| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clsf2 | Structured version Visualization version GIF version | ||
| Description: The closure function is a map from the powerset of the base set to itself. This is less precise than clsf 23001. (Contributed by RP, 22-Apr-2021.) |
| Ref | Expression |
|---|---|
| clselmap.x | ⊢ 𝑋 = ∪ 𝐽 |
| clselmap.k | ⊢ 𝐾 = (cls‘𝐽) |
| Ref | Expression |
|---|---|
| clsf2 | ⊢ (𝐽 ∈ Top → 𝐾:𝒫 𝑋⟶𝒫 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clselmap.x | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | clsf 23001 | . . 3 ⊢ (𝐽 ∈ Top → (cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽)) |
| 3 | clselmap.k | . . . . 5 ⊢ 𝐾 = (cls‘𝐽) | |
| 4 | 3 | feq1i 6706 | . . . 4 ⊢ (𝐾:𝒫 𝑋⟶(Clsd‘𝐽) ↔ (cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽)) |
| 5 | df-f 6544 | . . . 4 ⊢ (𝐾:𝒫 𝑋⟶(Clsd‘𝐽) ↔ (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ (Clsd‘𝐽))) | |
| 6 | 4, 5 | sylbb1 237 | . . 3 ⊢ ((cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽) → (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ (Clsd‘𝐽))) |
| 7 | 1 | cldss2 22983 | . . . . 5 ⊢ (Clsd‘𝐽) ⊆ 𝒫 𝑋 |
| 8 | sstr2 3970 | . . . . 5 ⊢ (ran 𝐾 ⊆ (Clsd‘𝐽) → ((Clsd‘𝐽) ⊆ 𝒫 𝑋 → ran 𝐾 ⊆ 𝒫 𝑋)) | |
| 9 | 7, 8 | mpi 20 | . . . 4 ⊢ (ran 𝐾 ⊆ (Clsd‘𝐽) → ran 𝐾 ⊆ 𝒫 𝑋) |
| 10 | 9 | anim2i 617 | . . 3 ⊢ ((𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ (Clsd‘𝐽)) → (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ 𝒫 𝑋)) |
| 11 | 2, 6, 10 | 3syl 18 | . 2 ⊢ (𝐽 ∈ Top → (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ 𝒫 𝑋)) |
| 12 | df-f 6544 | . 2 ⊢ (𝐾:𝒫 𝑋⟶𝒫 𝑋 ↔ (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ 𝒫 𝑋)) | |
| 13 | 11, 12 | sylibr 234 | 1 ⊢ (𝐽 ∈ Top → 𝐾:𝒫 𝑋⟶𝒫 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ⊆ wss 3931 𝒫 cpw 4580 ∪ cuni 4887 ran crn 5666 Fn wfn 6535 ⟶wf 6536 ‘cfv 6540 Topctop 22846 Clsdccld 22969 clsccl 22971 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-top 22847 df-cld 22972 df-cls 22974 |
| This theorem is referenced by: clselmap 44078 |
| Copyright terms: Public domain | W3C validator |