Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > cnvbraval | Structured version Visualization version GIF version |
Description: Value of the converse of the bra function. Based on the Riesz Lemma riesz4 30426, this very important theorem not only justifies the Dirac bra-ket notation, but allows us to extract a unique vector from any continuous linear functional from which the functional can be recovered; i.e. a single vector can "store" all of the information contained in any entire continuous linear functional (mapping from ℋ to ℂ). (Contributed by NM, 26-May-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnvbraval | ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (◡bra‘𝑇) = (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bra11 30470 | . . . . . . . . . 10 ⊢ bra: ℋ–1-1-onto→(LinFn ∩ ContFn) | |
2 | f1ocnvfv 7150 | . . . . . . . . . 10 ⊢ ((bra: ℋ–1-1-onto→(LinFn ∩ ContFn) ∧ 𝑦 ∈ ℋ) → ((bra‘𝑦) = 𝑇 → (◡bra‘𝑇) = 𝑦)) | |
3 | 1, 2 | mpan 687 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℋ → ((bra‘𝑦) = 𝑇 → (◡bra‘𝑇) = 𝑦)) |
4 | 3 | imp 407 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℋ ∧ (bra‘𝑦) = 𝑇) → (◡bra‘𝑇) = 𝑦) |
5 | 4 | oveq2d 7291 | . . . . . . 7 ⊢ ((𝑦 ∈ ℋ ∧ (bra‘𝑦) = 𝑇) → (𝑥 ·ih (◡bra‘𝑇)) = (𝑥 ·ih 𝑦)) |
6 | 5 | adantll 711 | . . . . . 6 ⊢ ((((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (bra‘𝑦) = 𝑇) → (𝑥 ·ih (◡bra‘𝑇)) = (𝑥 ·ih 𝑦)) |
7 | braval 30306 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((bra‘𝑦)‘𝑥) = (𝑥 ·ih 𝑦)) | |
8 | 7 | ancoms 459 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((bra‘𝑦)‘𝑥) = (𝑥 ·ih 𝑦)) |
9 | 8 | adantll 711 | . . . . . . 7 ⊢ (((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((bra‘𝑦)‘𝑥) = (𝑥 ·ih 𝑦)) |
10 | 9 | adantr 481 | . . . . . 6 ⊢ ((((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (bra‘𝑦) = 𝑇) → ((bra‘𝑦)‘𝑥) = (𝑥 ·ih 𝑦)) |
11 | fveq1 6773 | . . . . . . 7 ⊢ ((bra‘𝑦) = 𝑇 → ((bra‘𝑦)‘𝑥) = (𝑇‘𝑥)) | |
12 | 11 | adantl 482 | . . . . . 6 ⊢ ((((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (bra‘𝑦) = 𝑇) → ((bra‘𝑦)‘𝑥) = (𝑇‘𝑥)) |
13 | 6, 10, 12 | 3eqtr2rd 2785 | . . . . 5 ⊢ ((((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (bra‘𝑦) = 𝑇) → (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇))) |
14 | rnbra 30469 | . . . . . . . 8 ⊢ ran bra = (LinFn ∩ ContFn) | |
15 | 14 | eleq2i 2830 | . . . . . . 7 ⊢ (𝑇 ∈ ran bra ↔ 𝑇 ∈ (LinFn ∩ ContFn)) |
16 | f1of 6716 | . . . . . . . . . 10 ⊢ (bra: ℋ–1-1-onto→(LinFn ∩ ContFn) → bra: ℋ⟶(LinFn ∩ ContFn)) | |
17 | 1, 16 | ax-mp 5 | . . . . . . . . 9 ⊢ bra: ℋ⟶(LinFn ∩ ContFn) |
18 | ffn 6600 | . . . . . . . . 9 ⊢ (bra: ℋ⟶(LinFn ∩ ContFn) → bra Fn ℋ) | |
19 | 17, 18 | ax-mp 5 | . . . . . . . 8 ⊢ bra Fn ℋ |
20 | fvelrnb 6830 | . . . . . . . 8 ⊢ (bra Fn ℋ → (𝑇 ∈ ran bra ↔ ∃𝑦 ∈ ℋ (bra‘𝑦) = 𝑇)) | |
21 | 19, 20 | ax-mp 5 | . . . . . . 7 ⊢ (𝑇 ∈ ran bra ↔ ∃𝑦 ∈ ℋ (bra‘𝑦) = 𝑇) |
22 | 15, 21 | sylbb1 236 | . . . . . 6 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → ∃𝑦 ∈ ℋ (bra‘𝑦) = 𝑇) |
23 | 22 | adantr 481 | . . . . 5 ⊢ ((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) → ∃𝑦 ∈ ℋ (bra‘𝑦) = 𝑇) |
24 | 13, 23 | r19.29a 3218 | . . . 4 ⊢ ((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇))) |
25 | 24 | ralrimiva 3103 | . . 3 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇))) |
26 | f1ocnvdm 7157 | . . . . 5 ⊢ ((bra: ℋ–1-1-onto→(LinFn ∩ ContFn) ∧ 𝑇 ∈ (LinFn ∩ ContFn)) → (◡bra‘𝑇) ∈ ℋ) | |
27 | 1, 26 | mpan 687 | . . . 4 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (◡bra‘𝑇) ∈ ℋ) |
28 | riesz4 30426 | . . . 4 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) | |
29 | oveq2 7283 | . . . . . . 7 ⊢ (𝑦 = (◡bra‘𝑇) → (𝑥 ·ih 𝑦) = (𝑥 ·ih (◡bra‘𝑇))) | |
30 | 29 | eqeq2d 2749 | . . . . . 6 ⊢ (𝑦 = (◡bra‘𝑇) → ((𝑇‘𝑥) = (𝑥 ·ih 𝑦) ↔ (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇)))) |
31 | 30 | ralbidv 3112 | . . . . 5 ⊢ (𝑦 = (◡bra‘𝑇) → (∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇)))) |
32 | 31 | riota2 7258 | . . . 4 ⊢ (((◡bra‘𝑇) ∈ ℋ ∧ ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) → (∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇)) ↔ (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) = (◡bra‘𝑇))) |
33 | 27, 28, 32 | syl2anc 584 | . . 3 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇)) ↔ (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) = (◡bra‘𝑇))) |
34 | 25, 33 | mpbid 231 | . 2 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) = (◡bra‘𝑇)) |
35 | 34 | eqcomd 2744 | 1 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (◡bra‘𝑇) = (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ∃!wreu 3066 ∩ cin 3886 ◡ccnv 5588 ran crn 5590 Fn wfn 6428 ⟶wf 6429 –1-1-onto→wf1o 6432 ‘cfv 6433 ℩crio 7231 (class class class)co 7275 ℋchba 29281 ·ih csp 29284 ContFnccnfn 29315 LinFnclf 29316 bracbr 29318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cc 10191 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 ax-hilex 29361 ax-hfvadd 29362 ax-hvcom 29363 ax-hvass 29364 ax-hv0cl 29365 ax-hvaddid 29366 ax-hfvmul 29367 ax-hvmulid 29368 ax-hvmulass 29369 ax-hvdistr1 29370 ax-hvdistr2 29371 ax-hvmul0 29372 ax-hfi 29441 ax-his1 29444 ax-his2 29445 ax-his3 29446 ax-his4 29447 ax-hcompl 29564 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-omul 8302 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-acn 9700 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-rlim 15198 df-sum 15398 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-rest 17133 df-topn 17134 df-0g 17152 df-gsum 17153 df-topgen 17154 df-pt 17155 df-prds 17158 df-xrs 17213 df-qtop 17218 df-imas 17219 df-xps 17221 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-mulg 18701 df-cntz 18923 df-cmn 19388 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-fbas 20594 df-fg 20595 df-cnfld 20598 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cld 22170 df-ntr 22171 df-cls 22172 df-nei 22249 df-cn 22378 df-cnp 22379 df-lm 22380 df-t1 22465 df-haus 22466 df-tx 22713 df-hmeo 22906 df-fil 22997 df-fm 23089 df-flim 23090 df-flf 23091 df-xms 23473 df-ms 23474 df-tms 23475 df-cfil 24419 df-cau 24420 df-cmet 24421 df-grpo 28855 df-gid 28856 df-ginv 28857 df-gdiv 28858 df-ablo 28907 df-vc 28921 df-nv 28954 df-va 28957 df-ba 28958 df-sm 28959 df-0v 28960 df-vs 28961 df-nmcv 28962 df-ims 28963 df-dip 29063 df-ssp 29084 df-ph 29175 df-cbn 29225 df-hnorm 29330 df-hba 29331 df-hvsub 29333 df-hlim 29334 df-hcau 29335 df-sh 29569 df-ch 29583 df-oc 29614 df-ch0 29615 df-nmfn 30207 df-nlfn 30208 df-cnfn 30209 df-lnfn 30210 df-bra 30212 |
This theorem is referenced by: bracnlnval 30476 |
Copyright terms: Public domain | W3C validator |