| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylbb1 | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.) |
| Ref | Expression |
|---|---|
| sylbb1.1 | ⊢ (𝜑 ↔ 𝜓) |
| sylbb1.2 | ⊢ (𝜑 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| sylbb1 | ⊢ (𝜓 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbb1.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpri 228 | . 2 ⊢ (𝜓 → 𝜑) |
| 3 | sylbb1.2 | . 2 ⊢ (𝜑 ↔ 𝜒) | |
| 4 | 2, 3 | sylib 218 | 1 ⊢ (𝜓 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: fsuppmapnn0fiubex 14033 rrxcph 25426 volun 25580 umgrislfupgr 29140 usgrislfuspgr 29204 wlkp1lem8 29698 dfpth2 29749 elwwlks2s3 29971 eupthp1 30235 cnvbraval 32129 brab2d 32619 ballotlemfp1 34494 finixpnum 37612 fin2so 37614 matunitlindflem1 37623 oeord2com 43324 clsf2 44139 ellimcabssub0 45632 sge0iunmpt 46433 icceuelpartlem 47422 nnsum4primesodd 47783 nnsum4primesoddALTV 47784 grtrif1o 47909 brab2dd 48741 |
| Copyright terms: Public domain | W3C validator |