MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylbb1 Structured version   Visualization version   GIF version

Theorem sylbb1 237
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.)
Hypotheses
Ref Expression
sylbb1.1 (𝜑𝜓)
sylbb1.2 (𝜑𝜒)
Assertion
Ref Expression
sylbb1 (𝜓𝜒)

Proof of Theorem sylbb1
StepHypRef Expression
1 sylbb1.1 . . 3 (𝜑𝜓)
21biimpri 228 . 2 (𝜓𝜑)
3 sylbb1.2 . 2 (𝜑𝜒)
42, 3sylib 218 1 (𝜓𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  fsuppmapnn0fiubex  14043  rrxcph  25445  volun  25599  umgrislfupgr  29158  usgrislfuspgr  29222  wlkp1lem8  29716  elwwlks2s3  29984  eupthp1  30248  cnvbraval  32142  brab2d  32629  ballotlemfp1  34456  finixpnum  37565  fin2so  37567  matunitlindflem1  37576  oeord2com  43273  clsf2  44088  ellimcabssub0  45538  sge0iunmpt  46339  icceuelpartlem  47309  nnsum4primesodd  47670  nnsum4primesoddALTV  47671  grtrif1o  47793
  Copyright terms: Public domain W3C validator