MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcz Structured version   Visualization version   GIF version

Theorem pcz 16793
Description: The prime count function can be used as an indicator that a given rational number is an integer. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
pcz (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴)))
Distinct variable group:   𝐴,𝑝

Proof of Theorem pcz
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcge0 16774 . . . 4 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 0 ≤ (𝑝 pCnt 𝐴))
21ancoms 458 . . 3 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ℙ) → 0 ≤ (𝑝 pCnt 𝐴))
32ralrimiva 3124 . 2 (𝐴 ∈ ℤ → ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴))
4 elq 12848 . . 3 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
5 nnz 12489 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
6 dvds0 16182 . . . . . . . . . . 11 (𝑦 ∈ ℤ → 𝑦 ∥ 0)
75, 6syl 17 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∥ 0)
87ad2antlr 727 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 = 0) → 𝑦 ∥ 0)
9 simpr 484 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 = 0) → 𝑥 = 0)
108, 9breqtrrd 5117 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 = 0) → 𝑦𝑥)
1110a1d 25 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 = 0) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦)) → 𝑦𝑥))
12 simpr 484 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
13 simplll 774 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑥 ∈ ℤ)
14 simplr 768 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑥 ≠ 0)
15 simpllr 775 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑦 ∈ ℕ)
16 pcdiv 16764 . . . . . . . . . . . . 13 ((𝑝 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑝 pCnt (𝑥 / 𝑦)) = ((𝑝 pCnt 𝑥) − (𝑝 pCnt 𝑦)))
1712, 13, 14, 15, 16syl121anc 1377 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝑥 / 𝑦)) = ((𝑝 pCnt 𝑥) − (𝑝 pCnt 𝑦)))
1817breq2d 5101 . . . . . . . . . . 11 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → (0 ≤ (𝑝 pCnt (𝑥 / 𝑦)) ↔ 0 ≤ ((𝑝 pCnt 𝑥) − (𝑝 pCnt 𝑦))))
19 pczcl 16760 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑝 pCnt 𝑥) ∈ ℕ0)
2012, 13, 14, 19syl12anc 836 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑥) ∈ ℕ0)
2120nn0red 12443 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑥) ∈ ℝ)
2212, 15pccld 16762 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑦) ∈ ℕ0)
2322nn0red 12443 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑦) ∈ ℝ)
2421, 23subge0d 11707 . . . . . . . . . . 11 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → (0 ≤ ((𝑝 pCnt 𝑥) − (𝑝 pCnt 𝑦)) ↔ (𝑝 pCnt 𝑦) ≤ (𝑝 pCnt 𝑥)))
2518, 24bitrd 279 . . . . . . . . . 10 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ∧ 𝑝 ∈ ℙ) → (0 ≤ (𝑝 pCnt (𝑥 / 𝑦)) ↔ (𝑝 pCnt 𝑦) ≤ (𝑝 pCnt 𝑥)))
2625ralbidva 3153 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) ≤ (𝑝 pCnt 𝑥)))
27 id 22 . . . . . . . . . . 11 (𝑥 ∈ ℤ → 𝑥 ∈ ℤ)
28 pc2dvds 16791 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦𝑥 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) ≤ (𝑝 pCnt 𝑥)))
295, 27, 28syl2anr 597 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑦𝑥 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) ≤ (𝑝 pCnt 𝑥)))
3029adantr 480 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → (𝑦𝑥 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) ≤ (𝑝 pCnt 𝑥)))
3126, 30bitr4d 282 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦)) ↔ 𝑦𝑥))
3231biimpd 229 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦)) → 𝑦𝑥))
3311, 32pm2.61dane 3015 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦)) → 𝑦𝑥))
34 nnne0 12159 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
35 simpl 482 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℤ)
36 dvdsval2 16166 . . . . . . 7 ((𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ∧ 𝑥 ∈ ℤ) → (𝑦𝑥 ↔ (𝑥 / 𝑦) ∈ ℤ))
375, 34, 35, 36syl2an23an 1425 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑦𝑥 ↔ (𝑥 / 𝑦) ∈ ℤ))
3833, 37sylibd 239 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦)) → (𝑥 / 𝑦) ∈ ℤ))
39 oveq2 7354 . . . . . . . 8 (𝐴 = (𝑥 / 𝑦) → (𝑝 pCnt 𝐴) = (𝑝 pCnt (𝑥 / 𝑦)))
4039breq2d 5101 . . . . . . 7 (𝐴 = (𝑥 / 𝑦) → (0 ≤ (𝑝 pCnt 𝐴) ↔ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦))))
4140ralbidv 3155 . . . . . 6 (𝐴 = (𝑥 / 𝑦) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴) ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦))))
42 eleq1 2819 . . . . . 6 (𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℤ ↔ (𝑥 / 𝑦) ∈ ℤ))
4341, 42imbi12d 344 . . . . 5 (𝐴 = (𝑥 / 𝑦) → ((∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴) → 𝐴 ∈ ℤ) ↔ (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt (𝑥 / 𝑦)) → (𝑥 / 𝑦) ∈ ℤ)))
4438, 43syl5ibrcom 247 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴) → 𝐴 ∈ ℤ)))
4544rexlimivv 3174 . . 3 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴) → 𝐴 ∈ ℤ))
464, 45sylbi 217 . 2 (𝐴 ∈ ℚ → (∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴) → 𝐴 ∈ ℤ))
473, 46impbid2 226 1 (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056   class class class wbr 5089  (class class class)co 7346  0cc0 11006  cle 11147  cmin 11344   / cdiv 11774  cn 12125  0cn0 12381  cz 12468  cq 12846  cdvds 16163  cprime 16582   pCnt cpc 16748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-fz 13408  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-prm 16583  df-pc 16749
This theorem is referenced by:  pcmptdvds  16806  qexpz  16813
  Copyright terms: Public domain W3C validator