MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylbb1 Structured version   Visualization version   GIF version

Theorem sylbb1 236
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.)
Hypotheses
Ref Expression
sylbb1.1 (𝜑𝜓)
sylbb1.2 (𝜑𝜒)
Assertion
Ref Expression
sylbb1 (𝜓𝜒)

Proof of Theorem sylbb1
StepHypRef Expression
1 sylbb1.1 . . 3 (𝜑𝜓)
21biimpri 227 . 2 (𝜓𝜑)
3 sylbb1.2 . 2 (𝜑𝜒)
42, 3sylib 217 1 (𝜓𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  fsuppmapnn0fiubex  13710  rrxcph  24554  volun  24707  umgrislfupgr  27491  usgrislfuspgr  27552  wlkp1lem8  28045  elwwlks2s3  28312  eupthp1  28576  cnvbraval  30468  ballotlemfp1  32454  finixpnum  35758  fin2so  35760  matunitlindflem1  35769  clsf2  41706  ellimcabssub0  43129  sge0iunmpt  43927  icceuelpartlem  44856  nnsum4primesodd  45217  nnsum4primesoddALTV  45218
  Copyright terms: Public domain W3C validator