![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cnvbraval | Structured version Visualization version GIF version |
Description: Value of the converse of the bra function. Based on the Riesz Lemma riesz4 31786, this very important theorem not only justifies the Dirac bra-ket notation, but allows to extract a unique vector from any continuous linear functional from which the functional can be recovered; i.e. a single vector can "store" all of the information contained in any entire continuous linear functional (mapping from ℋ to ℂ). (Contributed by NM, 26-May-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnvbraval | ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (◡bra‘𝑇) = (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bra11 31830 | . . . . . . . . . 10 ⊢ bra: ℋ–1-1-onto→(LinFn ∩ ContFn) | |
2 | f1ocnvfv 7268 | . . . . . . . . . 10 ⊢ ((bra: ℋ–1-1-onto→(LinFn ∩ ContFn) ∧ 𝑦 ∈ ℋ) → ((bra‘𝑦) = 𝑇 → (◡bra‘𝑇) = 𝑦)) | |
3 | 1, 2 | mpan 687 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℋ → ((bra‘𝑦) = 𝑇 → (◡bra‘𝑇) = 𝑦)) |
4 | 3 | imp 406 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℋ ∧ (bra‘𝑦) = 𝑇) → (◡bra‘𝑇) = 𝑦) |
5 | 4 | oveq2d 7417 | . . . . . . 7 ⊢ ((𝑦 ∈ ℋ ∧ (bra‘𝑦) = 𝑇) → (𝑥 ·ih (◡bra‘𝑇)) = (𝑥 ·ih 𝑦)) |
6 | 5 | adantll 711 | . . . . . 6 ⊢ ((((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (bra‘𝑦) = 𝑇) → (𝑥 ·ih (◡bra‘𝑇)) = (𝑥 ·ih 𝑦)) |
7 | braval 31666 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((bra‘𝑦)‘𝑥) = (𝑥 ·ih 𝑦)) | |
8 | 7 | ancoms 458 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((bra‘𝑦)‘𝑥) = (𝑥 ·ih 𝑦)) |
9 | 8 | adantll 711 | . . . . . . 7 ⊢ (((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((bra‘𝑦)‘𝑥) = (𝑥 ·ih 𝑦)) |
10 | 9 | adantr 480 | . . . . . 6 ⊢ ((((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (bra‘𝑦) = 𝑇) → ((bra‘𝑦)‘𝑥) = (𝑥 ·ih 𝑦)) |
11 | fveq1 6880 | . . . . . . 7 ⊢ ((bra‘𝑦) = 𝑇 → ((bra‘𝑦)‘𝑥) = (𝑇‘𝑥)) | |
12 | 11 | adantl 481 | . . . . . 6 ⊢ ((((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (bra‘𝑦) = 𝑇) → ((bra‘𝑦)‘𝑥) = (𝑇‘𝑥)) |
13 | 6, 10, 12 | 3eqtr2rd 2771 | . . . . 5 ⊢ ((((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (bra‘𝑦) = 𝑇) → (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇))) |
14 | rnbra 31829 | . . . . . . . 8 ⊢ ran bra = (LinFn ∩ ContFn) | |
15 | 14 | eleq2i 2817 | . . . . . . 7 ⊢ (𝑇 ∈ ran bra ↔ 𝑇 ∈ (LinFn ∩ ContFn)) |
16 | f1of 6823 | . . . . . . . . . 10 ⊢ (bra: ℋ–1-1-onto→(LinFn ∩ ContFn) → bra: ℋ⟶(LinFn ∩ ContFn)) | |
17 | 1, 16 | ax-mp 5 | . . . . . . . . 9 ⊢ bra: ℋ⟶(LinFn ∩ ContFn) |
18 | ffn 6707 | . . . . . . . . 9 ⊢ (bra: ℋ⟶(LinFn ∩ ContFn) → bra Fn ℋ) | |
19 | 17, 18 | ax-mp 5 | . . . . . . . 8 ⊢ bra Fn ℋ |
20 | fvelrnb 6942 | . . . . . . . 8 ⊢ (bra Fn ℋ → (𝑇 ∈ ran bra ↔ ∃𝑦 ∈ ℋ (bra‘𝑦) = 𝑇)) | |
21 | 19, 20 | ax-mp 5 | . . . . . . 7 ⊢ (𝑇 ∈ ran bra ↔ ∃𝑦 ∈ ℋ (bra‘𝑦) = 𝑇) |
22 | 15, 21 | sylbb1 236 | . . . . . 6 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → ∃𝑦 ∈ ℋ (bra‘𝑦) = 𝑇) |
23 | 22 | adantr 480 | . . . . 5 ⊢ ((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) → ∃𝑦 ∈ ℋ (bra‘𝑦) = 𝑇) |
24 | 13, 23 | r19.29a 3154 | . . . 4 ⊢ ((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇))) |
25 | 24 | ralrimiva 3138 | . . 3 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇))) |
26 | f1ocnvdm 7275 | . . . . 5 ⊢ ((bra: ℋ–1-1-onto→(LinFn ∩ ContFn) ∧ 𝑇 ∈ (LinFn ∩ ContFn)) → (◡bra‘𝑇) ∈ ℋ) | |
27 | 1, 26 | mpan 687 | . . . 4 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (◡bra‘𝑇) ∈ ℋ) |
28 | riesz4 31786 | . . . 4 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) | |
29 | oveq2 7409 | . . . . . . 7 ⊢ (𝑦 = (◡bra‘𝑇) → (𝑥 ·ih 𝑦) = (𝑥 ·ih (◡bra‘𝑇))) | |
30 | 29 | eqeq2d 2735 | . . . . . 6 ⊢ (𝑦 = (◡bra‘𝑇) → ((𝑇‘𝑥) = (𝑥 ·ih 𝑦) ↔ (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇)))) |
31 | 30 | ralbidv 3169 | . . . . 5 ⊢ (𝑦 = (◡bra‘𝑇) → (∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇)))) |
32 | 31 | riota2 7383 | . . . 4 ⊢ (((◡bra‘𝑇) ∈ ℋ ∧ ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) → (∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇)) ↔ (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) = (◡bra‘𝑇))) |
33 | 27, 28, 32 | syl2anc 583 | . . 3 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇)) ↔ (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) = (◡bra‘𝑇))) |
34 | 25, 33 | mpbid 231 | . 2 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) = (◡bra‘𝑇)) |
35 | 34 | eqcomd 2730 | 1 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (◡bra‘𝑇) = (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3053 ∃wrex 3062 ∃!wreu 3366 ∩ cin 3939 ◡ccnv 5665 ran crn 5667 Fn wfn 6528 ⟶wf 6529 –1-1-onto→wf1o 6532 ‘cfv 6533 ℩crio 7356 (class class class)co 7401 ℋchba 30641 ·ih csp 30644 ContFnccnfn 30675 LinFnclf 30676 bracbr 30678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9632 ax-cc 10426 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 ax-hilex 30721 ax-hfvadd 30722 ax-hvcom 30723 ax-hvass 30724 ax-hv0cl 30725 ax-hvaddid 30726 ax-hfvmul 30727 ax-hvmulid 30728 ax-hvmulass 30729 ax-hvdistr1 30730 ax-hvdistr2 30731 ax-hvmul0 30732 ax-hfi 30801 ax-his1 30804 ax-his2 30805 ax-his3 30806 ax-his4 30807 ax-hcompl 30924 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-om 7849 df-1st 7968 df-2nd 7969 df-supp 8141 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-oadd 8465 df-omul 8466 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-acn 9933 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-z 12556 df-dec 12675 df-uz 12820 df-q 12930 df-rp 12972 df-xneg 13089 df-xadd 13090 df-xmul 13091 df-ioo 13325 df-ico 13327 df-icc 13328 df-fz 13482 df-fzo 13625 df-fl 13754 df-seq 13964 df-exp 14025 df-hash 14288 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-clim 15429 df-rlim 15430 df-sum 15630 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17367 df-topn 17368 df-0g 17386 df-gsum 17387 df-topgen 17388 df-pt 17389 df-prds 17392 df-xrs 17447 df-qtop 17452 df-imas 17453 df-xps 17455 df-mre 17529 df-mrc 17530 df-acs 17532 df-mgm 18563 df-sgrp 18642 df-mnd 18658 df-submnd 18704 df-mulg 18986 df-cntz 19223 df-cmn 19692 df-psmet 21220 df-xmet 21221 df-met 21222 df-bl 21223 df-mopn 21224 df-fbas 21225 df-fg 21226 df-cnfld 21229 df-top 22718 df-topon 22735 df-topsp 22757 df-bases 22771 df-cld 22845 df-ntr 22846 df-cls 22847 df-nei 22924 df-cn 23053 df-cnp 23054 df-lm 23055 df-t1 23140 df-haus 23141 df-tx 23388 df-hmeo 23581 df-fil 23672 df-fm 23764 df-flim 23765 df-flf 23766 df-xms 24148 df-ms 24149 df-tms 24150 df-cfil 25105 df-cau 25106 df-cmet 25107 df-grpo 30215 df-gid 30216 df-ginv 30217 df-gdiv 30218 df-ablo 30267 df-vc 30281 df-nv 30314 df-va 30317 df-ba 30318 df-sm 30319 df-0v 30320 df-vs 30321 df-nmcv 30322 df-ims 30323 df-dip 30423 df-ssp 30444 df-ph 30535 df-cbn 30585 df-hnorm 30690 df-hba 30691 df-hvsub 30693 df-hlim 30694 df-hcau 30695 df-sh 30929 df-ch 30943 df-oc 30974 df-ch0 30975 df-nmfn 31567 df-nlfn 31568 df-cnfn 31569 df-lnfn 31570 df-bra 31572 |
This theorem is referenced by: bracnlnval 31836 |
Copyright terms: Public domain | W3C validator |