Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finixpnum Structured version   Visualization version   GIF version

Theorem finixpnum 37572
Description: A finite Cartesian product of numerable sets is numerable. (Contributed by Brendan Leahy, 24-Feb-2019.)
Assertion
Ref Expression
finixpnum ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ dom card) → X𝑥𝐴 𝐵 ∈ dom card)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem finixpnum
Dummy variables 𝑣 𝑢 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 3293 . . . 4 (𝑤 = ∅ → (∀𝑥𝑤 𝐵 ∈ dom card ↔ ∀𝑥 ∈ ∅ 𝐵 ∈ dom card))
2 ixpeq1 8858 . . . . . 6 (𝑤 = ∅ → X𝑥𝑤 𝐵 = X𝑥 ∈ ∅ 𝐵)
3 ixp0x 8876 . . . . . 6 X𝑥 ∈ ∅ 𝐵 = {∅}
42, 3eqtrdi 2780 . . . . 5 (𝑤 = ∅ → X𝑥𝑤 𝐵 = {∅})
54eleq1d 2813 . . . 4 (𝑤 = ∅ → (X𝑥𝑤 𝐵 ∈ dom card ↔ {∅} ∈ dom card))
61, 5imbi12d 344 . . 3 (𝑤 = ∅ → ((∀𝑥𝑤 𝐵 ∈ dom card → X𝑥𝑤 𝐵 ∈ dom card) ↔ (∀𝑥 ∈ ∅ 𝐵 ∈ dom card → {∅} ∈ dom card)))
7 raleq 3293 . . . 4 (𝑤 = 𝑦 → (∀𝑥𝑤 𝐵 ∈ dom card ↔ ∀𝑥𝑦 𝐵 ∈ dom card))
8 ixpeq1 8858 . . . . 5 (𝑤 = 𝑦X𝑥𝑤 𝐵 = X𝑥𝑦 𝐵)
98eleq1d 2813 . . . 4 (𝑤 = 𝑦 → (X𝑥𝑤 𝐵 ∈ dom card ↔ X𝑥𝑦 𝐵 ∈ dom card))
107, 9imbi12d 344 . . 3 (𝑤 = 𝑦 → ((∀𝑥𝑤 𝐵 ∈ dom card → X𝑥𝑤 𝐵 ∈ dom card) ↔ (∀𝑥𝑦 𝐵 ∈ dom card → X𝑥𝑦 𝐵 ∈ dom card)))
11 raleq 3293 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → (∀𝑥𝑤 𝐵 ∈ dom card ↔ ∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card))
12 ralunb 4156 . . . . . 6 (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card ↔ (∀𝑥𝑦 𝐵 ∈ dom card ∧ ∀𝑥 ∈ {𝑧}𝐵 ∈ dom card))
13 vex 3448 . . . . . . . 8 𝑧 ∈ V
14 ralsnsg 4630 . . . . . . . . 9 (𝑧 ∈ V → (∀𝑥 ∈ {𝑧}𝐵 ∈ dom card ↔ [𝑧 / 𝑥]𝐵 ∈ dom card))
15 sbcel1g 4375 . . . . . . . . 9 (𝑧 ∈ V → ([𝑧 / 𝑥]𝐵 ∈ dom card ↔ 𝑧 / 𝑥𝐵 ∈ dom card))
1614, 15bitrd 279 . . . . . . . 8 (𝑧 ∈ V → (∀𝑥 ∈ {𝑧}𝐵 ∈ dom card ↔ 𝑧 / 𝑥𝐵 ∈ dom card))
1713, 16ax-mp 5 . . . . . . 7 (∀𝑥 ∈ {𝑧}𝐵 ∈ dom card ↔ 𝑧 / 𝑥𝐵 ∈ dom card)
1817anbi2i 623 . . . . . 6 ((∀𝑥𝑦 𝐵 ∈ dom card ∧ ∀𝑥 ∈ {𝑧}𝐵 ∈ dom card) ↔ (∀𝑥𝑦 𝐵 ∈ dom card ∧ 𝑧 / 𝑥𝐵 ∈ dom card))
1912, 18bitri 275 . . . . 5 (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card ↔ (∀𝑥𝑦 𝐵 ∈ dom card ∧ 𝑧 / 𝑥𝐵 ∈ dom card))
2011, 19bitrdi 287 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → (∀𝑥𝑤 𝐵 ∈ dom card ↔ (∀𝑥𝑦 𝐵 ∈ dom card ∧ 𝑧 / 𝑥𝐵 ∈ dom card)))
21 ixpeq1 8858 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → X𝑥𝑤 𝐵 = X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵)
2221eleq1d 2813 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → (X𝑥𝑤 𝐵 ∈ dom card ↔ X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card))
2320, 22imbi12d 344 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → ((∀𝑥𝑤 𝐵 ∈ dom card → X𝑥𝑤 𝐵 ∈ dom card) ↔ ((∀𝑥𝑦 𝐵 ∈ dom card ∧ 𝑧 / 𝑥𝐵 ∈ dom card) → X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card)))
24 raleq 3293 . . . 4 (𝑤 = 𝐴 → (∀𝑥𝑤 𝐵 ∈ dom card ↔ ∀𝑥𝐴 𝐵 ∈ dom card))
25 ixpeq1 8858 . . . . 5 (𝑤 = 𝐴X𝑥𝑤 𝐵 = X𝑥𝐴 𝐵)
2625eleq1d 2813 . . . 4 (𝑤 = 𝐴 → (X𝑥𝑤 𝐵 ∈ dom card ↔ X𝑥𝐴 𝐵 ∈ dom card))
2724, 26imbi12d 344 . . 3 (𝑤 = 𝐴 → ((∀𝑥𝑤 𝐵 ∈ dom card → X𝑥𝑤 𝐵 ∈ dom card) ↔ (∀𝑥𝐴 𝐵 ∈ dom card → X𝑥𝐴 𝐵 ∈ dom card)))
28 snfi 8991 . . . 4 {∅} ∈ Fin
29 finnum 9877 . . . 4 ({∅} ∈ Fin → {∅} ∈ dom card)
3028, 29mp1i 13 . . 3 (∀𝑥 ∈ ∅ 𝐵 ∈ dom card → {∅} ∈ dom card)
31 pm2.27 42 . . . . . . . 8 (∀𝑥𝑦 𝐵 ∈ dom card → ((∀𝑥𝑦 𝐵 ∈ dom card → X𝑥𝑦 𝐵 ∈ dom card) → X𝑥𝑦 𝐵 ∈ dom card))
32 xpnum 9880 . . . . . . . . . . 11 ((X𝑥𝑦 𝐵 ∈ dom card ∧ 𝑧 / 𝑥𝐵 ∈ dom card) → (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ∈ dom card)
3332ancoms 458 . . . . . . . . . 10 ((𝑧 / 𝑥𝐵 ∈ dom card ∧ X𝑥𝑦 𝐵 ∈ dom card) → (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ∈ dom card)
34 xp1st 7979 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) → (1st𝑤) ∈ X𝑥𝑦 𝐵)
35 ixpfn 8853 . . . . . . . . . . . . . . . 16 ((1st𝑤) ∈ X𝑥𝑦 𝐵 → (1st𝑤) Fn 𝑦)
3634, 35syl 17 . . . . . . . . . . . . . . 15 (𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) → (1st𝑤) Fn 𝑦)
37 fvex 6853 . . . . . . . . . . . . . . . 16 (2nd𝑤) ∈ V
3813, 37fnsn 6558 . . . . . . . . . . . . . . 15 {⟨𝑧, (2nd𝑤)⟩} Fn {𝑧}
3936, 38jctir 520 . . . . . . . . . . . . . 14 (𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) → ((1st𝑤) Fn 𝑦 ∧ {⟨𝑧, (2nd𝑤)⟩} Fn {𝑧}))
40 disjsn 4671 . . . . . . . . . . . . . . 15 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
4140biimpri 228 . . . . . . . . . . . . . 14 𝑧𝑦 → (𝑦 ∩ {𝑧}) = ∅)
42 fnun 6614 . . . . . . . . . . . . . 14 ((((1st𝑤) Fn 𝑦 ∧ {⟨𝑧, (2nd𝑤)⟩} Fn {𝑧}) ∧ (𝑦 ∩ {𝑧}) = ∅) → ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}) Fn (𝑦 ∪ {𝑧}))
4339, 41, 42syl2anr 597 . . . . . . . . . . . . 13 ((¬ 𝑧𝑦𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)) → ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}) Fn (𝑦 ∪ {𝑧}))
44 fvex 6853 . . . . . . . . . . . . . . . . 17 (1st𝑤) ∈ V
4544elixp 8854 . . . . . . . . . . . . . . . 16 ((1st𝑤) ∈ X𝑥𝑦 𝐵 ↔ ((1st𝑤) Fn 𝑦 ∧ ∀𝑥𝑦 ((1st𝑤)‘𝑥) ∈ 𝐵))
4634, 45sylib 218 . . . . . . . . . . . . . . 15 (𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) → ((1st𝑤) Fn 𝑦 ∧ ∀𝑥𝑦 ((1st𝑤)‘𝑥) ∈ 𝐵))
47 fvun1 6934 . . . . . . . . . . . . . . . . . . . . . 22 (((1st𝑤) Fn 𝑦 ∧ {⟨𝑧, (2nd𝑤)⟩} Fn {𝑧} ∧ ((𝑦 ∩ {𝑧}) = ∅ ∧ 𝑥𝑦)) → (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) = ((1st𝑤)‘𝑥))
4838, 47mp3an2 1451 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑤) Fn 𝑦 ∧ ((𝑦 ∩ {𝑧}) = ∅ ∧ 𝑥𝑦)) → (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) = ((1st𝑤)‘𝑥))
4948anassrs 467 . . . . . . . . . . . . . . . . . . . 20 ((((1st𝑤) Fn 𝑦 ∧ (𝑦 ∩ {𝑧}) = ∅) ∧ 𝑥𝑦) → (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) = ((1st𝑤)‘𝑥))
5049eleq1d 2813 . . . . . . . . . . . . . . . . . . 19 ((((1st𝑤) Fn 𝑦 ∧ (𝑦 ∩ {𝑧}) = ∅) ∧ 𝑥𝑦) → ((((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵 ↔ ((1st𝑤)‘𝑥) ∈ 𝐵))
5150biimprd 248 . . . . . . . . . . . . . . . . . 18 ((((1st𝑤) Fn 𝑦 ∧ (𝑦 ∩ {𝑧}) = ∅) ∧ 𝑥𝑦) → (((1st𝑤)‘𝑥) ∈ 𝐵 → (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵))
5251ralimdva 3145 . . . . . . . . . . . . . . . . 17 (((1st𝑤) Fn 𝑦 ∧ (𝑦 ∩ {𝑧}) = ∅) → (∀𝑥𝑦 ((1st𝑤)‘𝑥) ∈ 𝐵 → ∀𝑥𝑦 (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵))
5352ancoms 458 . . . . . . . . . . . . . . . 16 (((𝑦 ∩ {𝑧}) = ∅ ∧ (1st𝑤) Fn 𝑦) → (∀𝑥𝑦 ((1st𝑤)‘𝑥) ∈ 𝐵 → ∀𝑥𝑦 (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵))
5453impr 454 . . . . . . . . . . . . . . 15 (((𝑦 ∩ {𝑧}) = ∅ ∧ ((1st𝑤) Fn 𝑦 ∧ ∀𝑥𝑦 ((1st𝑤)‘𝑥) ∈ 𝐵)) → ∀𝑥𝑦 (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵)
5541, 46, 54syl2an 596 . . . . . . . . . . . . . 14 ((¬ 𝑧𝑦𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)) → ∀𝑥𝑦 (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵)
56 vsnid 4623 . . . . . . . . . . . . . . . . . . 19 𝑧 ∈ {𝑧}
5741, 56jctir 520 . . . . . . . . . . . . . . . . . 18 𝑧𝑦 → ((𝑦 ∩ {𝑧}) = ∅ ∧ 𝑧 ∈ {𝑧}))
58 fvun2 6935 . . . . . . . . . . . . . . . . . . 19 (((1st𝑤) Fn 𝑦 ∧ {⟨𝑧, (2nd𝑤)⟩} Fn {𝑧} ∧ ((𝑦 ∩ {𝑧}) = ∅ ∧ 𝑧 ∈ {𝑧})) → (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑧) = ({⟨𝑧, (2nd𝑤)⟩}‘𝑧))
5938, 58mp3an2 1451 . . . . . . . . . . . . . . . . . 18 (((1st𝑤) Fn 𝑦 ∧ ((𝑦 ∩ {𝑧}) = ∅ ∧ 𝑧 ∈ {𝑧})) → (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑧) = ({⟨𝑧, (2nd𝑤)⟩}‘𝑧))
6036, 57, 59syl2anr 597 . . . . . . . . . . . . . . . . 17 ((¬ 𝑧𝑦𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)) → (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑧) = ({⟨𝑧, (2nd𝑤)⟩}‘𝑧))
61 csbfv 6890 . . . . . . . . . . . . . . . . 17 𝑧 / 𝑥(((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) = (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑧)
6213, 37fvsn 7137 . . . . . . . . . . . . . . . . . 18 ({⟨𝑧, (2nd𝑤)⟩}‘𝑧) = (2nd𝑤)
6362eqcomi 2738 . . . . . . . . . . . . . . . . 17 (2nd𝑤) = ({⟨𝑧, (2nd𝑤)⟩}‘𝑧)
6460, 61, 633eqtr4g 2789 . . . . . . . . . . . . . . . 16 ((¬ 𝑧𝑦𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)) → 𝑧 / 𝑥(((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) = (2nd𝑤))
65 xp2nd 7980 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) → (2nd𝑤) ∈ 𝑧 / 𝑥𝐵)
6665adantl 481 . . . . . . . . . . . . . . . 16 ((¬ 𝑧𝑦𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)) → (2nd𝑤) ∈ 𝑧 / 𝑥𝐵)
6764, 66eqeltrd 2828 . . . . . . . . . . . . . . 15 ((¬ 𝑧𝑦𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)) → 𝑧 / 𝑥(((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝑧 / 𝑥𝐵)
68 ralsnsg 4630 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ V → (∀𝑥 ∈ {𝑧} (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵[𝑧 / 𝑥](((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵))
6913, 68ax-mp 5 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ {𝑧} (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵[𝑧 / 𝑥](((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵)
70 sbcel12 4370 . . . . . . . . . . . . . . . 16 ([𝑧 / 𝑥](((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵𝑧 / 𝑥(((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝑧 / 𝑥𝐵)
7169, 70bitri 275 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ {𝑧} (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵𝑧 / 𝑥(((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝑧 / 𝑥𝐵)
7267, 71sylibr 234 . . . . . . . . . . . . . 14 ((¬ 𝑧𝑦𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)) → ∀𝑥 ∈ {𝑧} (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵)
73 ralun 4157 . . . . . . . . . . . . . 14 ((∀𝑥𝑦 (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵 ∧ ∀𝑥 ∈ {𝑧} (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝑦 ∪ {𝑧})(((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵)
7455, 72, 73syl2anc 584 . . . . . . . . . . . . 13 ((¬ 𝑧𝑦𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)) → ∀𝑥 ∈ (𝑦 ∪ {𝑧})(((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵)
75 snex 5386 . . . . . . . . . . . . . . 15 {⟨𝑧, (2nd𝑤)⟩} ∈ V
7644, 75unex 7700 . . . . . . . . . . . . . 14 ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}) ∈ V
7776elixp 8854 . . . . . . . . . . . . 13 (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}) ∈ X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ↔ (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}) Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵))
7843, 74, 77sylanbrc 583 . . . . . . . . . . . 12 ((¬ 𝑧𝑦𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)) → ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}) ∈ X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵)
7978fmpttd 7069 . . . . . . . . . . 11 𝑧𝑦 → (𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})):(X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)⟶X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵)
80 ixpfn 8853 . . . . . . . . . . . . . . . . 17 (𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵𝑢 Fn (𝑦 ∪ {𝑧}))
81 ssun1 4137 . . . . . . . . . . . . . . . . 17 𝑦 ⊆ (𝑦 ∪ {𝑧})
82 fnssres 6623 . . . . . . . . . . . . . . . . 17 ((𝑢 Fn (𝑦 ∪ {𝑧}) ∧ 𝑦 ⊆ (𝑦 ∪ {𝑧})) → (𝑢𝑦) Fn 𝑦)
8380, 81, 82sylancl 586 . . . . . . . . . . . . . . . 16 (𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 → (𝑢𝑦) Fn 𝑦)
84 vex 3448 . . . . . . . . . . . . . . . . . 18 𝑢 ∈ V
8584elixp 8854 . . . . . . . . . . . . . . . . 17 (𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ↔ (𝑢 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑢𝑥) ∈ 𝐵))
86 ssralv 4012 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑢𝑥) ∈ 𝐵 → ∀𝑥𝑦 (𝑢𝑥) ∈ 𝐵))
8781, 86ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑢𝑥) ∈ 𝐵 → ∀𝑥𝑦 (𝑢𝑥) ∈ 𝐵)
88 fvres 6859 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝑦 → ((𝑢𝑦)‘𝑥) = (𝑢𝑥))
8988eleq1d 2813 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝑦 → (((𝑢𝑦)‘𝑥) ∈ 𝐵 ↔ (𝑢𝑥) ∈ 𝐵))
9089biimprd 248 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑦 → ((𝑢𝑥) ∈ 𝐵 → ((𝑢𝑦)‘𝑥) ∈ 𝐵))
9190ralimia 3063 . . . . . . . . . . . . . . . . . . 19 (∀𝑥𝑦 (𝑢𝑥) ∈ 𝐵 → ∀𝑥𝑦 ((𝑢𝑦)‘𝑥) ∈ 𝐵)
9287, 91syl 17 . . . . . . . . . . . . . . . . . 18 (∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑢𝑥) ∈ 𝐵 → ∀𝑥𝑦 ((𝑢𝑦)‘𝑥) ∈ 𝐵)
9392adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑢 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑢𝑥) ∈ 𝐵) → ∀𝑥𝑦 ((𝑢𝑦)‘𝑥) ∈ 𝐵)
9485, 93sylbi 217 . . . . . . . . . . . . . . . 16 (𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 → ∀𝑥𝑦 ((𝑢𝑦)‘𝑥) ∈ 𝐵)
9584resex 5989 . . . . . . . . . . . . . . . . 17 (𝑢𝑦) ∈ V
9695elixp 8854 . . . . . . . . . . . . . . . 16 ((𝑢𝑦) ∈ X𝑥𝑦 𝐵 ↔ ((𝑢𝑦) Fn 𝑦 ∧ ∀𝑥𝑦 ((𝑢𝑦)‘𝑥) ∈ 𝐵))
9783, 94, 96sylanbrc 583 . . . . . . . . . . . . . . 15 (𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 → (𝑢𝑦) ∈ X𝑥𝑦 𝐵)
98 ssun2 4138 . . . . . . . . . . . . . . . . . 18 {𝑧} ⊆ (𝑦 ∪ {𝑧})
9998, 56sselii 3940 . . . . . . . . . . . . . . . . 17 𝑧 ∈ (𝑦 ∪ {𝑧})
100 csbeq1 3862 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑧𝑤 / 𝑥𝐵 = 𝑧 / 𝑥𝐵)
101100fvixp 8852 . . . . . . . . . . . . . . . . 17 ((𝑢X𝑤 ∈ (𝑦 ∪ {𝑧})𝑤 / 𝑥𝐵𝑧 ∈ (𝑦 ∪ {𝑧})) → (𝑢𝑧) ∈ 𝑧 / 𝑥𝐵)
10299, 101mpan2 691 . . . . . . . . . . . . . . . 16 (𝑢X𝑤 ∈ (𝑦 ∪ {𝑧})𝑤 / 𝑥𝐵 → (𝑢𝑧) ∈ 𝑧 / 𝑥𝐵)
103 nfcv 2891 . . . . . . . . . . . . . . . . 17 𝑤𝐵
104 nfcsb1v 3883 . . . . . . . . . . . . . . . . 17 𝑥𝑤 / 𝑥𝐵
105 csbeq1a 3873 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑤𝐵 = 𝑤 / 𝑥𝐵)
106103, 104, 105cbvixp 8864 . . . . . . . . . . . . . . . 16 X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 = X𝑤 ∈ (𝑦 ∪ {𝑧})𝑤 / 𝑥𝐵
107102, 106eleq2s 2846 . . . . . . . . . . . . . . 15 (𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 → (𝑢𝑧) ∈ 𝑧 / 𝑥𝐵)
108 opelxpi 5668 . . . . . . . . . . . . . . 15 (((𝑢𝑦) ∈ X𝑥𝑦 𝐵 ∧ (𝑢𝑧) ∈ 𝑧 / 𝑥𝐵) → ⟨(𝑢𝑦), (𝑢𝑧)⟩ ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵))
10997, 107, 108syl2anc 584 . . . . . . . . . . . . . 14 (𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 → ⟨(𝑢𝑦), (𝑢𝑧)⟩ ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵))
110109adantl 481 . . . . . . . . . . . . 13 ((¬ 𝑧𝑦𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) → ⟨(𝑢𝑦), (𝑢𝑧)⟩ ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵))
111 disj3 4413 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∩ {𝑧}) = ∅ ↔ 𝑦 = (𝑦 ∖ {𝑧}))
11240, 111sylbb1 237 . . . . . . . . . . . . . . . . . 18 𝑧𝑦𝑦 = (𝑦 ∖ {𝑧}))
113 difun2 4440 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∪ {𝑧}) ∖ {𝑧}) = (𝑦 ∖ {𝑧})
114112, 113eqtr4di 2782 . . . . . . . . . . . . . . . . 17 𝑧𝑦𝑦 = ((𝑦 ∪ {𝑧}) ∖ {𝑧}))
115114reseq2d 5939 . . . . . . . . . . . . . . . 16 𝑧𝑦 → (𝑢𝑦) = (𝑢 ↾ ((𝑦 ∪ {𝑧}) ∖ {𝑧})))
116115uneq1d 4126 . . . . . . . . . . . . . . 15 𝑧𝑦 → ((𝑢𝑦) ∪ {⟨𝑧, (𝑢𝑧)⟩}) = ((𝑢 ↾ ((𝑦 ∪ {𝑧}) ∖ {𝑧})) ∪ {⟨𝑧, (𝑢𝑧)⟩}))
117116adantr 480 . . . . . . . . . . . . . 14 ((¬ 𝑧𝑦𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) → ((𝑢𝑦) ∪ {⟨𝑧, (𝑢𝑧)⟩}) = ((𝑢 ↾ ((𝑦 ∪ {𝑧}) ∖ {𝑧})) ∪ {⟨𝑧, (𝑢𝑧)⟩}))
118 fvex 6853 . . . . . . . . . . . . . . . . . . 19 (𝑢𝑧) ∈ V
11995, 118op1std 7957 . . . . . . . . . . . . . . . . . 18 (𝑤 = ⟨(𝑢𝑦), (𝑢𝑧)⟩ → (1st𝑤) = (𝑢𝑦))
12095, 118op2ndd 7958 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = ⟨(𝑢𝑦), (𝑢𝑧)⟩ → (2nd𝑤) = (𝑢𝑧))
121120opeq2d 4840 . . . . . . . . . . . . . . . . . . 19 (𝑤 = ⟨(𝑢𝑦), (𝑢𝑧)⟩ → ⟨𝑧, (2nd𝑤)⟩ = ⟨𝑧, (𝑢𝑧)⟩)
122121sneqd 4597 . . . . . . . . . . . . . . . . . 18 (𝑤 = ⟨(𝑢𝑦), (𝑢𝑧)⟩ → {⟨𝑧, (2nd𝑤)⟩} = {⟨𝑧, (𝑢𝑧)⟩})
123119, 122uneq12d 4128 . . . . . . . . . . . . . . . . 17 (𝑤 = ⟨(𝑢𝑦), (𝑢𝑧)⟩ → ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}) = ((𝑢𝑦) ∪ {⟨𝑧, (𝑢𝑧)⟩}))
124 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})) = (𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))
125 snex 5386 . . . . . . . . . . . . . . . . . 18 {⟨𝑧, (𝑢𝑧)⟩} ∈ V
12695, 125unex 7700 . . . . . . . . . . . . . . . . 17 ((𝑢𝑦) ∪ {⟨𝑧, (𝑢𝑧)⟩}) ∈ V
127123, 124, 126fvmpt 6950 . . . . . . . . . . . . . . . 16 (⟨(𝑢𝑦), (𝑢𝑧)⟩ ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) → ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘⟨(𝑢𝑦), (𝑢𝑧)⟩) = ((𝑢𝑦) ∪ {⟨𝑧, (𝑢𝑧)⟩}))
128109, 127syl 17 . . . . . . . . . . . . . . 15 (𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 → ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘⟨(𝑢𝑦), (𝑢𝑧)⟩) = ((𝑢𝑦) ∪ {⟨𝑧, (𝑢𝑧)⟩}))
129128adantl 481 . . . . . . . . . . . . . 14 ((¬ 𝑧𝑦𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) → ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘⟨(𝑢𝑦), (𝑢𝑧)⟩) = ((𝑢𝑦) ∪ {⟨𝑧, (𝑢𝑧)⟩}))
130 fnsnsplit 7140 . . . . . . . . . . . . . . . 16 ((𝑢 Fn (𝑦 ∪ {𝑧}) ∧ 𝑧 ∈ (𝑦 ∪ {𝑧})) → 𝑢 = ((𝑢 ↾ ((𝑦 ∪ {𝑧}) ∖ {𝑧})) ∪ {⟨𝑧, (𝑢𝑧)⟩}))
13180, 99, 130sylancl 586 . . . . . . . . . . . . . . 15 (𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵𝑢 = ((𝑢 ↾ ((𝑦 ∪ {𝑧}) ∖ {𝑧})) ∪ {⟨𝑧, (𝑢𝑧)⟩}))
132131adantl 481 . . . . . . . . . . . . . 14 ((¬ 𝑧𝑦𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) → 𝑢 = ((𝑢 ↾ ((𝑦 ∪ {𝑧}) ∖ {𝑧})) ∪ {⟨𝑧, (𝑢𝑧)⟩}))
133117, 129, 1323eqtr4rd 2775 . . . . . . . . . . . . 13 ((¬ 𝑧𝑦𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) → 𝑢 = ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘⟨(𝑢𝑦), (𝑢𝑧)⟩))
134 fveq2 6840 . . . . . . . . . . . . . 14 (𝑣 = ⟨(𝑢𝑦), (𝑢𝑧)⟩ → ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘𝑣) = ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘⟨(𝑢𝑦), (𝑢𝑧)⟩))
135134rspceeqv 3608 . . . . . . . . . . . . 13 ((⟨(𝑢𝑦), (𝑢𝑧)⟩ ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ∧ 𝑢 = ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘⟨(𝑢𝑦), (𝑢𝑧)⟩)) → ∃𝑣 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)𝑢 = ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘𝑣))
136110, 133, 135syl2anc 584 . . . . . . . . . . . 12 ((¬ 𝑧𝑦𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) → ∃𝑣 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)𝑢 = ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘𝑣))
137136ralrimiva 3125 . . . . . . . . . . 11 𝑧𝑦 → ∀𝑢X 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵𝑣 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)𝑢 = ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘𝑣))
138 dffo3 7056 . . . . . . . . . . 11 ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})):(X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)–ontoX𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ↔ ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})):(X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)⟶X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∧ ∀𝑢X 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵𝑣 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)𝑢 = ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘𝑣)))
13979, 137, 138sylanbrc 583 . . . . . . . . . 10 𝑧𝑦 → (𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})):(X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)–ontoX𝑥 ∈ (𝑦 ∪ {𝑧})𝐵)
140 fonum 9987 . . . . . . . . . 10 (((X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ∈ dom card ∧ (𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})):(X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)–ontoX𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) → X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card)
14133, 139, 140syl2anr 597 . . . . . . . . 9 ((¬ 𝑧𝑦 ∧ (𝑧 / 𝑥𝐵 ∈ dom card ∧ X𝑥𝑦 𝐵 ∈ dom card)) → X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card)
142141expr 456 . . . . . . . 8 ((¬ 𝑧𝑦𝑧 / 𝑥𝐵 ∈ dom card) → (X𝑥𝑦 𝐵 ∈ dom card → X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card))
14331, 142syl9r 78 . . . . . . 7 ((¬ 𝑧𝑦𝑧 / 𝑥𝐵 ∈ dom card) → (∀𝑥𝑦 𝐵 ∈ dom card → ((∀𝑥𝑦 𝐵 ∈ dom card → X𝑥𝑦 𝐵 ∈ dom card) → X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card)))
144143expimpd 453 . . . . . 6 𝑧𝑦 → ((𝑧 / 𝑥𝐵 ∈ dom card ∧ ∀𝑥𝑦 𝐵 ∈ dom card) → ((∀𝑥𝑦 𝐵 ∈ dom card → X𝑥𝑦 𝐵 ∈ dom card) → X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card)))
145144ancomsd 465 . . . . 5 𝑧𝑦 → ((∀𝑥𝑦 𝐵 ∈ dom card ∧ 𝑧 / 𝑥𝐵 ∈ dom card) → ((∀𝑥𝑦 𝐵 ∈ dom card → X𝑥𝑦 𝐵 ∈ dom card) → X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card)))
146145com23 86 . . . 4 𝑧𝑦 → ((∀𝑥𝑦 𝐵 ∈ dom card → X𝑥𝑦 𝐵 ∈ dom card) → ((∀𝑥𝑦 𝐵 ∈ dom card ∧ 𝑧 / 𝑥𝐵 ∈ dom card) → X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card)))
147146adantl 481 . . 3 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((∀𝑥𝑦 𝐵 ∈ dom card → X𝑥𝑦 𝐵 ∈ dom card) → ((∀𝑥𝑦 𝐵 ∈ dom card ∧ 𝑧 / 𝑥𝐵 ∈ dom card) → X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card)))
1486, 10, 23, 27, 30, 147findcard2s 9106 . 2 (𝐴 ∈ Fin → (∀𝑥𝐴 𝐵 ∈ dom card → X𝑥𝐴 𝐵 ∈ dom card))
149148imp 406 1 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ dom card) → X𝑥𝐴 𝐵 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3444  [wsbc 3750  csb 3859  cdif 3908  cun 3909  cin 3910  wss 3911  c0 4292  {csn 4585  cop 4591  cmpt 5183   × cxp 5629  dom cdm 5631  cres 5633   Fn wfn 6494  wf 6495  ontowfo 6497  cfv 6499  1st c1st 7945  2nd c2nd 7946  Xcixp 8847  Fincfn 8895  cardccrd 9864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-fin 8899  df-card 9868  df-acn 9871
This theorem is referenced by:  poimirlem32  37619
  Copyright terms: Public domain W3C validator