MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcz Structured version   Visualization version   GIF version

Theorem pcz 16810
Description: The prime count function can be used as an indicator that a given rational number is an integer. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
pcz (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴)))
Distinct variable group:   𝐴,𝑝

Proof of Theorem pcz
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcge0 16791 . . . 4 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 0 ≤ (𝑝 pCnt 𝐴))
21ancoms 459 . . 3 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ℙ) → 0 ≤ (𝑝 pCnt 𝐴))
32ralrimiva 3146 . 2 (𝐴 ∈ ℤ → ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴))
4 elq 12930 . . 3 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
5 nnz 12575 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
6 dvds0 16211 . . . . . . . . . . 11 (𝑦 ∈ ℤ → 𝑦 ∥ 0)
75, 6syl 17 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∥ 0)
87ad2antlr 725 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 = 0) → 𝑦 ∥ 0)
9 simpr 485 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 = 0) → 𝑥 = 0)
108, 9breqtrrd 5175 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 = 0) → 𝑦𝑥)
1110a1d 25 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 = 0) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦)) → 𝑦𝑥))
12 simpr 485 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
13 simplll 773 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑥 ∈ ℤ)
14 simplr 767 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑥 ≠ 0)
15 simpllr 774 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑦 ∈ ℕ)
16 pcdiv 16781 . . . . . . . . . . . . 13 ((𝑝 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑝 pCnt (𝑥 / 𝑦)) = ((𝑝 pCnt 𝑥) − (𝑝 pCnt 𝑦)))
1712, 13, 14, 15, 16syl121anc 1375 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝑥 / 𝑦)) = ((𝑝 pCnt 𝑥) − (𝑝 pCnt 𝑦)))
1817breq2d 5159 . . . . . . . . . . 11 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → (0 ≤ (𝑝 pCnt (𝑥 / 𝑦)) ↔ 0 ≤ ((𝑝 pCnt 𝑥) − (𝑝 pCnt 𝑦))))
19 pczcl 16777 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑝 pCnt 𝑥) ∈ ℕ0)
2012, 13, 14, 19syl12anc 835 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑥) ∈ ℕ0)
2120nn0red 12529 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑥) ∈ ℝ)
2212, 15pccld 16779 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑦) ∈ ℕ0)
2322nn0red 12529 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑦) ∈ ℝ)
2421, 23subge0d 11800 . . . . . . . . . . 11 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → (0 ≤ ((𝑝 pCnt 𝑥) − (𝑝 pCnt 𝑦)) ↔ (𝑝 pCnt 𝑦) ≤ (𝑝 pCnt 𝑥)))
2518, 24bitrd 278 . . . . . . . . . 10 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → (0 ≤ (𝑝 pCnt (𝑥 / 𝑦)) ↔ (𝑝 pCnt 𝑦) ≤ (𝑝 pCnt 𝑥)))
2625ralbidva 3175 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) ≤ (𝑝 pCnt 𝑥)))
27 id 22 . . . . . . . . . . 11 (𝑥 ∈ ℤ → 𝑥 ∈ ℤ)
28 pc2dvds 16808 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦𝑥 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) ≤ (𝑝 pCnt 𝑥)))
295, 27, 28syl2anr 597 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑦𝑥 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) ≤ (𝑝 pCnt 𝑥)))
3029adantr 481 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → (𝑦𝑥 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) ≤ (𝑝 pCnt 𝑥)))
3126, 30bitr4d 281 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦)) ↔ 𝑦𝑥))
3231biimpd 228 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦)) → 𝑦𝑥))
3311, 32pm2.61dane 3029 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦)) → 𝑦𝑥))
34 nnne0 12242 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
35 simpl 483 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℤ)
36 dvdsval2 16196 . . . . . . 7 ((𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ∧ 𝑥 ∈ ℤ) → (𝑦𝑥 ↔ (𝑥 / 𝑦) ∈ ℤ))
375, 34, 35, 36syl2an23an 1423 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑦𝑥 ↔ (𝑥 / 𝑦) ∈ ℤ))
3833, 37sylibd 238 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦)) → (𝑥 / 𝑦) ∈ ℤ))
39 oveq2 7413 . . . . . . . 8 (𝐴 = (𝑥 / 𝑦) → (𝑝 pCnt 𝐴) = (𝑝 pCnt (𝑥 / 𝑦)))
4039breq2d 5159 . . . . . . 7 (𝐴 = (𝑥 / 𝑦) → (0 ≤ (𝑝 pCnt 𝐴) ↔ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦))))
4140ralbidv 3177 . . . . . 6 (𝐴 = (𝑥 / 𝑦) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴) ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦))))
42 eleq1 2821 . . . . . 6 (𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℤ ↔ (𝑥 / 𝑦) ∈ ℤ))
4341, 42imbi12d 344 . . . . 5 (𝐴 = (𝑥 / 𝑦) → ((∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴) → 𝐴 ∈ ℤ) ↔ (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦)) → (𝑥 / 𝑦) ∈ ℤ)))
4438, 43syl5ibrcom 246 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴) → 𝐴 ∈ ℤ)))
4544rexlimivv 3199 . . 3 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴) → 𝐴 ∈ ℤ))
464, 45sylbi 216 . 2 (𝐴 ∈ ℚ → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴) → 𝐴 ∈ ℤ))
473, 46impbid2 225 1 (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2940  wral 3061  wrex 3070   class class class wbr 5147  (class class class)co 7405  0cc0 11106  cle 11245  cmin 11440   / cdiv 11867  cn 12208  0cn0 12468  cz 12554  cq 12928  cdvds 16193  cprime 16604   pCnt cpc 16765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-fz 13481  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-dvds 16194  df-gcd 16432  df-prm 16605  df-pc 16766
This theorem is referenced by:  pcmptdvds  16823  qexpz  16830
  Copyright terms: Public domain W3C validator