MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylbb1 Structured version   Visualization version   GIF version

Theorem sylbb1 237
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.)
Hypotheses
Ref Expression
sylbb1.1 (𝜑𝜓)
sylbb1.2 (𝜑𝜒)
Assertion
Ref Expression
sylbb1 (𝜓𝜒)

Proof of Theorem sylbb1
StepHypRef Expression
1 sylbb1.1 . . 3 (𝜑𝜓)
21biimpri 228 . 2 (𝜓𝜑)
3 sylbb1.2 . 2 (𝜑𝜒)
42, 3sylib 218 1 (𝜓𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  fsuppmapnn0fiubex  13957  rrxcph  25292  volun  25446  umgrislfupgr  29050  usgrislfuspgr  29114  wlkp1lem8  29608  dfpth2  29659  elwwlks2s3  29881  eupthp1  30145  cnvbraval  32039  brab2d  32535  ballotlemfp1  34483  finixpnum  37599  fin2so  37601  matunitlindflem1  37610  oeord2com  43300  clsf2  44115  ellimcabssub0  45615  sge0iunmpt  46416  icceuelpartlem  47436  nnsum4primesodd  47797  nnsum4primesoddALTV  47798  grtrif1o  47941  brab2dd  48816
  Copyright terms: Public domain W3C validator