![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylbb1 | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.) |
Ref | Expression |
---|---|
sylbb1.1 | ⊢ (𝜑 ↔ 𝜓) |
sylbb1.2 | ⊢ (𝜑 ↔ 𝜒) |
Ref | Expression |
---|---|
sylbb1 | ⊢ (𝜓 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbb1.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpri 227 | . 2 ⊢ (𝜓 → 𝜑) |
3 | sylbb1.2 | . 2 ⊢ (𝜑 ↔ 𝜒) | |
4 | 2, 3 | sylib 217 | 1 ⊢ (𝜓 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: fsuppmapnn0fiubex 13957 rrxcph 24909 volun 25062 umgrislfupgr 28414 usgrislfuspgr 28475 wlkp1lem8 28968 elwwlks2s3 29236 eupthp1 29500 cnvbraval 31394 ballotlemfp1 33521 finixpnum 36521 fin2so 36523 matunitlindflem1 36532 oeord2com 42109 clsf2 42925 ellimcabssub0 44381 sge0iunmpt 45182 icceuelpartlem 46151 nnsum4primesodd 46512 nnsum4primesoddALTV 46513 |
Copyright terms: Public domain | W3C validator |