| Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ordtoplem | Structured version Visualization version GIF version | ||
| Description: Membership of the class of successor ordinals. (Contributed by Chen-Pang He, 1-Nov-2015.) |
| Ref | Expression |
|---|---|
| ordtoplem.1 | ⊢ (∪ 𝐴 ∈ On → suc ∪ 𝐴 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| ordtoplem | ⊢ (Ord 𝐴 → (𝐴 ≠ ∪ 𝐴 → 𝐴 ∈ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2929 | . 2 ⊢ (𝐴 ≠ ∪ 𝐴 ↔ ¬ 𝐴 = ∪ 𝐴) | |
| 2 | ordeleqon 7715 | . . . . . 6 ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) | |
| 3 | unon 7761 | . . . . . . . . 9 ⊢ ∪ On = On | |
| 4 | 3 | eqcomi 2740 | . . . . . . . 8 ⊢ On = ∪ On |
| 5 | id 22 | . . . . . . . 8 ⊢ (𝐴 = On → 𝐴 = On) | |
| 6 | unieq 4867 | . . . . . . . 8 ⊢ (𝐴 = On → ∪ 𝐴 = ∪ On) | |
| 7 | 4, 5, 6 | 3eqtr4a 2792 | . . . . . . 7 ⊢ (𝐴 = On → 𝐴 = ∪ 𝐴) |
| 8 | 7 | orim2i 910 | . . . . . 6 ⊢ ((𝐴 ∈ On ∨ 𝐴 = On) → (𝐴 ∈ On ∨ 𝐴 = ∪ 𝐴)) |
| 9 | 2, 8 | sylbi 217 | . . . . 5 ⊢ (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = ∪ 𝐴)) |
| 10 | 9 | orcomd 871 | . . . 4 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ∨ 𝐴 ∈ On)) |
| 11 | 10 | ord 864 | . . 3 ⊢ (Ord 𝐴 → (¬ 𝐴 = ∪ 𝐴 → 𝐴 ∈ On)) |
| 12 | orduniorsuc 7760 | . . . 4 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴)) | |
| 13 | 12 | ord 864 | . . 3 ⊢ (Ord 𝐴 → (¬ 𝐴 = ∪ 𝐴 → 𝐴 = suc ∪ 𝐴)) |
| 14 | onuni 7721 | . . . 4 ⊢ (𝐴 ∈ On → ∪ 𝐴 ∈ On) | |
| 15 | ordtoplem.1 | . . . 4 ⊢ (∪ 𝐴 ∈ On → suc ∪ 𝐴 ∈ 𝑆) | |
| 16 | eleq1a 2826 | . . . 4 ⊢ (suc ∪ 𝐴 ∈ 𝑆 → (𝐴 = suc ∪ 𝐴 → 𝐴 ∈ 𝑆)) | |
| 17 | 14, 15, 16 | 3syl 18 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 = suc ∪ 𝐴 → 𝐴 ∈ 𝑆)) |
| 18 | 11, 13, 17 | syl6c 70 | . 2 ⊢ (Ord 𝐴 → (¬ 𝐴 = ∪ 𝐴 → 𝐴 ∈ 𝑆)) |
| 19 | 1, 18 | biimtrid 242 | 1 ⊢ (Ord 𝐴 → (𝐴 ≠ ∪ 𝐴 → 𝐴 ∈ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∪ cuni 4856 Ord word 6305 Oncon0 6306 suc csuc 6308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 df-on 6310 df-suc 6312 |
| This theorem is referenced by: ordtop 36480 ordtopconn 36483 ordtopt0 36486 |
| Copyright terms: Public domain | W3C validator |