| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylbb1 | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.) |
| Ref | Expression |
|---|---|
| sylbb1.1 | ⊢ (𝜑 ↔ 𝜓) |
| sylbb1.2 | ⊢ (𝜑 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| sylbb1 | ⊢ (𝜓 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbb1.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpri 228 | . 2 ⊢ (𝜓 → 𝜑) |
| 3 | sylbb1.2 | . 2 ⊢ (𝜑 ↔ 𝜒) | |
| 4 | 2, 3 | sylib 218 | 1 ⊢ (𝜓 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: fsuppmapnn0fiubex 14010 rrxcph 25344 volun 25498 umgrislfupgr 29102 usgrislfuspgr 29166 wlkp1lem8 29660 dfpth2 29711 elwwlks2s3 29933 eupthp1 30197 cnvbraval 32091 brab2d 32587 ballotlemfp1 34524 finixpnum 37629 fin2so 37631 matunitlindflem1 37640 oeord2com 43335 clsf2 44150 ellimcabssub0 45646 sge0iunmpt 46447 icceuelpartlem 47449 nnsum4primesodd 47810 nnsum4primesoddALTV 47811 grtrif1o 47954 brab2dd 48806 |
| Copyright terms: Public domain | W3C validator |