Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylbb1 | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.) |
Ref | Expression |
---|---|
sylbb1.1 | ⊢ (𝜑 ↔ 𝜓) |
sylbb1.2 | ⊢ (𝜑 ↔ 𝜒) |
Ref | Expression |
---|---|
sylbb1 | ⊢ (𝜓 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbb1.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpri 227 | . 2 ⊢ (𝜓 → 𝜑) |
3 | sylbb1.2 | . 2 ⊢ (𝜑 ↔ 𝜒) | |
4 | 2, 3 | sylib 217 | 1 ⊢ (𝜓 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: fsuppmapnn0fiubex 13758 rrxcph 24601 volun 24754 umgrislfupgr 27538 usgrislfuspgr 27599 wlkp1lem8 28093 elwwlks2s3 28361 eupthp1 28625 cnvbraval 30517 ballotlemfp1 32503 finixpnum 35806 fin2so 35808 matunitlindflem1 35817 clsf2 41774 ellimcabssub0 43207 sge0iunmpt 44006 icceuelpartlem 44945 nnsum4primesodd 45306 nnsum4primesoddALTV 45307 |
Copyright terms: Public domain | W3C validator |