Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finixpnum Structured version   Visualization version   GIF version

Theorem finixpnum 37606
Description: A finite Cartesian product of numerable sets is numerable. (Contributed by Brendan Leahy, 24-Feb-2019.)
Assertion
Ref Expression
finixpnum ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ dom card) → X𝑥𝐴 𝐵 ∈ dom card)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem finixpnum
Dummy variables 𝑣 𝑢 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 3298 . . . 4 (𝑤 = ∅ → (∀𝑥𝑤 𝐵 ∈ dom card ↔ ∀𝑥 ∈ ∅ 𝐵 ∈ dom card))
2 ixpeq1 8884 . . . . . 6 (𝑤 = ∅ → X𝑥𝑤 𝐵 = X𝑥 ∈ ∅ 𝐵)
3 ixp0x 8902 . . . . . 6 X𝑥 ∈ ∅ 𝐵 = {∅}
42, 3eqtrdi 2781 . . . . 5 (𝑤 = ∅ → X𝑥𝑤 𝐵 = {∅})
54eleq1d 2814 . . . 4 (𝑤 = ∅ → (X𝑥𝑤 𝐵 ∈ dom card ↔ {∅} ∈ dom card))
61, 5imbi12d 344 . . 3 (𝑤 = ∅ → ((∀𝑥𝑤 𝐵 ∈ dom card → X𝑥𝑤 𝐵 ∈ dom card) ↔ (∀𝑥 ∈ ∅ 𝐵 ∈ dom card → {∅} ∈ dom card)))
7 raleq 3298 . . . 4 (𝑤 = 𝑦 → (∀𝑥𝑤 𝐵 ∈ dom card ↔ ∀𝑥𝑦 𝐵 ∈ dom card))
8 ixpeq1 8884 . . . . 5 (𝑤 = 𝑦X𝑥𝑤 𝐵 = X𝑥𝑦 𝐵)
98eleq1d 2814 . . . 4 (𝑤 = 𝑦 → (X𝑥𝑤 𝐵 ∈ dom card ↔ X𝑥𝑦 𝐵 ∈ dom card))
107, 9imbi12d 344 . . 3 (𝑤 = 𝑦 → ((∀𝑥𝑤 𝐵 ∈ dom card → X𝑥𝑤 𝐵 ∈ dom card) ↔ (∀𝑥𝑦 𝐵 ∈ dom card → X𝑥𝑦 𝐵 ∈ dom card)))
11 raleq 3298 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → (∀𝑥𝑤 𝐵 ∈ dom card ↔ ∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card))
12 ralunb 4163 . . . . . 6 (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card ↔ (∀𝑥𝑦 𝐵 ∈ dom card ∧ ∀𝑥 ∈ {𝑧}𝐵 ∈ dom card))
13 vex 3454 . . . . . . . 8 𝑧 ∈ V
14 ralsnsg 4637 . . . . . . . . 9 (𝑧 ∈ V → (∀𝑥 ∈ {𝑧}𝐵 ∈ dom card ↔ [𝑧 / 𝑥]𝐵 ∈ dom card))
15 sbcel1g 4382 . . . . . . . . 9 (𝑧 ∈ V → ([𝑧 / 𝑥]𝐵 ∈ dom card ↔ 𝑧 / 𝑥𝐵 ∈ dom card))
1614, 15bitrd 279 . . . . . . . 8 (𝑧 ∈ V → (∀𝑥 ∈ {𝑧}𝐵 ∈ dom card ↔ 𝑧 / 𝑥𝐵 ∈ dom card))
1713, 16ax-mp 5 . . . . . . 7 (∀𝑥 ∈ {𝑧}𝐵 ∈ dom card ↔ 𝑧 / 𝑥𝐵 ∈ dom card)
1817anbi2i 623 . . . . . 6 ((∀𝑥𝑦 𝐵 ∈ dom card ∧ ∀𝑥 ∈ {𝑧}𝐵 ∈ dom card) ↔ (∀𝑥𝑦 𝐵 ∈ dom card ∧ 𝑧 / 𝑥𝐵 ∈ dom card))
1912, 18bitri 275 . . . . 5 (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card ↔ (∀𝑥𝑦 𝐵 ∈ dom card ∧ 𝑧 / 𝑥𝐵 ∈ dom card))
2011, 19bitrdi 287 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → (∀𝑥𝑤 𝐵 ∈ dom card ↔ (∀𝑥𝑦 𝐵 ∈ dom card ∧ 𝑧 / 𝑥𝐵 ∈ dom card)))
21 ixpeq1 8884 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → X𝑥𝑤 𝐵 = X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵)
2221eleq1d 2814 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → (X𝑥𝑤 𝐵 ∈ dom card ↔ X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card))
2320, 22imbi12d 344 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → ((∀𝑥𝑤 𝐵 ∈ dom card → X𝑥𝑤 𝐵 ∈ dom card) ↔ ((∀𝑥𝑦 𝐵 ∈ dom card ∧ 𝑧 / 𝑥𝐵 ∈ dom card) → X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card)))
24 raleq 3298 . . . 4 (𝑤 = 𝐴 → (∀𝑥𝑤 𝐵 ∈ dom card ↔ ∀𝑥𝐴 𝐵 ∈ dom card))
25 ixpeq1 8884 . . . . 5 (𝑤 = 𝐴X𝑥𝑤 𝐵 = X𝑥𝐴 𝐵)
2625eleq1d 2814 . . . 4 (𝑤 = 𝐴 → (X𝑥𝑤 𝐵 ∈ dom card ↔ X𝑥𝐴 𝐵 ∈ dom card))
2724, 26imbi12d 344 . . 3 (𝑤 = 𝐴 → ((∀𝑥𝑤 𝐵 ∈ dom card → X𝑥𝑤 𝐵 ∈ dom card) ↔ (∀𝑥𝐴 𝐵 ∈ dom card → X𝑥𝐴 𝐵 ∈ dom card)))
28 snfi 9017 . . . 4 {∅} ∈ Fin
29 finnum 9908 . . . 4 ({∅} ∈ Fin → {∅} ∈ dom card)
3028, 29mp1i 13 . . 3 (∀𝑥 ∈ ∅ 𝐵 ∈ dom card → {∅} ∈ dom card)
31 pm2.27 42 . . . . . . . 8 (∀𝑥𝑦 𝐵 ∈ dom card → ((∀𝑥𝑦 𝐵 ∈ dom card → X𝑥𝑦 𝐵 ∈ dom card) → X𝑥𝑦 𝐵 ∈ dom card))
32 xpnum 9911 . . . . . . . . . . 11 ((X𝑥𝑦 𝐵 ∈ dom card ∧ 𝑧 / 𝑥𝐵 ∈ dom card) → (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ∈ dom card)
3332ancoms 458 . . . . . . . . . 10 ((𝑧 / 𝑥𝐵 ∈ dom card ∧ X𝑥𝑦 𝐵 ∈ dom card) → (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ∈ dom card)
34 xp1st 8003 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) → (1st𝑤) ∈ X𝑥𝑦 𝐵)
35 ixpfn 8879 . . . . . . . . . . . . . . . 16 ((1st𝑤) ∈ X𝑥𝑦 𝐵 → (1st𝑤) Fn 𝑦)
3634, 35syl 17 . . . . . . . . . . . . . . 15 (𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) → (1st𝑤) Fn 𝑦)
37 fvex 6874 . . . . . . . . . . . . . . . 16 (2nd𝑤) ∈ V
3813, 37fnsn 6577 . . . . . . . . . . . . . . 15 {⟨𝑧, (2nd𝑤)⟩} Fn {𝑧}
3936, 38jctir 520 . . . . . . . . . . . . . 14 (𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) → ((1st𝑤) Fn 𝑦 ∧ {⟨𝑧, (2nd𝑤)⟩} Fn {𝑧}))
40 disjsn 4678 . . . . . . . . . . . . . . 15 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
4140biimpri 228 . . . . . . . . . . . . . 14 𝑧𝑦 → (𝑦 ∩ {𝑧}) = ∅)
42 fnun 6635 . . . . . . . . . . . . . 14 ((((1st𝑤) Fn 𝑦 ∧ {⟨𝑧, (2nd𝑤)⟩} Fn {𝑧}) ∧ (𝑦 ∩ {𝑧}) = ∅) → ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}) Fn (𝑦 ∪ {𝑧}))
4339, 41, 42syl2anr 597 . . . . . . . . . . . . 13 ((¬ 𝑧𝑦𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)) → ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}) Fn (𝑦 ∪ {𝑧}))
44 fvex 6874 . . . . . . . . . . . . . . . . 17 (1st𝑤) ∈ V
4544elixp 8880 . . . . . . . . . . . . . . . 16 ((1st𝑤) ∈ X𝑥𝑦 𝐵 ↔ ((1st𝑤) Fn 𝑦 ∧ ∀𝑥𝑦 ((1st𝑤)‘𝑥) ∈ 𝐵))
4634, 45sylib 218 . . . . . . . . . . . . . . 15 (𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) → ((1st𝑤) Fn 𝑦 ∧ ∀𝑥𝑦 ((1st𝑤)‘𝑥) ∈ 𝐵))
47 fvun1 6955 . . . . . . . . . . . . . . . . . . . . . 22 (((1st𝑤) Fn 𝑦 ∧ {⟨𝑧, (2nd𝑤)⟩} Fn {𝑧} ∧ ((𝑦 ∩ {𝑧}) = ∅ ∧ 𝑥𝑦)) → (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) = ((1st𝑤)‘𝑥))
4838, 47mp3an2 1451 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑤) Fn 𝑦 ∧ ((𝑦 ∩ {𝑧}) = ∅ ∧ 𝑥𝑦)) → (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) = ((1st𝑤)‘𝑥))
4948anassrs 467 . . . . . . . . . . . . . . . . . . . 20 ((((1st𝑤) Fn 𝑦 ∧ (𝑦 ∩ {𝑧}) = ∅) ∧ 𝑥𝑦) → (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) = ((1st𝑤)‘𝑥))
5049eleq1d 2814 . . . . . . . . . . . . . . . . . . 19 ((((1st𝑤) Fn 𝑦 ∧ (𝑦 ∩ {𝑧}) = ∅) ∧ 𝑥𝑦) → ((((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵 ↔ ((1st𝑤)‘𝑥) ∈ 𝐵))
5150biimprd 248 . . . . . . . . . . . . . . . . . 18 ((((1st𝑤) Fn 𝑦 ∧ (𝑦 ∩ {𝑧}) = ∅) ∧ 𝑥𝑦) → (((1st𝑤)‘𝑥) ∈ 𝐵 → (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵))
5251ralimdva 3146 . . . . . . . . . . . . . . . . 17 (((1st𝑤) Fn 𝑦 ∧ (𝑦 ∩ {𝑧}) = ∅) → (∀𝑥𝑦 ((1st𝑤)‘𝑥) ∈ 𝐵 → ∀𝑥𝑦 (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵))
5352ancoms 458 . . . . . . . . . . . . . . . 16 (((𝑦 ∩ {𝑧}) = ∅ ∧ (1st𝑤) Fn 𝑦) → (∀𝑥𝑦 ((1st𝑤)‘𝑥) ∈ 𝐵 → ∀𝑥𝑦 (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵))
5453impr 454 . . . . . . . . . . . . . . 15 (((𝑦 ∩ {𝑧}) = ∅ ∧ ((1st𝑤) Fn 𝑦 ∧ ∀𝑥𝑦 ((1st𝑤)‘𝑥) ∈ 𝐵)) → ∀𝑥𝑦 (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵)
5541, 46, 54syl2an 596 . . . . . . . . . . . . . 14 ((¬ 𝑧𝑦𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)) → ∀𝑥𝑦 (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵)
56 vsnid 4630 . . . . . . . . . . . . . . . . . . 19 𝑧 ∈ {𝑧}
5741, 56jctir 520 . . . . . . . . . . . . . . . . . 18 𝑧𝑦 → ((𝑦 ∩ {𝑧}) = ∅ ∧ 𝑧 ∈ {𝑧}))
58 fvun2 6956 . . . . . . . . . . . . . . . . . . 19 (((1st𝑤) Fn 𝑦 ∧ {⟨𝑧, (2nd𝑤)⟩} Fn {𝑧} ∧ ((𝑦 ∩ {𝑧}) = ∅ ∧ 𝑧 ∈ {𝑧})) → (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑧) = ({⟨𝑧, (2nd𝑤)⟩}‘𝑧))
5938, 58mp3an2 1451 . . . . . . . . . . . . . . . . . 18 (((1st𝑤) Fn 𝑦 ∧ ((𝑦 ∩ {𝑧}) = ∅ ∧ 𝑧 ∈ {𝑧})) → (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑧) = ({⟨𝑧, (2nd𝑤)⟩}‘𝑧))
6036, 57, 59syl2anr 597 . . . . . . . . . . . . . . . . 17 ((¬ 𝑧𝑦𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)) → (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑧) = ({⟨𝑧, (2nd𝑤)⟩}‘𝑧))
61 csbfv 6911 . . . . . . . . . . . . . . . . 17 𝑧 / 𝑥(((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) = (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑧)
6213, 37fvsn 7158 . . . . . . . . . . . . . . . . . 18 ({⟨𝑧, (2nd𝑤)⟩}‘𝑧) = (2nd𝑤)
6362eqcomi 2739 . . . . . . . . . . . . . . . . 17 (2nd𝑤) = ({⟨𝑧, (2nd𝑤)⟩}‘𝑧)
6460, 61, 633eqtr4g 2790 . . . . . . . . . . . . . . . 16 ((¬ 𝑧𝑦𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)) → 𝑧 / 𝑥(((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) = (2nd𝑤))
65 xp2nd 8004 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) → (2nd𝑤) ∈ 𝑧 / 𝑥𝐵)
6665adantl 481 . . . . . . . . . . . . . . . 16 ((¬ 𝑧𝑦𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)) → (2nd𝑤) ∈ 𝑧 / 𝑥𝐵)
6764, 66eqeltrd 2829 . . . . . . . . . . . . . . 15 ((¬ 𝑧𝑦𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)) → 𝑧 / 𝑥(((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝑧 / 𝑥𝐵)
68 ralsnsg 4637 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ V → (∀𝑥 ∈ {𝑧} (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵[𝑧 / 𝑥](((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵))
6913, 68ax-mp 5 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ {𝑧} (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵[𝑧 / 𝑥](((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵)
70 sbcel12 4377 . . . . . . . . . . . . . . . 16 ([𝑧 / 𝑥](((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵𝑧 / 𝑥(((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝑧 / 𝑥𝐵)
7169, 70bitri 275 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ {𝑧} (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵𝑧 / 𝑥(((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝑧 / 𝑥𝐵)
7267, 71sylibr 234 . . . . . . . . . . . . . 14 ((¬ 𝑧𝑦𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)) → ∀𝑥 ∈ {𝑧} (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵)
73 ralun 4164 . . . . . . . . . . . . . 14 ((∀𝑥𝑦 (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵 ∧ ∀𝑥 ∈ {𝑧} (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝑦 ∪ {𝑧})(((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵)
7455, 72, 73syl2anc 584 . . . . . . . . . . . . 13 ((¬ 𝑧𝑦𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)) → ∀𝑥 ∈ (𝑦 ∪ {𝑧})(((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵)
75 snex 5394 . . . . . . . . . . . . . . 15 {⟨𝑧, (2nd𝑤)⟩} ∈ V
7644, 75unex 7723 . . . . . . . . . . . . . 14 ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}) ∈ V
7776elixp 8880 . . . . . . . . . . . . 13 (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}) ∈ X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ↔ (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}) Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵))
7843, 74, 77sylanbrc 583 . . . . . . . . . . . 12 ((¬ 𝑧𝑦𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)) → ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}) ∈ X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵)
7978fmpttd 7090 . . . . . . . . . . 11 𝑧𝑦 → (𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})):(X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)⟶X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵)
80 ixpfn 8879 . . . . . . . . . . . . . . . . 17 (𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵𝑢 Fn (𝑦 ∪ {𝑧}))
81 ssun1 4144 . . . . . . . . . . . . . . . . 17 𝑦 ⊆ (𝑦 ∪ {𝑧})
82 fnssres 6644 . . . . . . . . . . . . . . . . 17 ((𝑢 Fn (𝑦 ∪ {𝑧}) ∧ 𝑦 ⊆ (𝑦 ∪ {𝑧})) → (𝑢𝑦) Fn 𝑦)
8380, 81, 82sylancl 586 . . . . . . . . . . . . . . . 16 (𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 → (𝑢𝑦) Fn 𝑦)
84 vex 3454 . . . . . . . . . . . . . . . . . 18 𝑢 ∈ V
8584elixp 8880 . . . . . . . . . . . . . . . . 17 (𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ↔ (𝑢 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑢𝑥) ∈ 𝐵))
86 ssralv 4018 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑢𝑥) ∈ 𝐵 → ∀𝑥𝑦 (𝑢𝑥) ∈ 𝐵))
8781, 86ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑢𝑥) ∈ 𝐵 → ∀𝑥𝑦 (𝑢𝑥) ∈ 𝐵)
88 fvres 6880 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝑦 → ((𝑢𝑦)‘𝑥) = (𝑢𝑥))
8988eleq1d 2814 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝑦 → (((𝑢𝑦)‘𝑥) ∈ 𝐵 ↔ (𝑢𝑥) ∈ 𝐵))
9089biimprd 248 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑦 → ((𝑢𝑥) ∈ 𝐵 → ((𝑢𝑦)‘𝑥) ∈ 𝐵))
9190ralimia 3064 . . . . . . . . . . . . . . . . . . 19 (∀𝑥𝑦 (𝑢𝑥) ∈ 𝐵 → ∀𝑥𝑦 ((𝑢𝑦)‘𝑥) ∈ 𝐵)
9287, 91syl 17 . . . . . . . . . . . . . . . . . 18 (∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑢𝑥) ∈ 𝐵 → ∀𝑥𝑦 ((𝑢𝑦)‘𝑥) ∈ 𝐵)
9392adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑢 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑢𝑥) ∈ 𝐵) → ∀𝑥𝑦 ((𝑢𝑦)‘𝑥) ∈ 𝐵)
9485, 93sylbi 217 . . . . . . . . . . . . . . . 16 (𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 → ∀𝑥𝑦 ((𝑢𝑦)‘𝑥) ∈ 𝐵)
9584resex 6003 . . . . . . . . . . . . . . . . 17 (𝑢𝑦) ∈ V
9695elixp 8880 . . . . . . . . . . . . . . . 16 ((𝑢𝑦) ∈ X𝑥𝑦 𝐵 ↔ ((𝑢𝑦) Fn 𝑦 ∧ ∀𝑥𝑦 ((𝑢𝑦)‘𝑥) ∈ 𝐵))
9783, 94, 96sylanbrc 583 . . . . . . . . . . . . . . 15 (𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 → (𝑢𝑦) ∈ X𝑥𝑦 𝐵)
98 ssun2 4145 . . . . . . . . . . . . . . . . . 18 {𝑧} ⊆ (𝑦 ∪ {𝑧})
9998, 56sselii 3946 . . . . . . . . . . . . . . . . 17 𝑧 ∈ (𝑦 ∪ {𝑧})
100 csbeq1 3868 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑧𝑤 / 𝑥𝐵 = 𝑧 / 𝑥𝐵)
101100fvixp 8878 . . . . . . . . . . . . . . . . 17 ((𝑢X𝑤 ∈ (𝑦 ∪ {𝑧})𝑤 / 𝑥𝐵𝑧 ∈ (𝑦 ∪ {𝑧})) → (𝑢𝑧) ∈ 𝑧 / 𝑥𝐵)
10299, 101mpan2 691 . . . . . . . . . . . . . . . 16 (𝑢X𝑤 ∈ (𝑦 ∪ {𝑧})𝑤 / 𝑥𝐵 → (𝑢𝑧) ∈ 𝑧 / 𝑥𝐵)
103 nfcv 2892 . . . . . . . . . . . . . . . . 17 𝑤𝐵
104 nfcsb1v 3889 . . . . . . . . . . . . . . . . 17 𝑥𝑤 / 𝑥𝐵
105 csbeq1a 3879 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑤𝐵 = 𝑤 / 𝑥𝐵)
106103, 104, 105cbvixp 8890 . . . . . . . . . . . . . . . 16 X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 = X𝑤 ∈ (𝑦 ∪ {𝑧})𝑤 / 𝑥𝐵
107102, 106eleq2s 2847 . . . . . . . . . . . . . . 15 (𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 → (𝑢𝑧) ∈ 𝑧 / 𝑥𝐵)
108 opelxpi 5678 . . . . . . . . . . . . . . 15 (((𝑢𝑦) ∈ X𝑥𝑦 𝐵 ∧ (𝑢𝑧) ∈ 𝑧 / 𝑥𝐵) → ⟨(𝑢𝑦), (𝑢𝑧)⟩ ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵))
10997, 107, 108syl2anc 584 . . . . . . . . . . . . . 14 (𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 → ⟨(𝑢𝑦), (𝑢𝑧)⟩ ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵))
110109adantl 481 . . . . . . . . . . . . 13 ((¬ 𝑧𝑦𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) → ⟨(𝑢𝑦), (𝑢𝑧)⟩ ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵))
111 disj3 4420 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∩ {𝑧}) = ∅ ↔ 𝑦 = (𝑦 ∖ {𝑧}))
11240, 111sylbb1 237 . . . . . . . . . . . . . . . . . 18 𝑧𝑦𝑦 = (𝑦 ∖ {𝑧}))
113 difun2 4447 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∪ {𝑧}) ∖ {𝑧}) = (𝑦 ∖ {𝑧})
114112, 113eqtr4di 2783 . . . . . . . . . . . . . . . . 17 𝑧𝑦𝑦 = ((𝑦 ∪ {𝑧}) ∖ {𝑧}))
115114reseq2d 5953 . . . . . . . . . . . . . . . 16 𝑧𝑦 → (𝑢𝑦) = (𝑢 ↾ ((𝑦 ∪ {𝑧}) ∖ {𝑧})))
116115uneq1d 4133 . . . . . . . . . . . . . . 15 𝑧𝑦 → ((𝑢𝑦) ∪ {⟨𝑧, (𝑢𝑧)⟩}) = ((𝑢 ↾ ((𝑦 ∪ {𝑧}) ∖ {𝑧})) ∪ {⟨𝑧, (𝑢𝑧)⟩}))
117116adantr 480 . . . . . . . . . . . . . 14 ((¬ 𝑧𝑦𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) → ((𝑢𝑦) ∪ {⟨𝑧, (𝑢𝑧)⟩}) = ((𝑢 ↾ ((𝑦 ∪ {𝑧}) ∖ {𝑧})) ∪ {⟨𝑧, (𝑢𝑧)⟩}))
118 fvex 6874 . . . . . . . . . . . . . . . . . . 19 (𝑢𝑧) ∈ V
11995, 118op1std 7981 . . . . . . . . . . . . . . . . . 18 (𝑤 = ⟨(𝑢𝑦), (𝑢𝑧)⟩ → (1st𝑤) = (𝑢𝑦))
12095, 118op2ndd 7982 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = ⟨(𝑢𝑦), (𝑢𝑧)⟩ → (2nd𝑤) = (𝑢𝑧))
121120opeq2d 4847 . . . . . . . . . . . . . . . . . . 19 (𝑤 = ⟨(𝑢𝑦), (𝑢𝑧)⟩ → ⟨𝑧, (2nd𝑤)⟩ = ⟨𝑧, (𝑢𝑧)⟩)
122121sneqd 4604 . . . . . . . . . . . . . . . . . 18 (𝑤 = ⟨(𝑢𝑦), (𝑢𝑧)⟩ → {⟨𝑧, (2nd𝑤)⟩} = {⟨𝑧, (𝑢𝑧)⟩})
123119, 122uneq12d 4135 . . . . . . . . . . . . . . . . 17 (𝑤 = ⟨(𝑢𝑦), (𝑢𝑧)⟩ → ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}) = ((𝑢𝑦) ∪ {⟨𝑧, (𝑢𝑧)⟩}))
124 eqid 2730 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})) = (𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))
125 snex 5394 . . . . . . . . . . . . . . . . . 18 {⟨𝑧, (𝑢𝑧)⟩} ∈ V
12695, 125unex 7723 . . . . . . . . . . . . . . . . 17 ((𝑢𝑦) ∪ {⟨𝑧, (𝑢𝑧)⟩}) ∈ V
127123, 124, 126fvmpt 6971 . . . . . . . . . . . . . . . 16 (⟨(𝑢𝑦), (𝑢𝑧)⟩ ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) → ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘⟨(𝑢𝑦), (𝑢𝑧)⟩) = ((𝑢𝑦) ∪ {⟨𝑧, (𝑢𝑧)⟩}))
128109, 127syl 17 . . . . . . . . . . . . . . 15 (𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 → ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘⟨(𝑢𝑦), (𝑢𝑧)⟩) = ((𝑢𝑦) ∪ {⟨𝑧, (𝑢𝑧)⟩}))
129128adantl 481 . . . . . . . . . . . . . 14 ((¬ 𝑧𝑦𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) → ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘⟨(𝑢𝑦), (𝑢𝑧)⟩) = ((𝑢𝑦) ∪ {⟨𝑧, (𝑢𝑧)⟩}))
130 fnsnsplit 7161 . . . . . . . . . . . . . . . 16 ((𝑢 Fn (𝑦 ∪ {𝑧}) ∧ 𝑧 ∈ (𝑦 ∪ {𝑧})) → 𝑢 = ((𝑢 ↾ ((𝑦 ∪ {𝑧}) ∖ {𝑧})) ∪ {⟨𝑧, (𝑢𝑧)⟩}))
13180, 99, 130sylancl 586 . . . . . . . . . . . . . . 15 (𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵𝑢 = ((𝑢 ↾ ((𝑦 ∪ {𝑧}) ∖ {𝑧})) ∪ {⟨𝑧, (𝑢𝑧)⟩}))
132131adantl 481 . . . . . . . . . . . . . 14 ((¬ 𝑧𝑦𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) → 𝑢 = ((𝑢 ↾ ((𝑦 ∪ {𝑧}) ∖ {𝑧})) ∪ {⟨𝑧, (𝑢𝑧)⟩}))
133117, 129, 1323eqtr4rd 2776 . . . . . . . . . . . . 13 ((¬ 𝑧𝑦𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) → 𝑢 = ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘⟨(𝑢𝑦), (𝑢𝑧)⟩))
134 fveq2 6861 . . . . . . . . . . . . . 14 (𝑣 = ⟨(𝑢𝑦), (𝑢𝑧)⟩ → ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘𝑣) = ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘⟨(𝑢𝑦), (𝑢𝑧)⟩))
135134rspceeqv 3614 . . . . . . . . . . . . 13 ((⟨(𝑢𝑦), (𝑢𝑧)⟩ ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ∧ 𝑢 = ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘⟨(𝑢𝑦), (𝑢𝑧)⟩)) → ∃𝑣 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)𝑢 = ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘𝑣))
136110, 133, 135syl2anc 584 . . . . . . . . . . . 12 ((¬ 𝑧𝑦𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) → ∃𝑣 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)𝑢 = ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘𝑣))
137136ralrimiva 3126 . . . . . . . . . . 11 𝑧𝑦 → ∀𝑢X 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵𝑣 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)𝑢 = ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘𝑣))
138 dffo3 7077 . . . . . . . . . . 11 ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})):(X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)–ontoX𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ↔ ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})):(X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)⟶X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∧ ∀𝑢X 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵𝑣 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)𝑢 = ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘𝑣)))
13979, 137, 138sylanbrc 583 . . . . . . . . . 10 𝑧𝑦 → (𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})):(X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)–ontoX𝑥 ∈ (𝑦 ∪ {𝑧})𝐵)
140 fonum 10018 . . . . . . . . . 10 (((X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ∈ dom card ∧ (𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})):(X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)–ontoX𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) → X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card)
14133, 139, 140syl2anr 597 . . . . . . . . 9 ((¬ 𝑧𝑦 ∧ (𝑧 / 𝑥𝐵 ∈ dom card ∧ X𝑥𝑦 𝐵 ∈ dom card)) → X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card)
142141expr 456 . . . . . . . 8 ((¬ 𝑧𝑦𝑧 / 𝑥𝐵 ∈ dom card) → (X𝑥𝑦 𝐵 ∈ dom card → X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card))
14331, 142syl9r 78 . . . . . . 7 ((¬ 𝑧𝑦𝑧 / 𝑥𝐵 ∈ dom card) → (∀𝑥𝑦 𝐵 ∈ dom card → ((∀𝑥𝑦 𝐵 ∈ dom card → X𝑥𝑦 𝐵 ∈ dom card) → X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card)))
144143expimpd 453 . . . . . 6 𝑧𝑦 → ((𝑧 / 𝑥𝐵 ∈ dom card ∧ ∀𝑥𝑦 𝐵 ∈ dom card) → ((∀𝑥𝑦 𝐵 ∈ dom card → X𝑥𝑦 𝐵 ∈ dom card) → X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card)))
145144ancomsd 465 . . . . 5 𝑧𝑦 → ((∀𝑥𝑦 𝐵 ∈ dom card ∧ 𝑧 / 𝑥𝐵 ∈ dom card) → ((∀𝑥𝑦 𝐵 ∈ dom card → X𝑥𝑦 𝐵 ∈ dom card) → X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card)))
146145com23 86 . . . 4 𝑧𝑦 → ((∀𝑥𝑦 𝐵 ∈ dom card → X𝑥𝑦 𝐵 ∈ dom card) → ((∀𝑥𝑦 𝐵 ∈ dom card ∧ 𝑧 / 𝑥𝐵 ∈ dom card) → X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card)))
147146adantl 481 . . 3 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((∀𝑥𝑦 𝐵 ∈ dom card → X𝑥𝑦 𝐵 ∈ dom card) → ((∀𝑥𝑦 𝐵 ∈ dom card ∧ 𝑧 / 𝑥𝐵 ∈ dom card) → X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card)))
1486, 10, 23, 27, 30, 147findcard2s 9135 . 2 (𝐴 ∈ Fin → (∀𝑥𝐴 𝐵 ∈ dom card → X𝑥𝐴 𝐵 ∈ dom card))
149148imp 406 1 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ dom card) → X𝑥𝐴 𝐵 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  [wsbc 3756  csb 3865  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299  {csn 4592  cop 4598  cmpt 5191   × cxp 5639  dom cdm 5641  cres 5643   Fn wfn 6509  wf 6510  ontowfo 6512  cfv 6514  1st c1st 7969  2nd c2nd 7970  Xcixp 8873  Fincfn 8921  cardccrd 9895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-fin 8925  df-card 9899  df-acn 9902
This theorem is referenced by:  poimirlem32  37653
  Copyright terms: Public domain W3C validator