MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrvad2edg Structured version   Visualization version   GIF version

Theorem umgrvad2edg 29245
Description: If a vertex is adjacent to two different vertices in a multigraph, there are more than one edges starting at this vertex, analogous to usgr2edg 29242. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 9-Jan-2020.) (Revised by AV, 8-Jun-2021.)
Hypothesis
Ref Expression
umgrvad2edg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
umgrvad2edg (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥𝐸𝑦𝐸 (𝑥𝑦𝑁𝑥𝑁𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐸,𝑦   𝑥,𝐺,𝑦   𝑥,𝑁,𝑦

Proof of Theorem umgrvad2edg
StepHypRef Expression
1 simpl 482 . 2 (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) → {𝑁, 𝐴} ∈ 𝐸)
2 simpr 484 . 2 (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) → {𝐵, 𝑁} ∈ 𝐸)
3 eqid 2735 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
4 umgrvad2edg.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
53, 4umgrpredgv 29172 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ {𝑁, 𝐴} ∈ 𝐸) → (𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)))
65ex 412 . . . . . 6 (𝐺 ∈ UMGraph → ({𝑁, 𝐴} ∈ 𝐸 → (𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺))))
73, 4umgrpredgv 29172 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ {𝐵, 𝑁} ∈ 𝐸) → (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)))
87ex 412 . . . . . 6 (𝐺 ∈ UMGraph → ({𝐵, 𝑁} ∈ 𝐸 → (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))))
96, 8anim12d 609 . . . . 5 (𝐺 ∈ UMGraph → (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) → ((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)))))
109adantr 480 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝐴𝐵) → (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) → ((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)))))
1110imp 406 . . 3 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))))
12 simplr 769 . . . . 5 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → 𝐴𝐵)
134umgredgne 29177 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ {𝑁, 𝐴} ∈ 𝐸) → 𝑁𝐴)
1413necomd 2994 . . . . . 6 ((𝐺 ∈ UMGraph ∧ {𝑁, 𝐴} ∈ 𝐸) → 𝐴𝑁)
1514ad2ant2r 747 . . . . 5 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → 𝐴𝑁)
1612, 15jca 511 . . . 4 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → (𝐴𝐵𝐴𝑁))
1716olcd 874 . . 3 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ((𝑁𝐵𝑁𝑁) ∨ (𝐴𝐵𝐴𝑁)))
18 prneimg 4859 . . . . 5 (((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))) → (((𝑁𝐵𝑁𝑁) ∨ (𝐴𝐵𝐴𝑁)) → {𝑁, 𝐴} ≠ {𝐵, 𝑁}))
1918imp 406 . . . 4 ((((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))) ∧ ((𝑁𝐵𝑁𝑁) ∨ (𝐴𝐵𝐴𝑁))) → {𝑁, 𝐴} ≠ {𝐵, 𝑁})
20 prid1g 4765 . . . . 5 (𝑁 ∈ (Vtx‘𝐺) → 𝑁 ∈ {𝑁, 𝐴})
2120ad3antrrr 730 . . . 4 ((((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))) ∧ ((𝑁𝐵𝑁𝑁) ∨ (𝐴𝐵𝐴𝑁))) → 𝑁 ∈ {𝑁, 𝐴})
22 prid2g 4766 . . . . 5 (𝑁 ∈ (Vtx‘𝐺) → 𝑁 ∈ {𝐵, 𝑁})
2322ad3antrrr 730 . . . 4 ((((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))) ∧ ((𝑁𝐵𝑁𝑁) ∨ (𝐴𝐵𝐴𝑁))) → 𝑁 ∈ {𝐵, 𝑁})
2419, 21, 233jca 1127 . . 3 ((((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))) ∧ ((𝑁𝐵𝑁𝑁) ∨ (𝐴𝐵𝐴𝑁))) → ({𝑁, 𝐴} ≠ {𝐵, 𝑁} ∧ 𝑁 ∈ {𝑁, 𝐴} ∧ 𝑁 ∈ {𝐵, 𝑁}))
2511, 17, 24syl2anc 584 . 2 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ({𝑁, 𝐴} ≠ {𝐵, 𝑁} ∧ 𝑁 ∈ {𝑁, 𝐴} ∧ 𝑁 ∈ {𝐵, 𝑁}))
26 neeq1 3001 . . . 4 (𝑥 = {𝑁, 𝐴} → (𝑥𝑦 ↔ {𝑁, 𝐴} ≠ 𝑦))
27 eleq2 2828 . . . 4 (𝑥 = {𝑁, 𝐴} → (𝑁𝑥𝑁 ∈ {𝑁, 𝐴}))
2826, 273anbi12d 1436 . . 3 (𝑥 = {𝑁, 𝐴} → ((𝑥𝑦𝑁𝑥𝑁𝑦) ↔ ({𝑁, 𝐴} ≠ 𝑦𝑁 ∈ {𝑁, 𝐴} ∧ 𝑁𝑦)))
29 neeq2 3002 . . . 4 (𝑦 = {𝐵, 𝑁} → ({𝑁, 𝐴} ≠ 𝑦 ↔ {𝑁, 𝐴} ≠ {𝐵, 𝑁}))
30 eleq2 2828 . . . 4 (𝑦 = {𝐵, 𝑁} → (𝑁𝑦𝑁 ∈ {𝐵, 𝑁}))
3129, 303anbi13d 1437 . . 3 (𝑦 = {𝐵, 𝑁} → (({𝑁, 𝐴} ≠ 𝑦𝑁 ∈ {𝑁, 𝐴} ∧ 𝑁𝑦) ↔ ({𝑁, 𝐴} ≠ {𝐵, 𝑁} ∧ 𝑁 ∈ {𝑁, 𝐴} ∧ 𝑁 ∈ {𝐵, 𝑁})))
3228, 31rspc2ev 3635 . 2 (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸 ∧ ({𝑁, 𝐴} ≠ {𝐵, 𝑁} ∧ 𝑁 ∈ {𝑁, 𝐴} ∧ 𝑁 ∈ {𝐵, 𝑁})) → ∃𝑥𝐸𝑦𝐸 (𝑥𝑦𝑁𝑥𝑁𝑦))
331, 2, 25, 32syl2an23an 1422 1 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥𝐸𝑦𝐸 (𝑥𝑦𝑁𝑥𝑁𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wrex 3068  {cpr 4633  cfv 6563  Vtxcvtx 29028  Edgcedg 29079  UMGraphcumgr 29113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-hash 14367  df-edg 29080  df-umgr 29115
This theorem is referenced by:  umgr2edgneu  29246
  Copyright terms: Public domain W3C validator