MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylbb1 Structured version   Visualization version   GIF version

Theorem sylbb1 236
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.)
Hypotheses
Ref Expression
sylbb1.1 (𝜑𝜓)
sylbb1.2 (𝜑𝜒)
Assertion
Ref Expression
sylbb1 (𝜓𝜒)

Proof of Theorem sylbb1
StepHypRef Expression
1 sylbb1.1 . . 3 (𝜑𝜓)
21biimpri 227 . 2 (𝜓𝜑)
3 sylbb1.2 . 2 (𝜑𝜒)
42, 3sylib 217 1 (𝜓𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  fsuppmapnn0fiubex  13693  rrxcph  24537  volun  24690  umgrislfupgr  27474  usgrislfuspgr  27535  wlkp1lem8  28028  elwwlks2s3  28295  eupthp1  28559  cnvbraval  30451  ballotlemfp1  32437  finixpnum  35741  fin2so  35743  matunitlindflem1  35752  clsf2  41689  ellimcabssub0  43112  sge0iunmpt  43910  icceuelpartlem  44839  nnsum4primesodd  45200  nnsum4primesoddALTV  45201
  Copyright terms: Public domain W3C validator