| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylbb1 | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.) |
| Ref | Expression |
|---|---|
| sylbb1.1 | ⊢ (𝜑 ↔ 𝜓) |
| sylbb1.2 | ⊢ (𝜑 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| sylbb1 | ⊢ (𝜓 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbb1.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpri 228 | . 2 ⊢ (𝜓 → 𝜑) |
| 3 | sylbb1.2 | . 2 ⊢ (𝜑 ↔ 𝜒) | |
| 4 | 2, 3 | sylib 218 | 1 ⊢ (𝜓 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: fsuppmapnn0fiubex 13999 rrxcph 25329 volun 25483 umgrislfupgr 29034 usgrislfuspgr 29098 wlkp1lem8 29592 dfpth2 29643 elwwlks2s3 29865 eupthp1 30129 cnvbraval 32023 brab2d 32520 ballotlemfp1 34432 finixpnum 37550 fin2so 37552 matunitlindflem1 37561 oeord2com 43260 clsf2 44075 ellimcabssub0 45576 sge0iunmpt 46377 icceuelpartlem 47367 nnsum4primesodd 47728 nnsum4primesoddALTV 47729 grtrif1o 47854 brab2dd 48687 |
| Copyright terms: Public domain | W3C validator |