Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylbb1 | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.) |
Ref | Expression |
---|---|
sylbb1.1 | ⊢ (𝜑 ↔ 𝜓) |
sylbb1.2 | ⊢ (𝜑 ↔ 𝜒) |
Ref | Expression |
---|---|
sylbb1 | ⊢ (𝜓 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbb1.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpri 231 | . 2 ⊢ (𝜓 → 𝜑) |
3 | sylbb1.2 | . 2 ⊢ (𝜑 ↔ 𝜒) | |
4 | 2, 3 | sylib 221 | 1 ⊢ (𝜓 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 |
This theorem is referenced by: fsuppmapnn0fiubex 13565 rrxcph 24289 volun 24442 umgrislfupgr 27214 usgrislfuspgr 27275 wlkp1lem8 27768 elwwlks2s3 28035 eupthp1 28299 cnvbraval 30191 ballotlemfp1 32170 finixpnum 35499 fin2so 35501 matunitlindflem1 35510 clsf2 41413 ellimcabssub0 42833 sge0iunmpt 43631 icceuelpartlem 44560 nnsum4primesodd 44921 nnsum4primesoddALTV 44922 |
Copyright terms: Public domain | W3C validator |