| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylbb1 | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.) |
| Ref | Expression |
|---|---|
| sylbb1.1 | ⊢ (𝜑 ↔ 𝜓) |
| sylbb1.2 | ⊢ (𝜑 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| sylbb1 | ⊢ (𝜓 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbb1.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpri 228 | . 2 ⊢ (𝜓 → 𝜑) |
| 3 | sylbb1.2 | . 2 ⊢ (𝜑 ↔ 𝜒) | |
| 4 | 2, 3 | sylib 218 | 1 ⊢ (𝜓 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: fsuppmapnn0fiubex 13901 rrxcph 25320 volun 25474 umgrislfupgr 29103 usgrislfuspgr 29167 wlkp1lem8 29659 dfpth2 29709 elwwlks2s3 29931 eupthp1 30198 cnvbraval 32092 brab2d 32590 ballotlemfp1 34526 finixpnum 37665 fin2so 37667 matunitlindflem1 37676 oeord2com 43428 clsf2 44243 ellimcabssub0 45741 sge0iunmpt 46540 icceuelpartlem 47559 nnsum4primesodd 47920 nnsum4primesoddALTV 47921 grtrif1o 48066 brab2dd 48952 |
| Copyright terms: Public domain | W3C validator |