MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relogbmul Structured version   Visualization version   GIF version

Theorem relogbmul 26685
Description: The logarithm of the product of two positive real numbers is the sum of logarithms. Property 2 of [Cohen4] p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by AV, 29-May-2020.)
Assertion
Ref Expression
relogbmul ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 · 𝐶)) = ((𝐵 logb 𝐴) + (𝐵 logb 𝐶)))

Proof of Theorem relogbmul
StepHypRef Expression
1 relogmul 26499 . . . . 5 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → (log‘(𝐴 · 𝐶)) = ((log‘𝐴) + (log‘𝐶)))
21adantl 481 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (log‘(𝐴 · 𝐶)) = ((log‘𝐴) + (log‘𝐶)))
32oveq1d 7364 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → ((log‘(𝐴 · 𝐶)) / (log‘𝐵)) = (((log‘𝐴) + (log‘𝐶)) / (log‘𝐵)))
4 relogcl 26482 . . . . . 6 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
54recnd 11143 . . . . 5 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℂ)
65adantr 480 . . . 4 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → (log‘𝐴) ∈ ℂ)
7 relogcl 26482 . . . . . 6 (𝐶 ∈ ℝ+ → (log‘𝐶) ∈ ℝ)
87recnd 11143 . . . . 5 (𝐶 ∈ ℝ+ → (log‘𝐶) ∈ ℂ)
98adantl 481 . . . 4 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → (log‘𝐶) ∈ ℂ)
10 eldifpr 4610 . . . . . . . 8 (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1))
11 3simpa 1148 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
1210, 11sylbi 217 . . . . . . 7 (𝐵 ∈ (ℂ ∖ {0, 1}) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
13 logcl 26475 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (log‘𝐵) ∈ ℂ)
1412, 13syl 17 . . . . . 6 (𝐵 ∈ (ℂ ∖ {0, 1}) → (log‘𝐵) ∈ ℂ)
15 logccne0 26485 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (log‘𝐵) ≠ 0)
1610, 15sylbi 217 . . . . . 6 (𝐵 ∈ (ℂ ∖ {0, 1}) → (log‘𝐵) ≠ 0)
1714, 16jca 511 . . . . 5 (𝐵 ∈ (ℂ ∖ {0, 1}) → ((log‘𝐵) ∈ ℂ ∧ (log‘𝐵) ≠ 0))
1817adantr 480 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → ((log‘𝐵) ∈ ℂ ∧ (log‘𝐵) ≠ 0))
19 divdir 11804 . . . 4 (((log‘𝐴) ∈ ℂ ∧ (log‘𝐶) ∈ ℂ ∧ ((log‘𝐵) ∈ ℂ ∧ (log‘𝐵) ≠ 0)) → (((log‘𝐴) + (log‘𝐶)) / (log‘𝐵)) = (((log‘𝐴) / (log‘𝐵)) + ((log‘𝐶) / (log‘𝐵))))
206, 9, 18, 19syl2an23an 1425 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (((log‘𝐴) + (log‘𝐶)) / (log‘𝐵)) = (((log‘𝐴) / (log‘𝐵)) + ((log‘𝐶) / (log‘𝐵))))
213, 20eqtrd 2764 . 2 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → ((log‘(𝐴 · 𝐶)) / (log‘𝐵)) = (((log‘𝐴) / (log‘𝐵)) + ((log‘𝐶) / (log‘𝐵))))
22 rpcn 12904 . . . . 5 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
23 rpcn 12904 . . . . 5 (𝐶 ∈ ℝ+𝐶 ∈ ℂ)
24 mulcl 11093 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) ∈ ℂ)
2522, 23, 24syl2an 596 . . . 4 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴 · 𝐶) ∈ ℂ)
2622adantr 480 . . . . 5 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐴 ∈ ℂ)
2723adantl 481 . . . . 5 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐶 ∈ ℂ)
28 rpne0 12910 . . . . . 6 (𝐴 ∈ ℝ+𝐴 ≠ 0)
2928adantr 480 . . . . 5 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐴 ≠ 0)
30 rpne0 12910 . . . . . 6 (𝐶 ∈ ℝ+𝐶 ≠ 0)
3130adantl 481 . . . . 5 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐶 ≠ 0)
3226, 27, 29, 31mulne0d 11772 . . . 4 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴 · 𝐶) ≠ 0)
33 eldifsn 4737 . . . 4 ((𝐴 · 𝐶) ∈ (ℂ ∖ {0}) ↔ ((𝐴 · 𝐶) ∈ ℂ ∧ (𝐴 · 𝐶) ≠ 0))
3425, 32, 33sylanbrc 583 . . 3 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴 · 𝐶) ∈ (ℂ ∖ {0}))
35 logbval 26674 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 · 𝐶) ∈ (ℂ ∖ {0})) → (𝐵 logb (𝐴 · 𝐶)) = ((log‘(𝐴 · 𝐶)) / (log‘𝐵)))
3634, 35sylan2 593 . 2 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 · 𝐶)) = ((log‘(𝐴 · 𝐶)) / (log‘𝐵)))
37 rpcndif0 12914 . . . . 5 (𝐴 ∈ ℝ+𝐴 ∈ (ℂ ∖ {0}))
3837adantr 480 . . . 4 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐴 ∈ (ℂ ∖ {0}))
39 logbval 26674 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐴 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝐴) = ((log‘𝐴) / (log‘𝐵)))
4038, 39sylan2 593 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 logb 𝐴) = ((log‘𝐴) / (log‘𝐵)))
41 rpcndif0 12914 . . . . 5 (𝐶 ∈ ℝ+𝐶 ∈ (ℂ ∖ {0}))
4241adantl 481 . . . 4 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐶 ∈ (ℂ ∖ {0}))
43 logbval 26674 . . . 4 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝐶) = ((log‘𝐶) / (log‘𝐵)))
4442, 43sylan2 593 . . 3 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 logb 𝐶) = ((log‘𝐶) / (log‘𝐵)))
4540, 44oveq12d 7367 . 2 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → ((𝐵 logb 𝐴) + (𝐵 logb 𝐶)) = (((log‘𝐴) / (log‘𝐵)) + ((log‘𝐶) / (log‘𝐵))))
4621, 36, 453eqtr4d 2774 1 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 · 𝐶)) = ((𝐵 logb 𝐴) + (𝐵 logb 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3900  {csn 4577  {cpr 4579  cfv 6482  (class class class)co 7349  cc 11007  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014   / cdiv 11777  +crp 12893  logclog 26461   logb clogb 26672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766  df-log 26463  df-logb 26673
This theorem is referenced by:  relogbmulexp  26686  blennnt2  48574
  Copyright terms: Public domain W3C validator