MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfzo12bi Structured version   Visualization version   GIF version

Theorem ssfzo12bi 13731
Description: Subset relationship for half-open integer ranges. (Contributed by Alexander van der Vekens, 5-Nov-2018.)
Assertion
Ref Expression
ssfzo12bi (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) ↔ (𝑀𝐾𝐿𝑁)))

Proof of Theorem ssfzo12bi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-3an 1087 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) ↔ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐾 < 𝐿))
21biimpri 227 . . . 4 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐾 < 𝐿) → (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿))
323adant2 1129 . . 3 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿))
4 ssfzo12 13729 . . 3 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝑀𝐾𝐿𝑁)))
53, 4syl 17 . 2 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝑀𝐾𝐿𝑁)))
6 elfzo2 13639 . . . . . 6 (𝑥 ∈ (𝐾..^𝐿) ↔ (𝑥 ∈ (ℤ𝐾) ∧ 𝐿 ∈ ℤ ∧ 𝑥 < 𝐿))
7 eluz2 12832 . . . . . . . . 9 (𝑥 ∈ (ℤ𝐾) ↔ (𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝐾𝑥))
8 simprrl 777 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑀 ∈ ℤ)
98adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) ∧ (𝑀𝐾𝐾𝑥)) → 𝑀 ∈ ℤ)
10 simpll 763 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) ∧ (𝑀𝐾𝐾𝑥)) → 𝑥 ∈ ℤ)
11 zre 12566 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
1211adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
1312adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℝ)
14 zre 12566 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
1514adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐾 ∈ ℝ)
1615adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐾 ∈ ℝ)
17 zre 12566 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
1817adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑥 ∈ ℝ)
19 letr 11312 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑀𝐾𝐾𝑥) → 𝑀𝑥))
2013, 16, 18, 19syl2an23an 1421 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑀𝐾𝐾𝑥) → 𝑀𝑥))
2120imp 405 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) ∧ (𝑀𝐾𝐾𝑥)) → 𝑀𝑥)
229, 10, 213jca 1126 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) ∧ (𝑀𝐾𝐾𝑥)) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))
2322exp31 418 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ℤ → (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑀𝐾𝐾𝑥) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
2423com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℤ → ((𝑀𝐾𝐾𝑥) → (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
2524expdimp 451 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑀𝐾) → (𝐾𝑥 → (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
2625impancom 450 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑀𝐾 → (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
2726com13 88 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝐾 → ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
28273adant3 1130 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → (𝑀𝐾 → ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
2928com12 32 . . . . . . . . . . . . . . . . . 18 (𝑀𝐾 → (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
3029adantr 479 . . . . . . . . . . . . . . . . 17 ((𝑀𝐾𝐿𝑁) → (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
3130impcom 406 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥)))
3231com12 32 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥)))
3332adantr 479 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥)))
3433imp 405 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) ∧ (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁))) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))
35 eluz2 12832 . . . . . . . . . . . . 13 (𝑥 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))
3634, 35sylibr 233 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) ∧ (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁))) → 𝑥 ∈ (ℤ𝑀))
37 simpl2r 1225 . . . . . . . . . . . . 13 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑁 ∈ ℤ)
3837adantl 480 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) ∧ (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁))) → 𝑁 ∈ ℤ)
3917adantl 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℝ)
40 zre 12566 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
4140ad3antlr 727 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝑥 ∈ ℤ) → 𝐿 ∈ ℝ)
42 zre 12566 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
4342adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
4443adantl 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℝ)
4544adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℝ)
46 ltletr 11310 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑥 < 𝐿𝐿𝑁) → 𝑥 < 𝑁))
4739, 41, 45, 46syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝑥 ∈ ℤ) → ((𝑥 < 𝐿𝐿𝑁) → 𝑥 < 𝑁))
4847ex 411 . . . . . . . . . . . . . . . . . . . . 21 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑥 ∈ ℤ → ((𝑥 < 𝐿𝐿𝑁) → 𝑥 < 𝑁)))
4948com23 86 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑥 < 𝐿𝐿𝑁) → (𝑥 ∈ ℤ → 𝑥 < 𝑁)))
50493adant3 1130 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝑥 < 𝐿𝐿𝑁) → (𝑥 ∈ ℤ → 𝑥 < 𝑁)))
5150expcomd 415 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → (𝐿𝑁 → (𝑥 < 𝐿 → (𝑥 ∈ ℤ → 𝑥 < 𝑁))))
5251adantld 489 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝑀𝐾𝐿𝑁) → (𝑥 < 𝐿 → (𝑥 ∈ ℤ → 𝑥 < 𝑁))))
5352imp 405 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → (𝑥 < 𝐿 → (𝑥 ∈ ℤ → 𝑥 < 𝑁)))
5453com13 88 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → (𝑥 < 𝐿 → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 < 𝑁)))
5554adantr 479 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑥 < 𝐿 → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 < 𝑁)))
5655imp 405 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 < 𝑁))
5756imp 405 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) ∧ (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁))) → 𝑥 < 𝑁)
58 elfzo2 13639 . . . . . . . . . . . 12 (𝑥 ∈ (𝑀..^𝑁) ↔ (𝑥 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝑥 < 𝑁))
5936, 38, 57, 58syl3anbrc 1341 . . . . . . . . . . 11 ((((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) ∧ (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁))) → 𝑥 ∈ (𝑀..^𝑁))
6059exp31 418 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑥 < 𝐿 → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 ∈ (𝑀..^𝑁))))
61603adant1 1128 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑥 < 𝐿 → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 ∈ (𝑀..^𝑁))))
627, 61sylbi 216 . . . . . . . 8 (𝑥 ∈ (ℤ𝐾) → (𝑥 < 𝐿 → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 ∈ (𝑀..^𝑁))))
6362imp 405 . . . . . . 7 ((𝑥 ∈ (ℤ𝐾) ∧ 𝑥 < 𝐿) → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 ∈ (𝑀..^𝑁)))
64633adant2 1129 . . . . . 6 ((𝑥 ∈ (ℤ𝐾) ∧ 𝐿 ∈ ℤ ∧ 𝑥 < 𝐿) → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 ∈ (𝑀..^𝑁)))
656, 64sylbi 216 . . . . 5 (𝑥 ∈ (𝐾..^𝐿) → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 ∈ (𝑀..^𝑁)))
6665com12 32 . . . 4 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → (𝑥 ∈ (𝐾..^𝐿) → 𝑥 ∈ (𝑀..^𝑁)))
6766ssrdv 3987 . . 3 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → (𝐾..^𝐿) ⊆ (𝑀..^𝑁))
6867ex 411 . 2 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝑀𝐾𝐿𝑁) → (𝐾..^𝐿) ⊆ (𝑀..^𝑁)))
695, 68impbid 211 1 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) ↔ (𝑀𝐾𝐿𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1085  wcel 2104  wss 3947   class class class wbr 5147  cfv 6542  (class class class)co 7411  cr 11111   < clt 11252  cle 11253  cz 12562  cuz 12826  ..^cfzo 13631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489  df-fzo 13632
This theorem is referenced by:  swrdnd  14608  repswswrd  14738  iccpartgt  46393
  Copyright terms: Public domain W3C validator