MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylbb1 Structured version   Visualization version   GIF version

Theorem sylbb1 237
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.)
Hypotheses
Ref Expression
sylbb1.1 (𝜑𝜓)
sylbb1.2 (𝜑𝜒)
Assertion
Ref Expression
sylbb1 (𝜓𝜒)

Proof of Theorem sylbb1
StepHypRef Expression
1 sylbb1.1 . . 3 (𝜑𝜓)
21biimpri 228 . 2 (𝜓𝜑)
3 sylbb1.2 . 2 (𝜑𝜒)
42, 3sylib 218 1 (𝜓𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  fsuppmapnn0fiubex  14033  rrxcph  25426  volun  25580  umgrislfupgr  29140  usgrislfuspgr  29204  wlkp1lem8  29698  dfpth2  29749  elwwlks2s3  29971  eupthp1  30235  cnvbraval  32129  brab2d  32619  ballotlemfp1  34494  finixpnum  37612  fin2so  37614  matunitlindflem1  37623  oeord2com  43324  clsf2  44139  ellimcabssub0  45632  sge0iunmpt  46433  icceuelpartlem  47422  nnsum4primesodd  47783  nnsum4primesoddALTV  47784  grtrif1o  47909  brab2dd  48741
  Copyright terms: Public domain W3C validator