![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cnvbraval | Structured version Visualization version GIF version |
Description: Value of the converse of the bra function. Based on the Riesz Lemma riesz4 32093, this very important theorem not only justifies the Dirac bra-ket notation, but allows to extract a unique vector from any continuous linear functional from which the functional can be recovered; i.e. a single vector can "store" all of the information contained in any entire continuous linear functional (mapping from ℋ to ℂ). (Contributed by NM, 26-May-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnvbraval | ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (◡bra‘𝑇) = (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bra11 32137 | . . . . . . . . . 10 ⊢ bra: ℋ–1-1-onto→(LinFn ∩ ContFn) | |
2 | f1ocnvfv 7298 | . . . . . . . . . 10 ⊢ ((bra: ℋ–1-1-onto→(LinFn ∩ ContFn) ∧ 𝑦 ∈ ℋ) → ((bra‘𝑦) = 𝑇 → (◡bra‘𝑇) = 𝑦)) | |
3 | 1, 2 | mpan 690 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℋ → ((bra‘𝑦) = 𝑇 → (◡bra‘𝑇) = 𝑦)) |
4 | 3 | imp 406 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℋ ∧ (bra‘𝑦) = 𝑇) → (◡bra‘𝑇) = 𝑦) |
5 | 4 | oveq2d 7447 | . . . . . . 7 ⊢ ((𝑦 ∈ ℋ ∧ (bra‘𝑦) = 𝑇) → (𝑥 ·ih (◡bra‘𝑇)) = (𝑥 ·ih 𝑦)) |
6 | 5 | adantll 714 | . . . . . 6 ⊢ ((((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (bra‘𝑦) = 𝑇) → (𝑥 ·ih (◡bra‘𝑇)) = (𝑥 ·ih 𝑦)) |
7 | braval 31973 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((bra‘𝑦)‘𝑥) = (𝑥 ·ih 𝑦)) | |
8 | 7 | ancoms 458 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((bra‘𝑦)‘𝑥) = (𝑥 ·ih 𝑦)) |
9 | 8 | adantll 714 | . . . . . . 7 ⊢ (((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((bra‘𝑦)‘𝑥) = (𝑥 ·ih 𝑦)) |
10 | 9 | adantr 480 | . . . . . 6 ⊢ ((((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (bra‘𝑦) = 𝑇) → ((bra‘𝑦)‘𝑥) = (𝑥 ·ih 𝑦)) |
11 | fveq1 6906 | . . . . . . 7 ⊢ ((bra‘𝑦) = 𝑇 → ((bra‘𝑦)‘𝑥) = (𝑇‘𝑥)) | |
12 | 11 | adantl 481 | . . . . . 6 ⊢ ((((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (bra‘𝑦) = 𝑇) → ((bra‘𝑦)‘𝑥) = (𝑇‘𝑥)) |
13 | 6, 10, 12 | 3eqtr2rd 2782 | . . . . 5 ⊢ ((((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (bra‘𝑦) = 𝑇) → (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇))) |
14 | rnbra 32136 | . . . . . . . 8 ⊢ ran bra = (LinFn ∩ ContFn) | |
15 | 14 | eleq2i 2831 | . . . . . . 7 ⊢ (𝑇 ∈ ran bra ↔ 𝑇 ∈ (LinFn ∩ ContFn)) |
16 | f1of 6849 | . . . . . . . . . 10 ⊢ (bra: ℋ–1-1-onto→(LinFn ∩ ContFn) → bra: ℋ⟶(LinFn ∩ ContFn)) | |
17 | 1, 16 | ax-mp 5 | . . . . . . . . 9 ⊢ bra: ℋ⟶(LinFn ∩ ContFn) |
18 | ffn 6737 | . . . . . . . . 9 ⊢ (bra: ℋ⟶(LinFn ∩ ContFn) → bra Fn ℋ) | |
19 | 17, 18 | ax-mp 5 | . . . . . . . 8 ⊢ bra Fn ℋ |
20 | fvelrnb 6969 | . . . . . . . 8 ⊢ (bra Fn ℋ → (𝑇 ∈ ran bra ↔ ∃𝑦 ∈ ℋ (bra‘𝑦) = 𝑇)) | |
21 | 19, 20 | ax-mp 5 | . . . . . . 7 ⊢ (𝑇 ∈ ran bra ↔ ∃𝑦 ∈ ℋ (bra‘𝑦) = 𝑇) |
22 | 15, 21 | sylbb1 237 | . . . . . 6 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → ∃𝑦 ∈ ℋ (bra‘𝑦) = 𝑇) |
23 | 22 | adantr 480 | . . . . 5 ⊢ ((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) → ∃𝑦 ∈ ℋ (bra‘𝑦) = 𝑇) |
24 | 13, 23 | r19.29a 3160 | . . . 4 ⊢ ((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇))) |
25 | 24 | ralrimiva 3144 | . . 3 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇))) |
26 | f1ocnvdm 7305 | . . . . 5 ⊢ ((bra: ℋ–1-1-onto→(LinFn ∩ ContFn) ∧ 𝑇 ∈ (LinFn ∩ ContFn)) → (◡bra‘𝑇) ∈ ℋ) | |
27 | 1, 26 | mpan 690 | . . . 4 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (◡bra‘𝑇) ∈ ℋ) |
28 | riesz4 32093 | . . . 4 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) | |
29 | oveq2 7439 | . . . . . . 7 ⊢ (𝑦 = (◡bra‘𝑇) → (𝑥 ·ih 𝑦) = (𝑥 ·ih (◡bra‘𝑇))) | |
30 | 29 | eqeq2d 2746 | . . . . . 6 ⊢ (𝑦 = (◡bra‘𝑇) → ((𝑇‘𝑥) = (𝑥 ·ih 𝑦) ↔ (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇)))) |
31 | 30 | ralbidv 3176 | . . . . 5 ⊢ (𝑦 = (◡bra‘𝑇) → (∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇)))) |
32 | 31 | riota2 7413 | . . . 4 ⊢ (((◡bra‘𝑇) ∈ ℋ ∧ ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) → (∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇)) ↔ (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) = (◡bra‘𝑇))) |
33 | 27, 28, 32 | syl2anc 584 | . . 3 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇)) ↔ (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) = (◡bra‘𝑇))) |
34 | 25, 33 | mpbid 232 | . 2 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) = (◡bra‘𝑇)) |
35 | 34 | eqcomd 2741 | 1 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (◡bra‘𝑇) = (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 ∃!wreu 3376 ∩ cin 3962 ◡ccnv 5688 ran crn 5690 Fn wfn 6558 ⟶wf 6559 –1-1-onto→wf1o 6562 ‘cfv 6563 ℩crio 7387 (class class class)co 7431 ℋchba 30948 ·ih csp 30951 ContFnccnfn 30982 LinFnclf 30983 bracbr 30985 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cc 10473 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 ax-mulf 11233 ax-hilex 31028 ax-hfvadd 31029 ax-hvcom 31030 ax-hvass 31031 ax-hv0cl 31032 ax-hvaddid 31033 ax-hfvmul 31034 ax-hvmulid 31035 ax-hvmulass 31036 ax-hvdistr1 31037 ax-hvdistr2 31038 ax-hvmul0 31039 ax-hfi 31108 ax-his1 31111 ax-his2 31112 ax-his3 31113 ax-his4 31114 ax-hcompl 31231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-omul 8510 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-acn 9980 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-rlim 15522 df-sum 15720 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-pt 17491 df-prds 17494 df-xrs 17549 df-qtop 17554 df-imas 17555 df-xps 17557 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-mulg 19099 df-cntz 19348 df-cmn 19815 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-fbas 21379 df-fg 21380 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-nei 23122 df-cn 23251 df-cnp 23252 df-lm 23253 df-t1 23338 df-haus 23339 df-tx 23586 df-hmeo 23779 df-fil 23870 df-fm 23962 df-flim 23963 df-flf 23964 df-xms 24346 df-ms 24347 df-tms 24348 df-cfil 25303 df-cau 25304 df-cmet 25305 df-grpo 30522 df-gid 30523 df-ginv 30524 df-gdiv 30525 df-ablo 30574 df-vc 30588 df-nv 30621 df-va 30624 df-ba 30625 df-sm 30626 df-0v 30627 df-vs 30628 df-nmcv 30629 df-ims 30630 df-dip 30730 df-ssp 30751 df-ph 30842 df-cbn 30892 df-hnorm 30997 df-hba 30998 df-hvsub 31000 df-hlim 31001 df-hcau 31002 df-sh 31236 df-ch 31250 df-oc 31281 df-ch0 31282 df-nmfn 31874 df-nlfn 31875 df-cnfn 31876 df-lnfn 31877 df-bra 31879 |
This theorem is referenced by: bracnlnval 32143 |
Copyright terms: Public domain | W3C validator |