![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relogbmul | Structured version Visualization version GIF version |
Description: The logarithm of the product of two positive real numbers is the sum of logarithms. Property 2 of [Cohen4] p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by AV, 29-May-2020.) |
Ref | Expression |
---|---|
relogbmul | ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 · 𝐶)) = ((𝐵 logb 𝐴) + (𝐵 logb 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relogmul 24844 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (log‘(𝐴 · 𝐶)) = ((log‘𝐴) + (log‘𝐶))) | |
2 | 1 | adantl 482 | . . . 4 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (log‘(𝐴 · 𝐶)) = ((log‘𝐴) + (log‘𝐶))) |
3 | 2 | oveq1d 7022 | . . 3 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → ((log‘(𝐴 · 𝐶)) / (log‘𝐵)) = (((log‘𝐴) + (log‘𝐶)) / (log‘𝐵))) |
4 | relogcl 24828 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ) | |
5 | 4 | recnd 10504 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℂ) |
6 | 5 | adantr 481 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (log‘𝐴) ∈ ℂ) |
7 | relogcl 24828 | . . . . . 6 ⊢ (𝐶 ∈ ℝ+ → (log‘𝐶) ∈ ℝ) | |
8 | 7 | recnd 10504 | . . . . 5 ⊢ (𝐶 ∈ ℝ+ → (log‘𝐶) ∈ ℂ) |
9 | 8 | adantl 482 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (log‘𝐶) ∈ ℂ) |
10 | eldifpr 4496 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1)) | |
11 | 3simpa 1139 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) | |
12 | 10, 11 | sylbi 218 | . . . . . . 7 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) |
13 | logcl 24821 | . . . . . . 7 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (log‘𝐵) ∈ ℂ) | |
14 | 12, 13 | syl 17 | . . . . . 6 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) → (log‘𝐵) ∈ ℂ) |
15 | logccne0 24831 | . . . . . . 7 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (log‘𝐵) ≠ 0) | |
16 | 10, 15 | sylbi 218 | . . . . . 6 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) → (log‘𝐵) ≠ 0) |
17 | 14, 16 | jca 512 | . . . . 5 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) → ((log‘𝐵) ∈ ℂ ∧ (log‘𝐵) ≠ 0)) |
18 | 17 | adantr 481 | . . . 4 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → ((log‘𝐵) ∈ ℂ ∧ (log‘𝐵) ≠ 0)) |
19 | divdir 11160 | . . . 4 ⊢ (((log‘𝐴) ∈ ℂ ∧ (log‘𝐶) ∈ ℂ ∧ ((log‘𝐵) ∈ ℂ ∧ (log‘𝐵) ≠ 0)) → (((log‘𝐴) + (log‘𝐶)) / (log‘𝐵)) = (((log‘𝐴) / (log‘𝐵)) + ((log‘𝐶) / (log‘𝐵)))) | |
20 | 6, 9, 18, 19 | syl2an23an 1414 | . . 3 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (((log‘𝐴) + (log‘𝐶)) / (log‘𝐵)) = (((log‘𝐴) / (log‘𝐵)) + ((log‘𝐶) / (log‘𝐵)))) |
21 | 3, 20 | eqtrd 2829 | . 2 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → ((log‘(𝐴 · 𝐶)) / (log‘𝐵)) = (((log‘𝐴) / (log‘𝐵)) + ((log‘𝐶) / (log‘𝐵)))) |
22 | rpcn 12238 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) | |
23 | rpcn 12238 | . . . . 5 ⊢ (𝐶 ∈ ℝ+ → 𝐶 ∈ ℂ) | |
24 | mulcl 10456 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) ∈ ℂ) | |
25 | 22, 23, 24 | syl2an 595 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (𝐴 · 𝐶) ∈ ℂ) |
26 | 22 | adantr 481 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈ ℂ) |
27 | 23 | adantl 482 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℂ) |
28 | rpne0 12244 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) | |
29 | 28 | adantr 481 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → 𝐴 ≠ 0) |
30 | rpne0 12244 | . . . . . 6 ⊢ (𝐶 ∈ ℝ+ → 𝐶 ≠ 0) | |
31 | 30 | adantl 482 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → 𝐶 ≠ 0) |
32 | 26, 27, 29, 31 | mulne0d 11129 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (𝐴 · 𝐶) ≠ 0) |
33 | eldifsn 4620 | . . . 4 ⊢ ((𝐴 · 𝐶) ∈ (ℂ ∖ {0}) ↔ ((𝐴 · 𝐶) ∈ ℂ ∧ (𝐴 · 𝐶) ≠ 0)) | |
34 | 25, 32, 33 | sylanbrc 583 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (𝐴 · 𝐶) ∈ (ℂ ∖ {0})) |
35 | logbval 25013 | . . 3 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 · 𝐶) ∈ (ℂ ∖ {0})) → (𝐵 logb (𝐴 · 𝐶)) = ((log‘(𝐴 · 𝐶)) / (log‘𝐵))) | |
36 | 34, 35 | sylan2 592 | . 2 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 · 𝐶)) = ((log‘(𝐴 · 𝐶)) / (log‘𝐵))) |
37 | rpcndif0 12247 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ (ℂ ∖ {0})) | |
38 | 37 | adantr 481 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈ (ℂ ∖ {0})) |
39 | logbval 25013 | . . . 4 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐴 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝐴) = ((log‘𝐴) / (log‘𝐵))) | |
40 | 38, 39 | sylan2 592 | . . 3 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 logb 𝐴) = ((log‘𝐴) / (log‘𝐵))) |
41 | rpcndif0 12247 | . . . . 5 ⊢ (𝐶 ∈ ℝ+ → 𝐶 ∈ (ℂ ∖ {0})) | |
42 | 41 | adantl 482 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ (ℂ ∖ {0})) |
43 | logbval 25013 | . . . 4 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝐶) = ((log‘𝐶) / (log‘𝐵))) | |
44 | 42, 43 | sylan2 592 | . . 3 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 logb 𝐶) = ((log‘𝐶) / (log‘𝐵))) |
45 | 40, 44 | oveq12d 7025 | . 2 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → ((𝐵 logb 𝐴) + (𝐵 logb 𝐶)) = (((log‘𝐴) / (log‘𝐵)) + ((log‘𝐶) / (log‘𝐵)))) |
46 | 21, 36, 45 | 3eqtr4d 2839 | 1 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 · 𝐶)) = ((𝐵 logb 𝐴) + (𝐵 logb 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1078 = wceq 1520 ∈ wcel 2079 ≠ wne 2982 ∖ cdif 3851 {csn 4466 {cpr 4468 ‘cfv 6217 (class class class)co 7007 ℂcc 10370 0cc0 10372 1c1 10373 + caddc 10375 · cmul 10377 / cdiv 11134 ℝ+crp 12228 logclog 24807 logb clogb 25011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-rep 5075 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-inf2 8939 ax-cnex 10428 ax-resscn 10429 ax-1cn 10430 ax-icn 10431 ax-addcl 10432 ax-addrcl 10433 ax-mulcl 10434 ax-mulrcl 10435 ax-mulcom 10436 ax-addass 10437 ax-mulass 10438 ax-distr 10439 ax-i2m1 10440 ax-1ne0 10441 ax-1rid 10442 ax-rnegex 10443 ax-rrecex 10444 ax-cnre 10445 ax-pre-lttri 10446 ax-pre-lttrn 10447 ax-pre-ltadd 10448 ax-pre-mulgt0 10449 ax-pre-sup 10450 ax-addf 10451 ax-mulf 10452 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-fal 1533 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-nel 3089 df-ral 3108 df-rex 3109 df-reu 3110 df-rmo 3111 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-pss 3871 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-tp 4471 df-op 4473 df-uni 4740 df-int 4777 df-iun 4821 df-iin 4822 df-br 4957 df-opab 5019 df-mpt 5036 df-tr 5058 df-id 5340 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-se 5395 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-pred 6015 df-ord 6061 df-on 6062 df-lim 6063 df-suc 6064 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-isom 6226 df-riota 6968 df-ov 7010 df-oprab 7011 df-mpo 7012 df-of 7258 df-om 7428 df-1st 7536 df-2nd 7537 df-supp 7673 df-wrecs 7789 df-recs 7851 df-rdg 7889 df-1o 7944 df-2o 7945 df-oadd 7948 df-er 8130 df-map 8249 df-pm 8250 df-ixp 8301 df-en 8348 df-dom 8349 df-sdom 8350 df-fin 8351 df-fsupp 8670 df-fi 8711 df-sup 8742 df-inf 8743 df-oi 8810 df-card 9203 df-pnf 10512 df-mnf 10513 df-xr 10514 df-ltxr 10515 df-le 10516 df-sub 10708 df-neg 10709 df-div 11135 df-nn 11476 df-2 11537 df-3 11538 df-4 11539 df-5 11540 df-6 11541 df-7 11542 df-8 11543 df-9 11544 df-n0 11735 df-z 11819 df-dec 11937 df-uz 12083 df-q 12187 df-rp 12229 df-xneg 12346 df-xadd 12347 df-xmul 12348 df-ioo 12581 df-ioc 12582 df-ico 12583 df-icc 12584 df-fz 12732 df-fzo 12873 df-fl 13000 df-mod 13076 df-seq 13208 df-exp 13268 df-fac 13472 df-bc 13501 df-hash 13529 df-shft 14248 df-cj 14280 df-re 14281 df-im 14282 df-sqrt 14416 df-abs 14417 df-limsup 14650 df-clim 14667 df-rlim 14668 df-sum 14865 df-ef 15242 df-sin 15244 df-cos 15245 df-pi 15247 df-struct 16302 df-ndx 16303 df-slot 16304 df-base 16306 df-sets 16307 df-ress 16308 df-plusg 16395 df-mulr 16396 df-starv 16397 df-sca 16398 df-vsca 16399 df-ip 16400 df-tset 16401 df-ple 16402 df-ds 16404 df-unif 16405 df-hom 16406 df-cco 16407 df-rest 16513 df-topn 16514 df-0g 16532 df-gsum 16533 df-topgen 16534 df-pt 16535 df-prds 16538 df-xrs 16592 df-qtop 16597 df-imas 16598 df-xps 16600 df-mre 16674 df-mrc 16675 df-acs 16677 df-mgm 17669 df-sgrp 17711 df-mnd 17722 df-submnd 17763 df-mulg 17970 df-cntz 18176 df-cmn 18623 df-psmet 20207 df-xmet 20208 df-met 20209 df-bl 20210 df-mopn 20211 df-fbas 20212 df-fg 20213 df-cnfld 20216 df-top 21174 df-topon 21191 df-topsp 21213 df-bases 21226 df-cld 21299 df-ntr 21300 df-cls 21301 df-nei 21378 df-lp 21416 df-perf 21417 df-cn 21507 df-cnp 21508 df-haus 21595 df-tx 21842 df-hmeo 22035 df-fil 22126 df-fm 22218 df-flim 22219 df-flf 22220 df-xms 22601 df-ms 22602 df-tms 22603 df-cncf 23157 df-limc 24135 df-dv 24136 df-log 24809 df-logb 25012 |
This theorem is referenced by: relogbmulexp 25025 blennnt2 44084 |
Copyright terms: Public domain | W3C validator |