MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrvad2edg Structured version   Visualization version   GIF version

Theorem umgrvad2edg 28470
Description: If a vertex is adjacent to two different vertices in a multigraph, there are more than one edges starting at this vertex, analogous to usgr2edg 28467. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 9-Jan-2020.) (Revised by AV, 8-Jun-2021.)
Hypothesis
Ref Expression
umgrvad2edg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
umgrvad2edg (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥𝐸𝑦𝐸 (𝑥𝑦𝑁𝑥𝑁𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐸,𝑦   𝑥,𝐺,𝑦   𝑥,𝑁,𝑦

Proof of Theorem umgrvad2edg
StepHypRef Expression
1 simpl 484 . 2 (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) → {𝑁, 𝐴} ∈ 𝐸)
2 simpr 486 . 2 (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) → {𝐵, 𝑁} ∈ 𝐸)
3 eqid 2733 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
4 umgrvad2edg.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
53, 4umgrpredgv 28400 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ {𝑁, 𝐴} ∈ 𝐸) → (𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)))
65ex 414 . . . . . 6 (𝐺 ∈ UMGraph → ({𝑁, 𝐴} ∈ 𝐸 → (𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺))))
73, 4umgrpredgv 28400 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ {𝐵, 𝑁} ∈ 𝐸) → (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)))
87ex 414 . . . . . 6 (𝐺 ∈ UMGraph → ({𝐵, 𝑁} ∈ 𝐸 → (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))))
96, 8anim12d 610 . . . . 5 (𝐺 ∈ UMGraph → (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) → ((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)))))
109adantr 482 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝐴𝐵) → (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) → ((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)))))
1110imp 408 . . 3 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))))
12 simplr 768 . . . . 5 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → 𝐴𝐵)
134umgredgne 28405 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ {𝑁, 𝐴} ∈ 𝐸) → 𝑁𝐴)
1413necomd 2997 . . . . . 6 ((𝐺 ∈ UMGraph ∧ {𝑁, 𝐴} ∈ 𝐸) → 𝐴𝑁)
1514ad2ant2r 746 . . . . 5 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → 𝐴𝑁)
1612, 15jca 513 . . . 4 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → (𝐴𝐵𝐴𝑁))
1716olcd 873 . . 3 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ((𝑁𝐵𝑁𝑁) ∨ (𝐴𝐵𝐴𝑁)))
18 prneimg 4856 . . . . 5 (((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))) → (((𝑁𝐵𝑁𝑁) ∨ (𝐴𝐵𝐴𝑁)) → {𝑁, 𝐴} ≠ {𝐵, 𝑁}))
1918imp 408 . . . 4 ((((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))) ∧ ((𝑁𝐵𝑁𝑁) ∨ (𝐴𝐵𝐴𝑁))) → {𝑁, 𝐴} ≠ {𝐵, 𝑁})
20 prid1g 4765 . . . . 5 (𝑁 ∈ (Vtx‘𝐺) → 𝑁 ∈ {𝑁, 𝐴})
2120ad3antrrr 729 . . . 4 ((((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))) ∧ ((𝑁𝐵𝑁𝑁) ∨ (𝐴𝐵𝐴𝑁))) → 𝑁 ∈ {𝑁, 𝐴})
22 prid2g 4766 . . . . 5 (𝑁 ∈ (Vtx‘𝐺) → 𝑁 ∈ {𝐵, 𝑁})
2322ad3antrrr 729 . . . 4 ((((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))) ∧ ((𝑁𝐵𝑁𝑁) ∨ (𝐴𝐵𝐴𝑁))) → 𝑁 ∈ {𝐵, 𝑁})
2419, 21, 233jca 1129 . . 3 ((((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))) ∧ ((𝑁𝐵𝑁𝑁) ∨ (𝐴𝐵𝐴𝑁))) → ({𝑁, 𝐴} ≠ {𝐵, 𝑁} ∧ 𝑁 ∈ {𝑁, 𝐴} ∧ 𝑁 ∈ {𝐵, 𝑁}))
2511, 17, 24syl2anc 585 . 2 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ({𝑁, 𝐴} ≠ {𝐵, 𝑁} ∧ 𝑁 ∈ {𝑁, 𝐴} ∧ 𝑁 ∈ {𝐵, 𝑁}))
26 neeq1 3004 . . . 4 (𝑥 = {𝑁, 𝐴} → (𝑥𝑦 ↔ {𝑁, 𝐴} ≠ 𝑦))
27 eleq2 2823 . . . 4 (𝑥 = {𝑁, 𝐴} → (𝑁𝑥𝑁 ∈ {𝑁, 𝐴}))
2826, 273anbi12d 1438 . . 3 (𝑥 = {𝑁, 𝐴} → ((𝑥𝑦𝑁𝑥𝑁𝑦) ↔ ({𝑁, 𝐴} ≠ 𝑦𝑁 ∈ {𝑁, 𝐴} ∧ 𝑁𝑦)))
29 neeq2 3005 . . . 4 (𝑦 = {𝐵, 𝑁} → ({𝑁, 𝐴} ≠ 𝑦 ↔ {𝑁, 𝐴} ≠ {𝐵, 𝑁}))
30 eleq2 2823 . . . 4 (𝑦 = {𝐵, 𝑁} → (𝑁𝑦𝑁 ∈ {𝐵, 𝑁}))
3129, 303anbi13d 1439 . . 3 (𝑦 = {𝐵, 𝑁} → (({𝑁, 𝐴} ≠ 𝑦𝑁 ∈ {𝑁, 𝐴} ∧ 𝑁𝑦) ↔ ({𝑁, 𝐴} ≠ {𝐵, 𝑁} ∧ 𝑁 ∈ {𝑁, 𝐴} ∧ 𝑁 ∈ {𝐵, 𝑁})))
3228, 31rspc2ev 3625 . 2 (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸 ∧ ({𝑁, 𝐴} ≠ {𝐵, 𝑁} ∧ 𝑁 ∈ {𝑁, 𝐴} ∧ 𝑁 ∈ {𝐵, 𝑁})) → ∃𝑥𝐸𝑦𝐸 (𝑥𝑦𝑁𝑥𝑁𝑦))
331, 2, 25, 32syl2an23an 1424 1 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥𝐸𝑦𝐸 (𝑥𝑦𝑁𝑥𝑁𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wrex 3071  {cpr 4631  cfv 6544  Vtxcvtx 28256  Edgcedg 28307  UMGraphcumgr 28341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-oadd 8470  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-dju 9896  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-hash 14291  df-edg 28308  df-umgr 28343
This theorem is referenced by:  umgr2edgneu  28471
  Copyright terms: Public domain W3C validator