Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsf2 Structured version   Visualization version   GIF version

Theorem clsf2 43339
Description: The closure function is a map from the powerset of the base set to itself. This is less precise than clsf 22871. (Contributed by RP, 22-Apr-2021.)
Hypotheses
Ref Expression
clselmap.x 𝑋 = βˆͺ 𝐽
clselmap.k 𝐾 = (clsβ€˜π½)
Assertion
Ref Expression
clsf2 (𝐽 ∈ Top β†’ 𝐾:𝒫 π‘‹βŸΆπ’« 𝑋)

Proof of Theorem clsf2
StepHypRef Expression
1 clselmap.x . . . 4 𝑋 = βˆͺ 𝐽
21clsf 22871 . . 3 (𝐽 ∈ Top β†’ (clsβ€˜π½):𝒫 π‘‹βŸΆ(Clsdβ€˜π½))
3 clselmap.k . . . . 5 𝐾 = (clsβ€˜π½)
43feq1i 6708 . . . 4 (𝐾:𝒫 π‘‹βŸΆ(Clsdβ€˜π½) ↔ (clsβ€˜π½):𝒫 π‘‹βŸΆ(Clsdβ€˜π½))
5 df-f 6547 . . . 4 (𝐾:𝒫 π‘‹βŸΆ(Clsdβ€˜π½) ↔ (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 βŠ† (Clsdβ€˜π½)))
64, 5sylbb1 236 . . 3 ((clsβ€˜π½):𝒫 π‘‹βŸΆ(Clsdβ€˜π½) β†’ (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 βŠ† (Clsdβ€˜π½)))
71cldss2 22853 . . . . 5 (Clsdβ€˜π½) βŠ† 𝒫 𝑋
8 sstr2 3989 . . . . 5 (ran 𝐾 βŠ† (Clsdβ€˜π½) β†’ ((Clsdβ€˜π½) βŠ† 𝒫 𝑋 β†’ ran 𝐾 βŠ† 𝒫 𝑋))
97, 8mpi 20 . . . 4 (ran 𝐾 βŠ† (Clsdβ€˜π½) β†’ ran 𝐾 βŠ† 𝒫 𝑋)
109anim2i 616 . . 3 ((𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 βŠ† (Clsdβ€˜π½)) β†’ (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 βŠ† 𝒫 𝑋))
112, 6, 103syl 18 . 2 (𝐽 ∈ Top β†’ (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 βŠ† 𝒫 𝑋))
12 df-f 6547 . 2 (𝐾:𝒫 π‘‹βŸΆπ’« 𝑋 ↔ (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 βŠ† 𝒫 𝑋))
1311, 12sylibr 233 1 (𝐽 ∈ Top β†’ 𝐾:𝒫 π‘‹βŸΆπ’« 𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105   βŠ† wss 3948  π’« cpw 4602  βˆͺ cuni 4908  ran crn 5677   Fn wfn 6538  βŸΆwf 6539  β€˜cfv 6543  Topctop 22714  Clsdccld 22839  clsccl 22841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-top 22715  df-cld 22842  df-cls 22844
This theorem is referenced by:  clselmap  43340
  Copyright terms: Public domain W3C validator