| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylbb1 | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.) |
| Ref | Expression |
|---|---|
| sylbb1.1 | ⊢ (𝜑 ↔ 𝜓) |
| sylbb1.2 | ⊢ (𝜑 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| sylbb1 | ⊢ (𝜓 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbb1.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpri 228 | . 2 ⊢ (𝜓 → 𝜑) |
| 3 | sylbb1.2 | . 2 ⊢ (𝜑 ↔ 𝜒) | |
| 4 | 2, 3 | sylib 218 | 1 ⊢ (𝜓 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: fsuppmapnn0fiubex 13917 rrxcph 25308 volun 25462 umgrislfupgr 29086 usgrislfuspgr 29150 wlkp1lem8 29642 dfpth2 29692 elwwlks2s3 29914 eupthp1 30178 cnvbraval 32072 brab2d 32568 ballotlemfp1 34459 finixpnum 37584 fin2so 37586 matunitlindflem1 37595 oeord2com 43284 clsf2 44099 ellimcabssub0 45599 sge0iunmpt 46400 icceuelpartlem 47420 nnsum4primesodd 47781 nnsum4primesoddALTV 47782 grtrif1o 47927 brab2dd 48813 |
| Copyright terms: Public domain | W3C validator |