![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylbb1 | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.) |
Ref | Expression |
---|---|
sylbb1.1 | ⊢ (𝜑 ↔ 𝜓) |
sylbb1.2 | ⊢ (𝜑 ↔ 𝜒) |
Ref | Expression |
---|---|
sylbb1 | ⊢ (𝜓 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbb1.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpri 228 | . 2 ⊢ (𝜓 → 𝜑) |
3 | sylbb1.2 | . 2 ⊢ (𝜑 ↔ 𝜒) | |
4 | 2, 3 | sylib 218 | 1 ⊢ (𝜓 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: fsuppmapnn0fiubex 14030 rrxcph 25440 volun 25594 umgrislfupgr 29155 usgrislfuspgr 29219 wlkp1lem8 29713 elwwlks2s3 29981 eupthp1 30245 cnvbraval 32139 brab2d 32627 ballotlemfp1 34473 finixpnum 37592 fin2so 37594 matunitlindflem1 37603 oeord2com 43301 clsf2 44116 ellimcabssub0 45573 sge0iunmpt 46374 icceuelpartlem 47360 nnsum4primesodd 47721 nnsum4primesoddALTV 47722 grtrif1o 47847 |
Copyright terms: Public domain | W3C validator |