MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfzo12bi Structured version   Visualization version   GIF version

Theorem ssfzo12bi 13762
Description: Subset relationship for half-open integer ranges. (Contributed by Alexander van der Vekens, 5-Nov-2018.)
Assertion
Ref Expression
ssfzo12bi (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) ↔ (𝑀𝐾𝐿𝑁)))

Proof of Theorem ssfzo12bi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-3an 1086 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) ↔ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐾 < 𝐿))
21biimpri 227 . . . 4 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐾 < 𝐿) → (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿))
323adant2 1128 . . 3 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿))
4 ssfzo12 13760 . . 3 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝑀𝐾𝐿𝑁)))
53, 4syl 17 . 2 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝑀𝐾𝐿𝑁)))
6 elfzo2 13670 . . . . . 6 (𝑥 ∈ (𝐾..^𝐿) ↔ (𝑥 ∈ (ℤ𝐾) ∧ 𝐿 ∈ ℤ ∧ 𝑥 < 𝐿))
7 eluz2 12861 . . . . . . . . 9 (𝑥 ∈ (ℤ𝐾) ↔ (𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝐾𝑥))
8 simprrl 779 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑀 ∈ ℤ)
98adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) ∧ (𝑀𝐾𝐾𝑥)) → 𝑀 ∈ ℤ)
10 simpll 765 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) ∧ (𝑀𝐾𝐾𝑥)) → 𝑥 ∈ ℤ)
11 zre 12595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
1211adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
1312adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℝ)
14 zre 12595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
1514adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐾 ∈ ℝ)
1615adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐾 ∈ ℝ)
17 zre 12595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
1817adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑥 ∈ ℝ)
19 letr 11340 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑀𝐾𝐾𝑥) → 𝑀𝑥))
2013, 16, 18, 19syl2an23an 1420 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑀𝐾𝐾𝑥) → 𝑀𝑥))
2120imp 405 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) ∧ (𝑀𝐾𝐾𝑥)) → 𝑀𝑥)
229, 10, 213jca 1125 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) ∧ (𝑀𝐾𝐾𝑥)) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))
2322exp31 418 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ℤ → (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑀𝐾𝐾𝑥) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
2423com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℤ → ((𝑀𝐾𝐾𝑥) → (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
2524expdimp 451 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑀𝐾) → (𝐾𝑥 → (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
2625impancom 450 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑀𝐾 → (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
2726com13 88 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝐾 → ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
28273adant3 1129 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → (𝑀𝐾 → ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
2928com12 32 . . . . . . . . . . . . . . . . . 18 (𝑀𝐾 → (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
3029adantr 479 . . . . . . . . . . . . . . . . 17 ((𝑀𝐾𝐿𝑁) → (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
3130impcom 406 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥)))
3231com12 32 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥)))
3332adantr 479 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥)))
3433imp 405 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) ∧ (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁))) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))
35 eluz2 12861 . . . . . . . . . . . . 13 (𝑥 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))
3634, 35sylibr 233 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) ∧ (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁))) → 𝑥 ∈ (ℤ𝑀))
37 simpl2r 1224 . . . . . . . . . . . . 13 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑁 ∈ ℤ)
3837adantl 480 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) ∧ (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁))) → 𝑁 ∈ ℤ)
3917adantl 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℝ)
40 zre 12595 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
4140ad3antlr 729 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝑥 ∈ ℤ) → 𝐿 ∈ ℝ)
42 zre 12595 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
4342adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
4443adantl 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℝ)
4544adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℝ)
46 ltletr 11338 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑥 < 𝐿𝐿𝑁) → 𝑥 < 𝑁))
4739, 41, 45, 46syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝑥 ∈ ℤ) → ((𝑥 < 𝐿𝐿𝑁) → 𝑥 < 𝑁))
4847ex 411 . . . . . . . . . . . . . . . . . . . . 21 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑥 ∈ ℤ → ((𝑥 < 𝐿𝐿𝑁) → 𝑥 < 𝑁)))
4948com23 86 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑥 < 𝐿𝐿𝑁) → (𝑥 ∈ ℤ → 𝑥 < 𝑁)))
50493adant3 1129 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝑥 < 𝐿𝐿𝑁) → (𝑥 ∈ ℤ → 𝑥 < 𝑁)))
5150expcomd 415 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → (𝐿𝑁 → (𝑥 < 𝐿 → (𝑥 ∈ ℤ → 𝑥 < 𝑁))))
5251adantld 489 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝑀𝐾𝐿𝑁) → (𝑥 < 𝐿 → (𝑥 ∈ ℤ → 𝑥 < 𝑁))))
5352imp 405 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → (𝑥 < 𝐿 → (𝑥 ∈ ℤ → 𝑥 < 𝑁)))
5453com13 88 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → (𝑥 < 𝐿 → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 < 𝑁)))
5554adantr 479 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑥 < 𝐿 → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 < 𝑁)))
5655imp 405 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 < 𝑁))
5756imp 405 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) ∧ (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁))) → 𝑥 < 𝑁)
58 elfzo2 13670 . . . . . . . . . . . 12 (𝑥 ∈ (𝑀..^𝑁) ↔ (𝑥 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝑥 < 𝑁))
5936, 38, 57, 58syl3anbrc 1340 . . . . . . . . . . 11 ((((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) ∧ (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁))) → 𝑥 ∈ (𝑀..^𝑁))
6059exp31 418 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑥 < 𝐿 → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 ∈ (𝑀..^𝑁))))
61603adant1 1127 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑥 < 𝐿 → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 ∈ (𝑀..^𝑁))))
627, 61sylbi 216 . . . . . . . 8 (𝑥 ∈ (ℤ𝐾) → (𝑥 < 𝐿 → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 ∈ (𝑀..^𝑁))))
6362imp 405 . . . . . . 7 ((𝑥 ∈ (ℤ𝐾) ∧ 𝑥 < 𝐿) → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 ∈ (𝑀..^𝑁)))
64633adant2 1128 . . . . . 6 ((𝑥 ∈ (ℤ𝐾) ∧ 𝐿 ∈ ℤ ∧ 𝑥 < 𝐿) → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 ∈ (𝑀..^𝑁)))
656, 64sylbi 216 . . . . 5 (𝑥 ∈ (𝐾..^𝐿) → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 ∈ (𝑀..^𝑁)))
6665com12 32 . . . 4 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → (𝑥 ∈ (𝐾..^𝐿) → 𝑥 ∈ (𝑀..^𝑁)))
6766ssrdv 3982 . . 3 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → (𝐾..^𝐿) ⊆ (𝑀..^𝑁))
6867ex 411 . 2 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝑀𝐾𝐿𝑁) → (𝐾..^𝐿) ⊆ (𝑀..^𝑁)))
695, 68impbid 211 1 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) ↔ (𝑀𝐾𝐿𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084  wcel 2098  wss 3944   class class class wbr 5149  cfv 6549  (class class class)co 7419  cr 11139   < clt 11280  cle 11281  cz 12591  cuz 12855  ..^cfzo 13662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520  df-fzo 13663
This theorem is referenced by:  swrdnd  14640  repswswrd  14770  iccpartgt  46904
  Copyright terms: Public domain W3C validator