![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relogbmul | Structured version Visualization version GIF version |
Description: The logarithm of the product of two positive real numbers is the sum of logarithms. Property 2 of [Cohen4] p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by AV, 29-May-2020.) |
Ref | Expression |
---|---|
relogbmul | ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 · 𝐶)) = ((𝐵 logb 𝐴) + (𝐵 logb 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relogmul 26649 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (log‘(𝐴 · 𝐶)) = ((log‘𝐴) + (log‘𝐶))) | |
2 | 1 | adantl 481 | . . . 4 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (log‘(𝐴 · 𝐶)) = ((log‘𝐴) + (log‘𝐶))) |
3 | 2 | oveq1d 7446 | . . 3 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → ((log‘(𝐴 · 𝐶)) / (log‘𝐵)) = (((log‘𝐴) + (log‘𝐶)) / (log‘𝐵))) |
4 | relogcl 26632 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ) | |
5 | 4 | recnd 11287 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℂ) |
6 | 5 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (log‘𝐴) ∈ ℂ) |
7 | relogcl 26632 | . . . . . 6 ⊢ (𝐶 ∈ ℝ+ → (log‘𝐶) ∈ ℝ) | |
8 | 7 | recnd 11287 | . . . . 5 ⊢ (𝐶 ∈ ℝ+ → (log‘𝐶) ∈ ℂ) |
9 | 8 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (log‘𝐶) ∈ ℂ) |
10 | eldifpr 4663 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1)) | |
11 | 3simpa 1147 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) | |
12 | 10, 11 | sylbi 217 | . . . . . . 7 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) |
13 | logcl 26625 | . . . . . . 7 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (log‘𝐵) ∈ ℂ) | |
14 | 12, 13 | syl 17 | . . . . . 6 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) → (log‘𝐵) ∈ ℂ) |
15 | logccne0 26635 | . . . . . . 7 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (log‘𝐵) ≠ 0) | |
16 | 10, 15 | sylbi 217 | . . . . . 6 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) → (log‘𝐵) ≠ 0) |
17 | 14, 16 | jca 511 | . . . . 5 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) → ((log‘𝐵) ∈ ℂ ∧ (log‘𝐵) ≠ 0)) |
18 | 17 | adantr 480 | . . . 4 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → ((log‘𝐵) ∈ ℂ ∧ (log‘𝐵) ≠ 0)) |
19 | divdir 11945 | . . . 4 ⊢ (((log‘𝐴) ∈ ℂ ∧ (log‘𝐶) ∈ ℂ ∧ ((log‘𝐵) ∈ ℂ ∧ (log‘𝐵) ≠ 0)) → (((log‘𝐴) + (log‘𝐶)) / (log‘𝐵)) = (((log‘𝐴) / (log‘𝐵)) + ((log‘𝐶) / (log‘𝐵)))) | |
20 | 6, 9, 18, 19 | syl2an23an 1422 | . . 3 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (((log‘𝐴) + (log‘𝐶)) / (log‘𝐵)) = (((log‘𝐴) / (log‘𝐵)) + ((log‘𝐶) / (log‘𝐵)))) |
21 | 3, 20 | eqtrd 2775 | . 2 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → ((log‘(𝐴 · 𝐶)) / (log‘𝐵)) = (((log‘𝐴) / (log‘𝐵)) + ((log‘𝐶) / (log‘𝐵)))) |
22 | rpcn 13043 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) | |
23 | rpcn 13043 | . . . . 5 ⊢ (𝐶 ∈ ℝ+ → 𝐶 ∈ ℂ) | |
24 | mulcl 11237 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) ∈ ℂ) | |
25 | 22, 23, 24 | syl2an 596 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (𝐴 · 𝐶) ∈ ℂ) |
26 | 22 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈ ℂ) |
27 | 23 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℂ) |
28 | rpne0 13049 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) | |
29 | 28 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → 𝐴 ≠ 0) |
30 | rpne0 13049 | . . . . . 6 ⊢ (𝐶 ∈ ℝ+ → 𝐶 ≠ 0) | |
31 | 30 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → 𝐶 ≠ 0) |
32 | 26, 27, 29, 31 | mulne0d 11913 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (𝐴 · 𝐶) ≠ 0) |
33 | eldifsn 4791 | . . . 4 ⊢ ((𝐴 · 𝐶) ∈ (ℂ ∖ {0}) ↔ ((𝐴 · 𝐶) ∈ ℂ ∧ (𝐴 · 𝐶) ≠ 0)) | |
34 | 25, 32, 33 | sylanbrc 583 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (𝐴 · 𝐶) ∈ (ℂ ∖ {0})) |
35 | logbval 26824 | . . 3 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 · 𝐶) ∈ (ℂ ∖ {0})) → (𝐵 logb (𝐴 · 𝐶)) = ((log‘(𝐴 · 𝐶)) / (log‘𝐵))) | |
36 | 34, 35 | sylan2 593 | . 2 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 · 𝐶)) = ((log‘(𝐴 · 𝐶)) / (log‘𝐵))) |
37 | rpcndif0 13052 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ (ℂ ∖ {0})) | |
38 | 37 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈ (ℂ ∖ {0})) |
39 | logbval 26824 | . . . 4 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐴 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝐴) = ((log‘𝐴) / (log‘𝐵))) | |
40 | 38, 39 | sylan2 593 | . . 3 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 logb 𝐴) = ((log‘𝐴) / (log‘𝐵))) |
41 | rpcndif0 13052 | . . . . 5 ⊢ (𝐶 ∈ ℝ+ → 𝐶 ∈ (ℂ ∖ {0})) | |
42 | 41 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ (ℂ ∖ {0})) |
43 | logbval 26824 | . . . 4 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝐶) = ((log‘𝐶) / (log‘𝐵))) | |
44 | 42, 43 | sylan2 593 | . . 3 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 logb 𝐶) = ((log‘𝐶) / (log‘𝐵))) |
45 | 40, 44 | oveq12d 7449 | . 2 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → ((𝐵 logb 𝐴) + (𝐵 logb 𝐶)) = (((log‘𝐴) / (log‘𝐵)) + ((log‘𝐶) / (log‘𝐵)))) |
46 | 21, 36, 45 | 3eqtr4d 2785 | 1 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 · 𝐶)) = ((𝐵 logb 𝐴) + (𝐵 logb 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∖ cdif 3960 {csn 4631 {cpr 4633 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 0cc0 11153 1c1 11154 + caddc 11156 · cmul 11158 / cdiv 11918 ℝ+crp 13032 logclog 26611 logb clogb 26822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ioc 13389 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-fac 14310 df-bc 14339 df-hash 14367 df-shft 15103 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-limsup 15504 df-clim 15521 df-rlim 15522 df-sum 15720 df-ef 16100 df-sin 16102 df-cos 16103 df-pi 16105 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-pt 17491 df-prds 17494 df-xrs 17549 df-qtop 17554 df-imas 17555 df-xps 17557 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-mulg 19099 df-cntz 19348 df-cmn 19815 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-fbas 21379 df-fg 21380 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-nei 23122 df-lp 23160 df-perf 23161 df-cn 23251 df-cnp 23252 df-haus 23339 df-tx 23586 df-hmeo 23779 df-fil 23870 df-fm 23962 df-flim 23963 df-flf 23964 df-xms 24346 df-ms 24347 df-tms 24348 df-cncf 24918 df-limc 25916 df-dv 25917 df-log 26613 df-logb 26823 |
This theorem is referenced by: relogbmulexp 26836 blennnt2 48439 |
Copyright terms: Public domain | W3C validator |