Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ordtoplem | Structured version Visualization version GIF version |
Description: Membership of the class of successor ordinals. (Contributed by Chen-Pang He, 1-Nov-2015.) |
Ref | Expression |
---|---|
ordtoplem.1 | ⊢ (∪ 𝐴 ∈ On → suc ∪ 𝐴 ∈ 𝑆) |
Ref | Expression |
---|---|
ordtoplem | ⊢ (Ord 𝐴 → (𝐴 ≠ ∪ 𝐴 → 𝐴 ∈ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2942 | . 2 ⊢ (𝐴 ≠ ∪ 𝐴 ↔ ¬ 𝐴 = ∪ 𝐴) | |
2 | ordeleqon 7664 | . . . . . 6 ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) | |
3 | unon 7710 | . . . . . . . . 9 ⊢ ∪ On = On | |
4 | 3 | eqcomi 2745 | . . . . . . . 8 ⊢ On = ∪ On |
5 | id 22 | . . . . . . . 8 ⊢ (𝐴 = On → 𝐴 = On) | |
6 | unieq 4855 | . . . . . . . 8 ⊢ (𝐴 = On → ∪ 𝐴 = ∪ On) | |
7 | 4, 5, 6 | 3eqtr4a 2802 | . . . . . . 7 ⊢ (𝐴 = On → 𝐴 = ∪ 𝐴) |
8 | 7 | orim2i 909 | . . . . . 6 ⊢ ((𝐴 ∈ On ∨ 𝐴 = On) → (𝐴 ∈ On ∨ 𝐴 = ∪ 𝐴)) |
9 | 2, 8 | sylbi 216 | . . . . 5 ⊢ (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = ∪ 𝐴)) |
10 | 9 | orcomd 869 | . . . 4 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ∨ 𝐴 ∈ On)) |
11 | 10 | ord 862 | . . 3 ⊢ (Ord 𝐴 → (¬ 𝐴 = ∪ 𝐴 → 𝐴 ∈ On)) |
12 | orduniorsuc 7709 | . . . 4 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴)) | |
13 | 12 | ord 862 | . . 3 ⊢ (Ord 𝐴 → (¬ 𝐴 = ∪ 𝐴 → 𝐴 = suc ∪ 𝐴)) |
14 | onuni 7670 | . . . 4 ⊢ (𝐴 ∈ On → ∪ 𝐴 ∈ On) | |
15 | ordtoplem.1 | . . . 4 ⊢ (∪ 𝐴 ∈ On → suc ∪ 𝐴 ∈ 𝑆) | |
16 | eleq1a 2832 | . . . 4 ⊢ (suc ∪ 𝐴 ∈ 𝑆 → (𝐴 = suc ∪ 𝐴 → 𝐴 ∈ 𝑆)) | |
17 | 14, 15, 16 | 3syl 18 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 = suc ∪ 𝐴 → 𝐴 ∈ 𝑆)) |
18 | 11, 13, 17 | syl6c 70 | . 2 ⊢ (Ord 𝐴 → (¬ 𝐴 = ∪ 𝐴 → 𝐴 ∈ 𝑆)) |
19 | 1, 18 | syl5bi 242 | 1 ⊢ (Ord 𝐴 → (𝐴 ≠ ∪ 𝐴 → 𝐴 ∈ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 845 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 ∪ cuni 4844 Ord word 6280 Oncon0 6281 suc csuc 6283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-tr 5199 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-ord 6284 df-on 6285 df-suc 6287 |
This theorem is referenced by: ordtop 34670 ordtopconn 34673 ordtopt0 34676 |
Copyright terms: Public domain | W3C validator |