![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylbb1 | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.) |
Ref | Expression |
---|---|
sylbb1.1 | ⊢ (𝜑 ↔ 𝜓) |
sylbb1.2 | ⊢ (𝜑 ↔ 𝜒) |
Ref | Expression |
---|---|
sylbb1 | ⊢ (𝜓 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbb1.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpri 228 | . 2 ⊢ (𝜓 → 𝜑) |
3 | sylbb1.2 | . 2 ⊢ (𝜑 ↔ 𝜒) | |
4 | 2, 3 | sylib 218 | 1 ⊢ (𝜓 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: fsuppmapnn0fiubex 14043 rrxcph 25445 volun 25599 umgrislfupgr 29158 usgrislfuspgr 29222 wlkp1lem8 29716 elwwlks2s3 29984 eupthp1 30248 cnvbraval 32142 brab2d 32629 ballotlemfp1 34456 finixpnum 37565 fin2so 37567 matunitlindflem1 37576 oeord2com 43273 clsf2 44088 ellimcabssub0 45538 sge0iunmpt 46339 icceuelpartlem 47309 nnsum4primesodd 47670 nnsum4primesoddALTV 47671 grtrif1o 47793 |
Copyright terms: Public domain | W3C validator |