| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clsf2 | Structured version Visualization version GIF version | ||
| Description: The closure function is a map from the powerset of the base set to itself. This is less precise than clsf 22941. (Contributed by RP, 22-Apr-2021.) |
| Ref | Expression |
|---|---|
| clselmap.x | ⊢ 𝑋 = ∪ 𝐽 |
| clselmap.k | ⊢ 𝐾 = (cls‘𝐽) |
| Ref | Expression |
|---|---|
| clsf2 | ⊢ (𝐽 ∈ Top → 𝐾:𝒫 𝑋⟶𝒫 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clselmap.x | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | clsf 22941 | . . 3 ⊢ (𝐽 ∈ Top → (cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽)) |
| 3 | clselmap.k | . . . . 5 ⊢ 𝐾 = (cls‘𝐽) | |
| 4 | 3 | feq1i 6686 | . . . 4 ⊢ (𝐾:𝒫 𝑋⟶(Clsd‘𝐽) ↔ (cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽)) |
| 5 | df-f 6523 | . . . 4 ⊢ (𝐾:𝒫 𝑋⟶(Clsd‘𝐽) ↔ (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ (Clsd‘𝐽))) | |
| 6 | 4, 5 | sylbb1 237 | . . 3 ⊢ ((cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽) → (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ (Clsd‘𝐽))) |
| 7 | 1 | cldss2 22923 | . . . . 5 ⊢ (Clsd‘𝐽) ⊆ 𝒫 𝑋 |
| 8 | sstr2 3961 | . . . . 5 ⊢ (ran 𝐾 ⊆ (Clsd‘𝐽) → ((Clsd‘𝐽) ⊆ 𝒫 𝑋 → ran 𝐾 ⊆ 𝒫 𝑋)) | |
| 9 | 7, 8 | mpi 20 | . . . 4 ⊢ (ran 𝐾 ⊆ (Clsd‘𝐽) → ran 𝐾 ⊆ 𝒫 𝑋) |
| 10 | 9 | anim2i 617 | . . 3 ⊢ ((𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ (Clsd‘𝐽)) → (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ 𝒫 𝑋)) |
| 11 | 2, 6, 10 | 3syl 18 | . 2 ⊢ (𝐽 ∈ Top → (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ 𝒫 𝑋)) |
| 12 | df-f 6523 | . 2 ⊢ (𝐾:𝒫 𝑋⟶𝒫 𝑋 ↔ (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ 𝒫 𝑋)) | |
| 13 | 11, 12 | sylibr 234 | 1 ⊢ (𝐽 ∈ Top → 𝐾:𝒫 𝑋⟶𝒫 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3922 𝒫 cpw 4571 ∪ cuni 4879 ran crn 5647 Fn wfn 6514 ⟶wf 6515 ‘cfv 6519 Topctop 22786 Clsdccld 22909 clsccl 22911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-iin 4966 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-top 22787 df-cld 22912 df-cls 22914 |
| This theorem is referenced by: clselmap 44088 |
| Copyright terms: Public domain | W3C validator |