| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylbb1 | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.) |
| Ref | Expression |
|---|---|
| sylbb1.1 | ⊢ (𝜑 ↔ 𝜓) |
| sylbb1.2 | ⊢ (𝜑 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| sylbb1 | ⊢ (𝜓 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbb1.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpri 228 | . 2 ⊢ (𝜓 → 𝜑) |
| 3 | sylbb1.2 | . 2 ⊢ (𝜑 ↔ 𝜒) | |
| 4 | 2, 3 | sylib 218 | 1 ⊢ (𝜓 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: fsuppmapnn0fiubex 13896 rrxcph 25317 volun 25471 umgrislfupgr 29099 usgrislfuspgr 29163 wlkp1lem8 29655 dfpth2 29705 elwwlks2s3 29927 eupthp1 30191 cnvbraval 32085 brab2d 32583 ballotlemfp1 34500 finixpnum 37644 fin2so 37646 matunitlindflem1 37655 oeord2com 43343 clsf2 44158 ellimcabssub0 45656 sge0iunmpt 46455 icceuelpartlem 47465 nnsum4primesodd 47826 nnsum4primesoddALTV 47827 grtrif1o 47972 brab2dd 48858 |
| Copyright terms: Public domain | W3C validator |