MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylbb1 Structured version   Visualization version   GIF version

Theorem sylbb1 236
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.)
Hypotheses
Ref Expression
sylbb1.1 (𝜑𝜓)
sylbb1.2 (𝜑𝜒)
Assertion
Ref Expression
sylbb1 (𝜓𝜒)

Proof of Theorem sylbb1
StepHypRef Expression
1 sylbb1.1 . . 3 (𝜑𝜓)
21biimpri 227 . 2 (𝜓𝜑)
3 sylbb1.2 . 2 (𝜑𝜒)
42, 3sylib 217 1 (𝜓𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  fsuppmapnn0fiubex  13758  rrxcph  24601  volun  24754  umgrislfupgr  27538  usgrislfuspgr  27599  wlkp1lem8  28093  elwwlks2s3  28361  eupthp1  28625  cnvbraval  30517  ballotlemfp1  32503  finixpnum  35806  fin2so  35808  matunitlindflem1  35817  clsf2  41774  ellimcabssub0  43207  sge0iunmpt  44006  icceuelpartlem  44945  nnsum4primesodd  45306  nnsum4primesoddALTV  45307
  Copyright terms: Public domain W3C validator