Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsf2 Structured version   Visualization version   GIF version

Theorem clsf2 44243
Description: The closure function is a map from the powerset of the base set to itself. This is less precise than clsf 22964. (Contributed by RP, 22-Apr-2021.)
Hypotheses
Ref Expression
clselmap.x 𝑋 = 𝐽
clselmap.k 𝐾 = (cls‘𝐽)
Assertion
Ref Expression
clsf2 (𝐽 ∈ Top → 𝐾:𝒫 𝑋⟶𝒫 𝑋)

Proof of Theorem clsf2
StepHypRef Expression
1 clselmap.x . . . 4 𝑋 = 𝐽
21clsf 22964 . . 3 (𝐽 ∈ Top → (cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽))
3 clselmap.k . . . . 5 𝐾 = (cls‘𝐽)
43feq1i 6647 . . . 4 (𝐾:𝒫 𝑋⟶(Clsd‘𝐽) ↔ (cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽))
5 df-f 6490 . . . 4 (𝐾:𝒫 𝑋⟶(Clsd‘𝐽) ↔ (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ (Clsd‘𝐽)))
64, 5sylbb1 237 . . 3 ((cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽) → (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ (Clsd‘𝐽)))
71cldss2 22946 . . . . 5 (Clsd‘𝐽) ⊆ 𝒫 𝑋
8 sstr2 3937 . . . . 5 (ran 𝐾 ⊆ (Clsd‘𝐽) → ((Clsd‘𝐽) ⊆ 𝒫 𝑋 → ran 𝐾 ⊆ 𝒫 𝑋))
97, 8mpi 20 . . . 4 (ran 𝐾 ⊆ (Clsd‘𝐽) → ran 𝐾 ⊆ 𝒫 𝑋)
109anim2i 617 . . 3 ((𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ (Clsd‘𝐽)) → (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ 𝒫 𝑋))
112, 6, 103syl 18 . 2 (𝐽 ∈ Top → (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ 𝒫 𝑋))
12 df-f 6490 . 2 (𝐾:𝒫 𝑋⟶𝒫 𝑋 ↔ (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ 𝒫 𝑋))
1311, 12sylibr 234 1 (𝐽 ∈ Top → 𝐾:𝒫 𝑋⟶𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wss 3898  𝒫 cpw 4549   cuni 4858  ran crn 5620   Fn wfn 6481  wf 6482  cfv 6486  Topctop 22809  Clsdccld 22932  clsccl 22934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-top 22810  df-cld 22935  df-cls 22937
This theorem is referenced by:  clselmap  44244
  Copyright terms: Public domain W3C validator