Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtoplem Structured version   Visualization version   GIF version

Theorem ordtoplem 35308
Description: Membership of the class of successor ordinals. (Contributed by Chen-Pang He, 1-Nov-2015.)
Hypothesis
Ref Expression
ordtoplem.1 ( 𝐴 ∈ On → suc 𝐴𝑆)
Assertion
Ref Expression
ordtoplem (Ord 𝐴 → (𝐴 𝐴𝐴𝑆))

Proof of Theorem ordtoplem
StepHypRef Expression
1 df-ne 2941 . 2 (𝐴 𝐴 ↔ ¬ 𝐴 = 𝐴)
2 ordeleqon 7765 . . . . . 6 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
3 unon 7815 . . . . . . . . 9 On = On
43eqcomi 2741 . . . . . . . 8 On = On
5 id 22 . . . . . . . 8 (𝐴 = On → 𝐴 = On)
6 unieq 4918 . . . . . . . 8 (𝐴 = On → 𝐴 = On)
74, 5, 63eqtr4a 2798 . . . . . . 7 (𝐴 = On → 𝐴 = 𝐴)
87orim2i 909 . . . . . 6 ((𝐴 ∈ On ∨ 𝐴 = On) → (𝐴 ∈ On ∨ 𝐴 = 𝐴))
92, 8sylbi 216 . . . . 5 (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = 𝐴))
109orcomd 869 . . . 4 (Ord 𝐴 → (𝐴 = 𝐴𝐴 ∈ On))
1110ord 862 . . 3 (Ord 𝐴 → (¬ 𝐴 = 𝐴𝐴 ∈ On))
12 orduniorsuc 7814 . . . 4 (Ord 𝐴 → (𝐴 = 𝐴𝐴 = suc 𝐴))
1312ord 862 . . 3 (Ord 𝐴 → (¬ 𝐴 = 𝐴𝐴 = suc 𝐴))
14 onuni 7772 . . . 4 (𝐴 ∈ On → 𝐴 ∈ On)
15 ordtoplem.1 . . . 4 ( 𝐴 ∈ On → suc 𝐴𝑆)
16 eleq1a 2828 . . . 4 (suc 𝐴𝑆 → (𝐴 = suc 𝐴𝐴𝑆))
1714, 15, 163syl 18 . . 3 (𝐴 ∈ On → (𝐴 = suc 𝐴𝐴𝑆))
1811, 13, 17syl6c 70 . 2 (Ord 𝐴 → (¬ 𝐴 = 𝐴𝐴𝑆))
191, 18biimtrid 241 1 (Ord 𝐴 → (𝐴 𝐴𝐴𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 845   = wceq 1541  wcel 2106  wne 2940   cuni 4907  Ord word 6360  Oncon0 6361  suc csuc 6363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-ord 6364  df-on 6365  df-suc 6367
This theorem is referenced by:  ordtop  35309  ordtopconn  35312  ordtopt0  35315
  Copyright terms: Public domain W3C validator