MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylbb1 Structured version   Visualization version   GIF version

Theorem sylbb1 236
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.)
Hypotheses
Ref Expression
sylbb1.1 (𝜑𝜓)
sylbb1.2 (𝜑𝜒)
Assertion
Ref Expression
sylbb1 (𝜓𝜒)

Proof of Theorem sylbb1
StepHypRef Expression
1 sylbb1.1 . . 3 (𝜑𝜓)
21biimpri 227 . 2 (𝜓𝜑)
3 sylbb1.2 . 2 (𝜑𝜒)
42, 3sylib 217 1 (𝜓𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  fsuppmapnn0fiubex  13957  rrxcph  24909  volun  25062  umgrislfupgr  28414  usgrislfuspgr  28475  wlkp1lem8  28968  elwwlks2s3  29236  eupthp1  29500  cnvbraval  31394  ballotlemfp1  33521  finixpnum  36521  fin2so  36523  matunitlindflem1  36532  oeord2com  42109  clsf2  42925  ellimcabssub0  44381  sge0iunmpt  45182  icceuelpartlem  46151  nnsum4primesodd  46512  nnsum4primesoddALTV  46513
  Copyright terms: Public domain W3C validator