![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clsf2 | Structured version Visualization version GIF version |
Description: The closure function is a map from the powerset of the base set to itself. This is less precise than clsf 23043. (Contributed by RP, 22-Apr-2021.) |
Ref | Expression |
---|---|
clselmap.x | ⊢ 𝑋 = ∪ 𝐽 |
clselmap.k | ⊢ 𝐾 = (cls‘𝐽) |
Ref | Expression |
---|---|
clsf2 | ⊢ (𝐽 ∈ Top → 𝐾:𝒫 𝑋⟶𝒫 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clselmap.x | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | clsf 23043 | . . 3 ⊢ (𝐽 ∈ Top → (cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽)) |
3 | clselmap.k | . . . . 5 ⊢ 𝐾 = (cls‘𝐽) | |
4 | 3 | feq1i 6719 | . . . 4 ⊢ (𝐾:𝒫 𝑋⟶(Clsd‘𝐽) ↔ (cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽)) |
5 | df-f 6558 | . . . 4 ⊢ (𝐾:𝒫 𝑋⟶(Clsd‘𝐽) ↔ (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ (Clsd‘𝐽))) | |
6 | 4, 5 | sylbb1 236 | . . 3 ⊢ ((cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽) → (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ (Clsd‘𝐽))) |
7 | 1 | cldss2 23025 | . . . . 5 ⊢ (Clsd‘𝐽) ⊆ 𝒫 𝑋 |
8 | sstr2 3986 | . . . . 5 ⊢ (ran 𝐾 ⊆ (Clsd‘𝐽) → ((Clsd‘𝐽) ⊆ 𝒫 𝑋 → ran 𝐾 ⊆ 𝒫 𝑋)) | |
9 | 7, 8 | mpi 20 | . . . 4 ⊢ (ran 𝐾 ⊆ (Clsd‘𝐽) → ran 𝐾 ⊆ 𝒫 𝑋) |
10 | 9 | anim2i 615 | . . 3 ⊢ ((𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ (Clsd‘𝐽)) → (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ 𝒫 𝑋)) |
11 | 2, 6, 10 | 3syl 18 | . 2 ⊢ (𝐽 ∈ Top → (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ 𝒫 𝑋)) |
12 | df-f 6558 | . 2 ⊢ (𝐾:𝒫 𝑋⟶𝒫 𝑋 ↔ (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ 𝒫 𝑋)) | |
13 | 11, 12 | sylibr 233 | 1 ⊢ (𝐽 ∈ Top → 𝐾:𝒫 𝑋⟶𝒫 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ⊆ wss 3947 𝒫 cpw 4607 ∪ cuni 4913 ran crn 5683 Fn wfn 6549 ⟶wf 6550 ‘cfv 6554 Topctop 22886 Clsdccld 23011 clsccl 23013 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-iin 5004 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-top 22887 df-cld 23014 df-cls 23016 |
This theorem is referenced by: clselmap 43794 |
Copyright terms: Public domain | W3C validator |