MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylbb1 Structured version   Visualization version   GIF version

Theorem sylbb1 237
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.)
Hypotheses
Ref Expression
sylbb1.1 (𝜑𝜓)
sylbb1.2 (𝜑𝜒)
Assertion
Ref Expression
sylbb1 (𝜓𝜒)

Proof of Theorem sylbb1
StepHypRef Expression
1 sylbb1.1 . . 3 (𝜑𝜓)
21biimpri 228 . 2 (𝜓𝜑)
3 sylbb1.2 . 2 (𝜑𝜒)
42, 3sylib 218 1 (𝜓𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  fsuppmapnn0fiubex  13896  rrxcph  25317  volun  25471  umgrislfupgr  29099  usgrislfuspgr  29163  wlkp1lem8  29655  dfpth2  29705  elwwlks2s3  29927  eupthp1  30191  cnvbraval  32085  brab2d  32583  ballotlemfp1  34500  finixpnum  37644  fin2so  37646  matunitlindflem1  37655  oeord2com  43343  clsf2  44158  ellimcabssub0  45656  sge0iunmpt  46455  icceuelpartlem  47465  nnsum4primesodd  47826  nnsum4primesoddALTV  47827  grtrif1o  47972  brab2dd  48858
  Copyright terms: Public domain W3C validator