if(𝑁 ∥ (𝑀 + 1), 1, 0) = 1)
7675adantl 482 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → if(𝑁 ∥ (𝑀 + 1), 1, 0) = 1)
7774, 76eqtr4d 2781 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = if(𝑁 ∥ (𝑀 + 1), 1, 0))
78 zmodcl 13611 . . . . . . . . . . 11 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) mod 𝑁) ∈ ℕ0)
793, 78sylan 580 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) mod 𝑁) ∈ ℕ0)
8079nn0red 12294 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) mod 𝑁) ∈ ℝ)
81 resubcl 11285 . . . . . . . . 9 ((((𝑀 + 1) mod 𝑁) ∈ ℝ ∧ 1 ∈ ℝ) → (((𝑀 + 1) mod 𝑁) − 1) ∈ ℝ)
8280, 22, 81sylancl 586 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) ∈ ℝ)
8382adantr 481 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → (((𝑀 + 1) mod 𝑁) − 1) ∈ ℝ)
84 elnn0 12235 . . . . . . . . . . . . . 14 (((𝑀 + 1) mod 𝑁) ∈ ℕ0 ↔ (((𝑀 + 1) mod 𝑁) ∈ ℕ ∨ ((𝑀 + 1) mod 𝑁) = 0))
8579, 84sylib 217 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) ∈ ℕ ∨ ((𝑀 + 1) mod 𝑁) = 0))
8685ord 861 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (¬ ((𝑀 + 1) mod 𝑁) ∈ ℕ → ((𝑀 + 1) mod 𝑁) = 0))
87 id 22 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
88 dvdsval3 15967 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑀 + 1) ∈ ℤ) → (𝑁 ∥ (𝑀 + 1) ↔ ((𝑀 + 1) mod 𝑁) = 0))
8987, 3, 88syl2anr 597 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 ∥ (𝑀 + 1) ↔ ((𝑀 + 1) mod 𝑁) = 0))
9086, 89sylibrd 258 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (¬ ((𝑀 + 1) mod 𝑁) ∈ ℕ → 𝑁 ∥ (𝑀 + 1)))
9190con1d 145 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (¬ 𝑁 ∥ (𝑀 + 1) → ((𝑀 + 1) mod 𝑁) ∈ ℕ))
9291imp 407 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → ((𝑀 + 1) mod 𝑁) ∈ ℕ)
93 nnm1nn0 12274 . . . . . . . . 9 (((𝑀 + 1) mod 𝑁) ∈ ℕ → (((𝑀 + 1) mod 𝑁) − 1) ∈ ℕ0)
9492, 93syl 17 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → (((𝑀 + 1) mod 𝑁) − 1) ∈ ℕ0)
9594nn0ge0d 12296 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → 0 ≤ (((𝑀 + 1) mod 𝑁) − 1))
9613, 14jca 512 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
9796ad2antlr 724 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
98 divge0 11844 . . . . . . 7 ((((((𝑀 + 1) mod 𝑁) − 1) ∈ ℝ ∧ 0 ≤ (((𝑀 + 1) mod 𝑁) − 1)) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))
9983, 95, 97, 98syl21anc 835 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → 0 ≤ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))
10013adantl 482 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
10180ltm1d 11907 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) < ((𝑀 + 1) mod 𝑁))
102 nnrp 12741 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
103 modlt 13600 . . . . . . . . . . 11 (((𝑀 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝑀 + 1) mod 𝑁) < 𝑁)
10465, 102, 103syl2an 596 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) mod 𝑁) < 𝑁)
10582, 80, 100, 101, 104lttrd 11136 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) < 𝑁)
10639mulid1d 10992 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · 1) = 𝑁)
107105, 106breqtrrd 5102 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) < (𝑁 · 1))
10822a1i 11 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 1 ∈ ℝ)
10914adantl 482 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 < 𝑁)
110 ltdivmul 11850 . . . . . . . . 9 (((((𝑀 + 1) mod 𝑁) − 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1 ↔ (((𝑀 + 1) mod 𝑁) − 1) < (𝑁 · 1)))
11182, 108, 100, 109, 110syl112anc 1373 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1 ↔ (((𝑀 + 1) mod 𝑁) − 1) < (𝑁 · 1)))
112107, 111mpbird 256 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1)
113112adantr 481 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1)
114 nndivre 12014 . . . . . . . . 9 (((((𝑀 + 1) mod 𝑁) − 1) ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∈ ℝ)
11582, 114sylancom 588 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∈ ℝ)
116 flbi2 13537 . . . . . . . 8 (((⌊‘((𝑀 + 1) / 𝑁)) ∈ ℤ ∧ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∈ ℝ) → ((⌊‘((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))) = (⌊‘((𝑀 + 1) / 𝑁)) ↔ (0 ≤ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∧ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1)))
11768, 115, 116syl2anc 584 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((⌊‘((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))) = (⌊‘((𝑀 + 1) / 𝑁)) ↔ (0 ≤ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∧ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1)))
118117adantr 481 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))) = (⌊‘((𝑀 + 1) / 𝑁)) ↔ (0 ≤ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∧ ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) < 1)))
11999, 113, 118mpbir2and 710 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → (⌊‘((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))) = (⌊‘((𝑀 + 1) / 𝑁)))
120 modval 13591 . . . . . . . . . . . . . 14 (((𝑀 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝑀 + 1) mod 𝑁) = ((𝑀 + 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))))
12165, 102, 120syl2an 596 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) mod 𝑁) = ((𝑀 + 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))))
122121oveq1d 7290 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) = (((𝑀 + 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))) − 1))
12339, 69mulcld 10995 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · (⌊‘((𝑀 + 1) / 𝑁))) ∈ ℂ)
12442, 38, 123sub32d 11364 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) − 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))) = (((𝑀 + 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))) − 1))
125122, 124eqtr4d 2781 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) = (((𝑀 + 1) − 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))))
126 pncan 11227 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 1) = 𝑀)
12736, 37, 126sylancl 586 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 + 1) − 1) = 𝑀)
128127oveq1d 7290 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) − 1) − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))) = (𝑀 − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))))
129125, 128eqtrd 2778 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 + 1) mod 𝑁) − 1) = (𝑀 − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))))
130129oveq1d 7290 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) = ((𝑀 − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))) / 𝑁))
13136, 123, 39, 46divsubdird 11790 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 − (𝑁 · (⌊‘((𝑀 + 1) / 𝑁)))) / 𝑁) = ((𝑀 / 𝑁) − ((𝑁 · (⌊‘((𝑀 + 1) / 𝑁))) / 𝑁)))
13269, 39, 46divcan3d 11756 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 · (⌊‘((𝑀 + 1) / 𝑁))) / 𝑁) = (⌊‘((𝑀 + 1) / 𝑁)))
133132oveq2d 7291 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 / 𝑁) − ((𝑁 · (⌊‘((𝑀 + 1) / 𝑁))) / 𝑁)) = ((𝑀 / 𝑁) − (⌊‘((𝑀 + 1) / 𝑁))))
134130, 131, 1333eqtrrd 2783 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 / 𝑁) − (⌊‘((𝑀 + 1) / 𝑁))) = ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))
13558recnd 11003 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℂ)
136115recnd 11003 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ∈ ℂ)
137135, 69, 136subaddd 11350 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝑀 / 𝑁) − (⌊‘((𝑀 + 1) / 𝑁))) = ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁) ↔ ((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁)) = (𝑀 / 𝑁)))
138134, 137mpbid 231 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁)) = (𝑀 / 𝑁))
139138adantr 481 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁)) = (𝑀 / 𝑁))
140139fveq2d 6778 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → (⌊‘((⌊‘((𝑀 + 1) / 𝑁)) + ((((𝑀 + 1) mod 𝑁) − 1) / 𝑁))) = (⌊‘(𝑀 / 𝑁)))
141119, 140eqtr3d 2780 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → (⌊‘((𝑀 + 1) / 𝑁)) = (⌊‘(𝑀 / 𝑁)))
14269, 71subeq0ad 11342 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = 0 ↔ (⌊‘((𝑀 + 1) / 𝑁)) = (⌊‘(𝑀 / 𝑁))))
143142adantr 481 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → (((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = 0 ↔ (⌊‘((𝑀 + 1) / 𝑁)) = (⌊‘(𝑀 / 𝑁))))
144141, 143mpbird 256 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = 0)
145 iffalse 4468 . . . 4 𝑁 ∥ (𝑀 + 1) → if(𝑁 ∥ (𝑀 + 1), 1, 0) = 0)
146145adantl 482 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → if(𝑁 ∥ (𝑀 + 1), 1, 0) = 0)
147144, 146eqtr4d 2781 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁 ∥ (𝑀 + 1)) → ((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = if(𝑁 ∥ (𝑀 + 1), 1, 0))
14877, 147pm2.61dan 810 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((⌊‘((𝑀 + 1) / 𝑁)) − (⌊‘(𝑀 / 𝑁))) = if(𝑁 ∥ (𝑀 + 1), 1, 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  ifcif 4459   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  0cn0 12233  cz 12319  +crp 12730  cfl 13510   mod cmo 13589  cdvds 15963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fl 13512  df-mod 13590  df-dvds 15964
This theorem is referenced by:  pcfac  16600
  Copyright terms: Public domain W3C validator