![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylbb1 | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.) |
Ref | Expression |
---|---|
sylbb1.1 | ⊢ (𝜑 ↔ 𝜓) |
sylbb1.2 | ⊢ (𝜑 ↔ 𝜒) |
Ref | Expression |
---|---|
sylbb1 | ⊢ (𝜓 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbb1.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpri 227 | . 2 ⊢ (𝜓 → 𝜑) |
3 | sylbb1.2 | . 2 ⊢ (𝜑 ↔ 𝜒) | |
4 | 2, 3 | sylib 217 | 1 ⊢ (𝜓 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: fsuppmapnn0fiubex 13993 rrxcph 25364 volun 25518 umgrislfupgr 29008 usgrislfuspgr 29072 wlkp1lem8 29566 elwwlks2s3 29834 eupthp1 30098 cnvbraval 31992 brab2d 32476 ballotlemfp1 34242 finixpnum 37209 fin2so 37211 matunitlindflem1 37220 oeord2com 42882 clsf2 43698 ellimcabssub0 45143 sge0iunmpt 45944 icceuelpartlem 46912 nnsum4primesodd 47273 nnsum4primesoddALTV 47274 |
Copyright terms: Public domain | W3C validator |