Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylbb1 | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.) |
Ref | Expression |
---|---|
sylbb1.1 | ⊢ (𝜑 ↔ 𝜓) |
sylbb1.2 | ⊢ (𝜑 ↔ 𝜒) |
Ref | Expression |
---|---|
sylbb1 | ⊢ (𝜓 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbb1.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpri 227 | . 2 ⊢ (𝜓 → 𝜑) |
3 | sylbb1.2 | . 2 ⊢ (𝜑 ↔ 𝜒) | |
4 | 2, 3 | sylib 217 | 1 ⊢ (𝜓 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: fsuppmapnn0fiubex 13693 rrxcph 24537 volun 24690 umgrislfupgr 27474 usgrislfuspgr 27535 wlkp1lem8 28028 elwwlks2s3 28295 eupthp1 28559 cnvbraval 30451 ballotlemfp1 32437 finixpnum 35741 fin2so 35743 matunitlindflem1 35752 clsf2 41689 ellimcabssub0 43112 sge0iunmpt 43910 icceuelpartlem 44839 nnsum4primesodd 45200 nnsum4primesoddALTV 45201 |
Copyright terms: Public domain | W3C validator |