MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylbb1 Structured version   Visualization version   GIF version

Theorem sylbb1 237
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.)
Hypotheses
Ref Expression
sylbb1.1 (𝜑𝜓)
sylbb1.2 (𝜑𝜒)
Assertion
Ref Expression
sylbb1 (𝜓𝜒)

Proof of Theorem sylbb1
StepHypRef Expression
1 sylbb1.1 . . 3 (𝜑𝜓)
21biimpri 228 . 2 (𝜓𝜑)
3 sylbb1.2 . 2 (𝜑𝜒)
42, 3sylib 218 1 (𝜓𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  fsuppmapnn0fiubex  13964  rrxcph  25299  volun  25453  umgrislfupgr  29057  usgrislfuspgr  29121  wlkp1lem8  29615  dfpth2  29666  elwwlks2s3  29888  eupthp1  30152  cnvbraval  32046  brab2d  32542  ballotlemfp1  34490  finixpnum  37606  fin2so  37608  matunitlindflem1  37617  oeord2com  43307  clsf2  44122  ellimcabssub0  45622  sge0iunmpt  46423  icceuelpartlem  47440  nnsum4primesodd  47801  nnsum4primesoddALTV  47802  grtrif1o  47945  brab2dd  48820
  Copyright terms: Public domain W3C validator