| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylbb1 | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.) |
| Ref | Expression |
|---|---|
| sylbb1.1 | ⊢ (𝜑 ↔ 𝜓) |
| sylbb1.2 | ⊢ (𝜑 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| sylbb1 | ⊢ (𝜓 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbb1.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpri 228 | . 2 ⊢ (𝜓 → 𝜑) |
| 3 | sylbb1.2 | . 2 ⊢ (𝜑 ↔ 𝜒) | |
| 4 | 2, 3 | sylib 218 | 1 ⊢ (𝜓 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: fsuppmapnn0fiubex 13957 rrxcph 25292 volun 25446 umgrislfupgr 29050 usgrislfuspgr 29114 wlkp1lem8 29608 dfpth2 29659 elwwlks2s3 29881 eupthp1 30145 cnvbraval 32039 brab2d 32535 ballotlemfp1 34483 finixpnum 37599 fin2so 37601 matunitlindflem1 37610 oeord2com 43300 clsf2 44115 ellimcabssub0 45615 sge0iunmpt 46416 icceuelpartlem 47436 nnsum4primesodd 47797 nnsum4primesoddALTV 47798 grtrif1o 47941 brab2dd 48816 |
| Copyright terms: Public domain | W3C validator |