MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrvad2edg Structured version   Visualization version   GIF version

Theorem umgrvad2edg 27087
Description: If a vertex is adjacent to two different vertices in a multigraph, there are more than one edges starting at this vertex, analogous to usgr2edg 27084. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 9-Jan-2020.) (Revised by AV, 8-Jun-2021.)
Hypothesis
Ref Expression
umgrvad2edg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
umgrvad2edg (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥𝐸𝑦𝐸 (𝑥𝑦𝑁𝑥𝑁𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐸,𝑦   𝑥,𝐺,𝑦   𝑥,𝑁,𝑦

Proof of Theorem umgrvad2edg
StepHypRef Expression
1 simpl 487 . 2 (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) → {𝑁, 𝐴} ∈ 𝐸)
2 simpr 489 . 2 (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) → {𝐵, 𝑁} ∈ 𝐸)
3 eqid 2759 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
4 umgrvad2edg.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
53, 4umgrpredgv 27017 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ {𝑁, 𝐴} ∈ 𝐸) → (𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)))
65ex 417 . . . . . 6 (𝐺 ∈ UMGraph → ({𝑁, 𝐴} ∈ 𝐸 → (𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺))))
73, 4umgrpredgv 27017 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ {𝐵, 𝑁} ∈ 𝐸) → (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)))
87ex 417 . . . . . 6 (𝐺 ∈ UMGraph → ({𝐵, 𝑁} ∈ 𝐸 → (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))))
96, 8anim12d 612 . . . . 5 (𝐺 ∈ UMGraph → (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) → ((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)))))
109adantr 485 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝐴𝐵) → (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) → ((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)))))
1110imp 411 . . 3 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))))
12 simplr 769 . . . . 5 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → 𝐴𝐵)
134umgredgne 27022 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ {𝑁, 𝐴} ∈ 𝐸) → 𝑁𝐴)
1413necomd 3004 . . . . . 6 ((𝐺 ∈ UMGraph ∧ {𝑁, 𝐴} ∈ 𝐸) → 𝐴𝑁)
1514ad2ant2r 747 . . . . 5 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → 𝐴𝑁)
1612, 15jca 516 . . . 4 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → (𝐴𝐵𝐴𝑁))
1716olcd 872 . . 3 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ((𝑁𝐵𝑁𝑁) ∨ (𝐴𝐵𝐴𝑁)))
18 prneimg 4735 . . . . 5 (((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))) → (((𝑁𝐵𝑁𝑁) ∨ (𝐴𝐵𝐴𝑁)) → {𝑁, 𝐴} ≠ {𝐵, 𝑁}))
1918imp 411 . . . 4 ((((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))) ∧ ((𝑁𝐵𝑁𝑁) ∨ (𝐴𝐵𝐴𝑁))) → {𝑁, 𝐴} ≠ {𝐵, 𝑁})
20 prid1g 4646 . . . . 5 (𝑁 ∈ (Vtx‘𝐺) → 𝑁 ∈ {𝑁, 𝐴})
2120ad3antrrr 730 . . . 4 ((((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))) ∧ ((𝑁𝐵𝑁𝑁) ∨ (𝐴𝐵𝐴𝑁))) → 𝑁 ∈ {𝑁, 𝐴})
22 prid2g 4647 . . . . 5 (𝑁 ∈ (Vtx‘𝐺) → 𝑁 ∈ {𝐵, 𝑁})
2322ad3antrrr 730 . . . 4 ((((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))) ∧ ((𝑁𝐵𝑁𝑁) ∨ (𝐴𝐵𝐴𝑁))) → 𝑁 ∈ {𝐵, 𝑁})
2419, 21, 233jca 1126 . . 3 ((((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))) ∧ ((𝑁𝐵𝑁𝑁) ∨ (𝐴𝐵𝐴𝑁))) → ({𝑁, 𝐴} ≠ {𝐵, 𝑁} ∧ 𝑁 ∈ {𝑁, 𝐴} ∧ 𝑁 ∈ {𝐵, 𝑁}))
2511, 17, 24syl2anc 588 . 2 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ({𝑁, 𝐴} ≠ {𝐵, 𝑁} ∧ 𝑁 ∈ {𝑁, 𝐴} ∧ 𝑁 ∈ {𝐵, 𝑁}))
26 neeq1 3011 . . . 4 (𝑥 = {𝑁, 𝐴} → (𝑥𝑦 ↔ {𝑁, 𝐴} ≠ 𝑦))
27 eleq2 2839 . . . 4 (𝑥 = {𝑁, 𝐴} → (𝑁𝑥𝑁 ∈ {𝑁, 𝐴}))
2826, 273anbi12d 1435 . . 3 (𝑥 = {𝑁, 𝐴} → ((𝑥𝑦𝑁𝑥𝑁𝑦) ↔ ({𝑁, 𝐴} ≠ 𝑦𝑁 ∈ {𝑁, 𝐴} ∧ 𝑁𝑦)))
29 neeq2 3012 . . . 4 (𝑦 = {𝐵, 𝑁} → ({𝑁, 𝐴} ≠ 𝑦 ↔ {𝑁, 𝐴} ≠ {𝐵, 𝑁}))
30 eleq2 2839 . . . 4 (𝑦 = {𝐵, 𝑁} → (𝑁𝑦𝑁 ∈ {𝐵, 𝑁}))
3129, 303anbi13d 1436 . . 3 (𝑦 = {𝐵, 𝑁} → (({𝑁, 𝐴} ≠ 𝑦𝑁 ∈ {𝑁, 𝐴} ∧ 𝑁𝑦) ↔ ({𝑁, 𝐴} ≠ {𝐵, 𝑁} ∧ 𝑁 ∈ {𝑁, 𝐴} ∧ 𝑁 ∈ {𝐵, 𝑁})))
3228, 31rspc2ev 3551 . 2 (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸 ∧ ({𝑁, 𝐴} ≠ {𝐵, 𝑁} ∧ 𝑁 ∈ {𝑁, 𝐴} ∧ 𝑁 ∈ {𝐵, 𝑁})) → ∃𝑥𝐸𝑦𝐸 (𝑥𝑦𝑁𝑥𝑁𝑦))
331, 2, 25, 32syl2an23an 1421 1 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥𝐸𝑦𝐸 (𝑥𝑦𝑁𝑥𝑁𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400  wo 845  w3a 1085   = wceq 1539  wcel 2112  wne 2949  wrex 3069  {cpr 4517  cfv 6328  Vtxcvtx 26873  Edgcedg 26924  UMGraphcumgr 26958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-int 4832  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-fin 8524  df-dju 9348  df-card 9386  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-2 11722  df-n0 11920  df-z 12006  df-uz 12268  df-fz 12925  df-hash 13726  df-edg 26925  df-umgr 26960
This theorem is referenced by:  umgr2edgneu  27088
  Copyright terms: Public domain W3C validator