MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relogbmul Structured version   Visualization version   GIF version

Theorem relogbmul 26714
Description: The logarithm of the product of two positive real numbers is the sum of logarithms. Property 2 of [Cohen4] p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by AV, 29-May-2020.)
Assertion
Ref Expression
relogbmul ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 · 𝐶)) = ((𝐵 logb 𝐴) + (𝐵 logb 𝐶)))

Proof of Theorem relogbmul
StepHypRef Expression
1 relogmul 26528 . . . . 5 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → (log‘(𝐴 · 𝐶)) = ((log‘𝐴) + (log‘𝐶)))
21adantl 481 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (log‘(𝐴 · 𝐶)) = ((log‘𝐴) + (log‘𝐶)))
32oveq1d 7361 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → ((log‘(𝐴 · 𝐶)) / (log‘𝐵)) = (((log‘𝐴) + (log‘𝐶)) / (log‘𝐵)))
4 relogcl 26511 . . . . . 6 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
54recnd 11140 . . . . 5 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℂ)
65adantr 480 . . . 4 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → (log‘𝐴) ∈ ℂ)
7 relogcl 26511 . . . . . 6 (𝐶 ∈ ℝ+ → (log‘𝐶) ∈ ℝ)
87recnd 11140 . . . . 5 (𝐶 ∈ ℝ+ → (log‘𝐶) ∈ ℂ)
98adantl 481 . . . 4 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → (log‘𝐶) ∈ ℂ)
10 eldifpr 4608 . . . . . . . 8 (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1))
11 3simpa 1148 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
1210, 11sylbi 217 . . . . . . 7 (𝐵 ∈ (ℂ ∖ {0, 1}) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
13 logcl 26504 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (log‘𝐵) ∈ ℂ)
1412, 13syl 17 . . . . . 6 (𝐵 ∈ (ℂ ∖ {0, 1}) → (log‘𝐵) ∈ ℂ)
15 logccne0 26514 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (log‘𝐵) ≠ 0)
1610, 15sylbi 217 . . . . . 6 (𝐵 ∈ (ℂ ∖ {0, 1}) → (log‘𝐵) ≠ 0)
1714, 16jca 511 . . . . 5 (𝐵 ∈ (ℂ ∖ {0, 1}) → ((log‘𝐵) ∈ ℂ ∧ (log‘𝐵) ≠ 0))
1817adantr 480 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → ((log‘𝐵) ∈ ℂ ∧ (log‘𝐵) ≠ 0))
19 divdir 11801 . . . 4 (((log‘𝐴) ∈ ℂ ∧ (log‘𝐶) ∈ ℂ ∧ ((log‘𝐵) ∈ ℂ ∧ (log‘𝐵) ≠ 0)) → (((log‘𝐴) + (log‘𝐶)) / (log‘𝐵)) = (((log‘𝐴) / (log‘𝐵)) + ((log‘𝐶) / (log‘𝐵))))
206, 9, 18, 19syl2an23an 1425 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (((log‘𝐴) + (log‘𝐶)) / (log‘𝐵)) = (((log‘𝐴) / (log‘𝐵)) + ((log‘𝐶) / (log‘𝐵))))
213, 20eqtrd 2766 . 2 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → ((log‘(𝐴 · 𝐶)) / (log‘𝐵)) = (((log‘𝐴) / (log‘𝐵)) + ((log‘𝐶) / (log‘𝐵))))
22 rpcn 12901 . . . . 5 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
23 rpcn 12901 . . . . 5 (𝐶 ∈ ℝ+𝐶 ∈ ℂ)
24 mulcl 11090 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) ∈ ℂ)
2522, 23, 24syl2an 596 . . . 4 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴 · 𝐶) ∈ ℂ)
2622adantr 480 . . . . 5 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐴 ∈ ℂ)
2723adantl 481 . . . . 5 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐶 ∈ ℂ)
28 rpne0 12907 . . . . . 6 (𝐴 ∈ ℝ+𝐴 ≠ 0)
2928adantr 480 . . . . 5 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐴 ≠ 0)
30 rpne0 12907 . . . . . 6 (𝐶 ∈ ℝ+𝐶 ≠ 0)
3130adantl 481 . . . . 5 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐶 ≠ 0)
3226, 27, 29, 31mulne0d 11769 . . . 4 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴 · 𝐶) ≠ 0)
33 eldifsn 4735 . . . 4 ((𝐴 · 𝐶) ∈ (ℂ ∖ {0}) ↔ ((𝐴 · 𝐶) ∈ ℂ ∧ (𝐴 · 𝐶) ≠ 0))
3425, 32, 33sylanbrc 583 . . 3 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴 · 𝐶) ∈ (ℂ ∖ {0}))
35 logbval 26703 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 · 𝐶) ∈ (ℂ ∖ {0})) → (𝐵 logb (𝐴 · 𝐶)) = ((log‘(𝐴 · 𝐶)) / (log‘𝐵)))
3634, 35sylan2 593 . 2 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 · 𝐶)) = ((log‘(𝐴 · 𝐶)) / (log‘𝐵)))
37 rpcndif0 12911 . . . . 5 (𝐴 ∈ ℝ+𝐴 ∈ (ℂ ∖ {0}))
3837adantr 480 . . . 4 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐴 ∈ (ℂ ∖ {0}))
39 logbval 26703 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐴 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝐴) = ((log‘𝐴) / (log‘𝐵)))
4038, 39sylan2 593 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 logb 𝐴) = ((log‘𝐴) / (log‘𝐵)))
41 rpcndif0 12911 . . . . 5 (𝐶 ∈ ℝ+𝐶 ∈ (ℂ ∖ {0}))
4241adantl 481 . . . 4 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐶 ∈ (ℂ ∖ {0}))
43 logbval 26703 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝐶) = ((log‘𝐶) / (log‘𝐵)))
4442, 43sylan2 593 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 logb 𝐶) = ((log‘𝐶) / (log‘𝐵)))
4540, 44oveq12d 7364 . 2 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → ((𝐵 logb 𝐴) + (𝐵 logb 𝐶)) = (((log‘𝐴) / (log‘𝐵)) + ((log‘𝐶) / (log‘𝐵))))
4621, 36, 453eqtr4d 2776 1 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 · 𝐶)) = ((𝐵 logb 𝐴) + (𝐵 logb 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  cdif 3894  {csn 4573  {cpr 4575  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   / cdiv 11774  +crp 12890  logclog 26490   logb clogb 26701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794  df-dv 25795  df-log 26492  df-logb 26702
This theorem is referenced by:  relogbmulexp  26715  blennnt2  48629
  Copyright terms: Public domain W3C validator