| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylbb1 | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.) |
| Ref | Expression |
|---|---|
| sylbb1.1 | ⊢ (𝜑 ↔ 𝜓) |
| sylbb1.2 | ⊢ (𝜑 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| sylbb1 | ⊢ (𝜓 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbb1.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpri 228 | . 2 ⊢ (𝜓 → 𝜑) |
| 3 | sylbb1.2 | . 2 ⊢ (𝜑 ↔ 𝜒) | |
| 4 | 2, 3 | sylib 218 | 1 ⊢ (𝜓 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: fsuppmapnn0fiubex 13964 rrxcph 25299 volun 25453 umgrislfupgr 29057 usgrislfuspgr 29121 wlkp1lem8 29615 dfpth2 29666 elwwlks2s3 29888 eupthp1 30152 cnvbraval 32046 brab2d 32542 ballotlemfp1 34490 finixpnum 37606 fin2so 37608 matunitlindflem1 37617 oeord2com 43307 clsf2 44122 ellimcabssub0 45622 sge0iunmpt 46423 icceuelpartlem 47440 nnsum4primesodd 47801 nnsum4primesoddALTV 47802 grtrif1o 47945 brab2dd 48820 |
| Copyright terms: Public domain | W3C validator |