Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylbb1 | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.) |
Ref | Expression |
---|---|
sylbb1.1 | ⊢ (𝜑 ↔ 𝜓) |
sylbb1.2 | ⊢ (𝜑 ↔ 𝜒) |
Ref | Expression |
---|---|
sylbb1 | ⊢ (𝜓 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbb1.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpri 227 | . 2 ⊢ (𝜓 → 𝜑) |
3 | sylbb1.2 | . 2 ⊢ (𝜑 ↔ 𝜒) | |
4 | 2, 3 | sylib 217 | 1 ⊢ (𝜓 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: fsuppmapnn0fiubex 13710 rrxcph 24554 volun 24707 umgrislfupgr 27491 usgrislfuspgr 27552 wlkp1lem8 28045 elwwlks2s3 28312 eupthp1 28576 cnvbraval 30468 ballotlemfp1 32454 finixpnum 35758 fin2so 35760 matunitlindflem1 35769 clsf2 41706 ellimcabssub0 43129 sge0iunmpt 43927 icceuelpartlem 44856 nnsum4primesodd 45217 nnsum4primesoddALTV 45218 |
Copyright terms: Public domain | W3C validator |