![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cnvbraval | Structured version Visualization version GIF version |
Description: Value of the converse of the bra function. Based on the Riesz Lemma riesz4 29440, this very important theorem not only justifies the Dirac bra-ket notation, but allows us to extract a unique vector from any continuous linear functional from which the functional can be recovered; i.e. a single vector can "store" all of the information contained in any entire continuous linear functional (mapping from ℋ to ℂ). (Contributed by NM, 26-May-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnvbraval | ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (◡bra‘𝑇) = (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bra11 29484 | . . . . . . . . . 10 ⊢ bra: ℋ–1-1-onto→(LinFn ∩ ContFn) | |
2 | f1ocnvfv 6760 | . . . . . . . . . 10 ⊢ ((bra: ℋ–1-1-onto→(LinFn ∩ ContFn) ∧ 𝑦 ∈ ℋ) → ((bra‘𝑦) = 𝑇 → (◡bra‘𝑇) = 𝑦)) | |
3 | 1, 2 | mpan 682 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℋ → ((bra‘𝑦) = 𝑇 → (◡bra‘𝑇) = 𝑦)) |
4 | 3 | imp 396 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℋ ∧ (bra‘𝑦) = 𝑇) → (◡bra‘𝑇) = 𝑦) |
5 | 4 | oveq2d 6892 | . . . . . . 7 ⊢ ((𝑦 ∈ ℋ ∧ (bra‘𝑦) = 𝑇) → (𝑥 ·ih (◡bra‘𝑇)) = (𝑥 ·ih 𝑦)) |
6 | 5 | adantll 706 | . . . . . 6 ⊢ ((((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (bra‘𝑦) = 𝑇) → (𝑥 ·ih (◡bra‘𝑇)) = (𝑥 ·ih 𝑦)) |
7 | braval 29320 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((bra‘𝑦)‘𝑥) = (𝑥 ·ih 𝑦)) | |
8 | 7 | ancoms 451 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((bra‘𝑦)‘𝑥) = (𝑥 ·ih 𝑦)) |
9 | 8 | adantll 706 | . . . . . . 7 ⊢ (((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((bra‘𝑦)‘𝑥) = (𝑥 ·ih 𝑦)) |
10 | 9 | adantr 473 | . . . . . 6 ⊢ ((((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (bra‘𝑦) = 𝑇) → ((bra‘𝑦)‘𝑥) = (𝑥 ·ih 𝑦)) |
11 | fveq1 6408 | . . . . . . 7 ⊢ ((bra‘𝑦) = 𝑇 → ((bra‘𝑦)‘𝑥) = (𝑇‘𝑥)) | |
12 | 11 | adantl 474 | . . . . . 6 ⊢ ((((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (bra‘𝑦) = 𝑇) → ((bra‘𝑦)‘𝑥) = (𝑇‘𝑥)) |
13 | 6, 10, 12 | 3eqtr2rd 2838 | . . . . 5 ⊢ ((((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) ∧ (bra‘𝑦) = 𝑇) → (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇))) |
14 | rnbra 29483 | . . . . . . . 8 ⊢ ran bra = (LinFn ∩ ContFn) | |
15 | 14 | eleq2i 2868 | . . . . . . 7 ⊢ (𝑇 ∈ ran bra ↔ 𝑇 ∈ (LinFn ∩ ContFn)) |
16 | f1of 6354 | . . . . . . . . . 10 ⊢ (bra: ℋ–1-1-onto→(LinFn ∩ ContFn) → bra: ℋ⟶(LinFn ∩ ContFn)) | |
17 | 1, 16 | ax-mp 5 | . . . . . . . . 9 ⊢ bra: ℋ⟶(LinFn ∩ ContFn) |
18 | ffn 6254 | . . . . . . . . 9 ⊢ (bra: ℋ⟶(LinFn ∩ ContFn) → bra Fn ℋ) | |
19 | 17, 18 | ax-mp 5 | . . . . . . . 8 ⊢ bra Fn ℋ |
20 | fvelrnb 6466 | . . . . . . . 8 ⊢ (bra Fn ℋ → (𝑇 ∈ ran bra ↔ ∃𝑦 ∈ ℋ (bra‘𝑦) = 𝑇)) | |
21 | 19, 20 | ax-mp 5 | . . . . . . 7 ⊢ (𝑇 ∈ ran bra ↔ ∃𝑦 ∈ ℋ (bra‘𝑦) = 𝑇) |
22 | 15, 21 | sylbb1 229 | . . . . . 6 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → ∃𝑦 ∈ ℋ (bra‘𝑦) = 𝑇) |
23 | 22 | adantr 473 | . . . . 5 ⊢ ((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) → ∃𝑦 ∈ ℋ (bra‘𝑦) = 𝑇) |
24 | 13, 23 | r19.29a 3257 | . . . 4 ⊢ ((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇))) |
25 | 24 | ralrimiva 3145 | . . 3 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇))) |
26 | f1ocnvdm 6766 | . . . . 5 ⊢ ((bra: ℋ–1-1-onto→(LinFn ∩ ContFn) ∧ 𝑇 ∈ (LinFn ∩ ContFn)) → (◡bra‘𝑇) ∈ ℋ) | |
27 | 1, 26 | mpan 682 | . . . 4 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (◡bra‘𝑇) ∈ ℋ) |
28 | riesz4 29440 | . . . 4 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) | |
29 | oveq2 6884 | . . . . . . 7 ⊢ (𝑦 = (◡bra‘𝑇) → (𝑥 ·ih 𝑦) = (𝑥 ·ih (◡bra‘𝑇))) | |
30 | 29 | eqeq2d 2807 | . . . . . 6 ⊢ (𝑦 = (◡bra‘𝑇) → ((𝑇‘𝑥) = (𝑥 ·ih 𝑦) ↔ (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇)))) |
31 | 30 | ralbidv 3165 | . . . . 5 ⊢ (𝑦 = (◡bra‘𝑇) → (∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇)))) |
32 | 31 | riota2 6859 | . . . 4 ⊢ (((◡bra‘𝑇) ∈ ℋ ∧ ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) → (∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇)) ↔ (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) = (◡bra‘𝑇))) |
33 | 27, 28, 32 | syl2anc 580 | . . 3 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih (◡bra‘𝑇)) ↔ (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) = (◡bra‘𝑇))) |
34 | 25, 33 | mpbid 224 | . 2 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) = (◡bra‘𝑇)) |
35 | 34 | eqcomd 2803 | 1 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (◡bra‘𝑇) = (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3087 ∃wrex 3088 ∃!wreu 3089 ∩ cin 3766 ◡ccnv 5309 ran crn 5311 Fn wfn 6094 ⟶wf 6095 –1-1-onto→wf1o 6098 ‘cfv 6099 ℩crio 6836 (class class class)co 6876 ℋchba 28293 ·ih csp 28296 ContFnccnfn 28327 LinFnclf 28328 bracbr 28330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-inf2 8786 ax-cc 9543 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 ax-pre-sup 10300 ax-addf 10301 ax-mulf 10302 ax-hilex 28373 ax-hfvadd 28374 ax-hvcom 28375 ax-hvass 28376 ax-hv0cl 28377 ax-hvaddid 28378 ax-hfvmul 28379 ax-hvmulid 28380 ax-hvmulass 28381 ax-hvdistr1 28382 ax-hvdistr2 28383 ax-hvmul0 28384 ax-hfi 28453 ax-his1 28456 ax-his2 28457 ax-his3 28458 ax-his4 28459 ax-hcompl 28576 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-int 4666 df-iun 4710 df-iin 4711 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-se 5270 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-isom 6108 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-of 7129 df-om 7298 df-1st 7399 df-2nd 7400 df-supp 7531 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-2o 7798 df-oadd 7801 df-omul 7802 df-er 7980 df-map 8095 df-pm 8096 df-ixp 8147 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-fsupp 8516 df-fi 8557 df-sup 8588 df-inf 8589 df-oi 8655 df-card 9049 df-acn 9052 df-cda 9276 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-div 10975 df-nn 11311 df-2 11372 df-3 11373 df-4 11374 df-5 11375 df-6 11376 df-7 11377 df-8 11378 df-9 11379 df-n0 11577 df-z 11663 df-dec 11780 df-uz 11927 df-q 12030 df-rp 12071 df-xneg 12189 df-xadd 12190 df-xmul 12191 df-ioo 12424 df-ico 12426 df-icc 12427 df-fz 12577 df-fzo 12717 df-fl 12844 df-seq 13052 df-exp 13111 df-hash 13367 df-cj 14177 df-re 14178 df-im 14179 df-sqrt 14313 df-abs 14314 df-clim 14557 df-rlim 14558 df-sum 14755 df-struct 16183 df-ndx 16184 df-slot 16185 df-base 16187 df-sets 16188 df-ress 16189 df-plusg 16277 df-mulr 16278 df-starv 16279 df-sca 16280 df-vsca 16281 df-ip 16282 df-tset 16283 df-ple 16284 df-ds 16286 df-unif 16287 df-hom 16288 df-cco 16289 df-rest 16395 df-topn 16396 df-0g 16414 df-gsum 16415 df-topgen 16416 df-pt 16417 df-prds 16420 df-xrs 16474 df-qtop 16479 df-imas 16480 df-xps 16482 df-mre 16558 df-mrc 16559 df-acs 16561 df-mgm 17554 df-sgrp 17596 df-mnd 17607 df-submnd 17648 df-mulg 17854 df-cntz 18059 df-cmn 18507 df-psmet 20057 df-xmet 20058 df-met 20059 df-bl 20060 df-mopn 20061 df-fbas 20062 df-fg 20063 df-cnfld 20066 df-top 21024 df-topon 21041 df-topsp 21063 df-bases 21076 df-cld 21149 df-ntr 21150 df-cls 21151 df-nei 21228 df-cn 21357 df-cnp 21358 df-lm 21359 df-t1 21444 df-haus 21445 df-tx 21691 df-hmeo 21884 df-fil 21975 df-fm 22067 df-flim 22068 df-flf 22069 df-xms 22450 df-ms 22451 df-tms 22452 df-cfil 23378 df-cau 23379 df-cmet 23380 df-grpo 27865 df-gid 27866 df-ginv 27867 df-gdiv 27868 df-ablo 27917 df-vc 27931 df-nv 27964 df-va 27967 df-ba 27968 df-sm 27969 df-0v 27970 df-vs 27971 df-nmcv 27972 df-ims 27973 df-dip 28073 df-ssp 28094 df-ph 28185 df-cbn 28236 df-hnorm 28342 df-hba 28343 df-hvsub 28345 df-hlim 28346 df-hcau 28347 df-sh 28581 df-ch 28595 df-oc 28626 df-ch0 28627 df-nmfn 29221 df-nlfn 29222 df-cnfn 29223 df-lnfn 29224 df-bra 29226 |
This theorem is referenced by: bracnlnval 29490 |
Copyright terms: Public domain | W3C validator |