Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsf2 Structured version   Visualization version   GIF version

Theorem clsf2 41736
Description: The closure function is a map from the powerset of the base set to itself. This is less precise than clsf 22199. (Contributed by RP, 22-Apr-2021.)
Hypotheses
Ref Expression
clselmap.x 𝑋 = 𝐽
clselmap.k 𝐾 = (cls‘𝐽)
Assertion
Ref Expression
clsf2 (𝐽 ∈ Top → 𝐾:𝒫 𝑋⟶𝒫 𝑋)

Proof of Theorem clsf2
StepHypRef Expression
1 clselmap.x . . . 4 𝑋 = 𝐽
21clsf 22199 . . 3 (𝐽 ∈ Top → (cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽))
3 clselmap.k . . . . 5 𝐾 = (cls‘𝐽)
43feq1i 6591 . . . 4 (𝐾:𝒫 𝑋⟶(Clsd‘𝐽) ↔ (cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽))
5 df-f 6437 . . . 4 (𝐾:𝒫 𝑋⟶(Clsd‘𝐽) ↔ (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ (Clsd‘𝐽)))
64, 5sylbb1 236 . . 3 ((cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽) → (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ (Clsd‘𝐽)))
71cldss2 22181 . . . . 5 (Clsd‘𝐽) ⊆ 𝒫 𝑋
8 sstr2 3928 . . . . 5 (ran 𝐾 ⊆ (Clsd‘𝐽) → ((Clsd‘𝐽) ⊆ 𝒫 𝑋 → ran 𝐾 ⊆ 𝒫 𝑋))
97, 8mpi 20 . . . 4 (ran 𝐾 ⊆ (Clsd‘𝐽) → ran 𝐾 ⊆ 𝒫 𝑋)
109anim2i 617 . . 3 ((𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ (Clsd‘𝐽)) → (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ 𝒫 𝑋))
112, 6, 103syl 18 . 2 (𝐽 ∈ Top → (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ 𝒫 𝑋))
12 df-f 6437 . 2 (𝐾:𝒫 𝑋⟶𝒫 𝑋 ↔ (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ 𝒫 𝑋))
1311, 12sylibr 233 1 (𝐽 ∈ Top → 𝐾:𝒫 𝑋⟶𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wss 3887  𝒫 cpw 4533   cuni 4839  ran crn 5590   Fn wfn 6428  wf 6429  cfv 6433  Topctop 22042  Clsdccld 22167  clsccl 22169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-top 22043  df-cld 22170  df-cls 22172
This theorem is referenced by:  clselmap  41737
  Copyright terms: Public domain W3C validator