Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtoplem Structured version   Visualization version   GIF version

Theorem ordtoplem 34551
Description: Membership of the class of successor ordinals. (Contributed by Chen-Pang He, 1-Nov-2015.)
Hypothesis
Ref Expression
ordtoplem.1 ( 𝐴 ∈ On → suc 𝐴𝑆)
Assertion
Ref Expression
ordtoplem (Ord 𝐴 → (𝐴 𝐴𝐴𝑆))

Proof of Theorem ordtoplem
StepHypRef Expression
1 df-ne 2943 . 2 (𝐴 𝐴 ↔ ¬ 𝐴 = 𝐴)
2 ordeleqon 7609 . . . . . 6 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
3 unon 7653 . . . . . . . . 9 On = On
43eqcomi 2747 . . . . . . . 8 On = On
5 id 22 . . . . . . . 8 (𝐴 = On → 𝐴 = On)
6 unieq 4847 . . . . . . . 8 (𝐴 = On → 𝐴 = On)
74, 5, 63eqtr4a 2805 . . . . . . 7 (𝐴 = On → 𝐴 = 𝐴)
87orim2i 907 . . . . . 6 ((𝐴 ∈ On ∨ 𝐴 = On) → (𝐴 ∈ On ∨ 𝐴 = 𝐴))
92, 8sylbi 216 . . . . 5 (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = 𝐴))
109orcomd 867 . . . 4 (Ord 𝐴 → (𝐴 = 𝐴𝐴 ∈ On))
1110ord 860 . . 3 (Ord 𝐴 → (¬ 𝐴 = 𝐴𝐴 ∈ On))
12 orduniorsuc 7652 . . . 4 (Ord 𝐴 → (𝐴 = 𝐴𝐴 = suc 𝐴))
1312ord 860 . . 3 (Ord 𝐴 → (¬ 𝐴 = 𝐴𝐴 = suc 𝐴))
14 onuni 7615 . . . 4 (𝐴 ∈ On → 𝐴 ∈ On)
15 ordtoplem.1 . . . 4 ( 𝐴 ∈ On → suc 𝐴𝑆)
16 eleq1a 2834 . . . 4 (suc 𝐴𝑆 → (𝐴 = suc 𝐴𝐴𝑆))
1714, 15, 163syl 18 . . 3 (𝐴 ∈ On → (𝐴 = suc 𝐴𝐴𝑆))
1811, 13, 17syl6c 70 . 2 (Ord 𝐴 → (¬ 𝐴 = 𝐴𝐴𝑆))
191, 18syl5bi 241 1 (Ord 𝐴 → (𝐴 𝐴𝐴𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 843   = wceq 1539  wcel 2108  wne 2942   cuni 4836  Ord word 6250  Oncon0 6251  suc csuc 6253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255  df-suc 6257
This theorem is referenced by:  ordtop  34552  ordtopconn  34555  ordtopt0  34558
  Copyright terms: Public domain W3C validator