Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsf2 Structured version   Visualization version   GIF version

Theorem clsf2 43793
Description: The closure function is a map from the powerset of the base set to itself. This is less precise than clsf 23043. (Contributed by RP, 22-Apr-2021.)
Hypotheses
Ref Expression
clselmap.x 𝑋 = 𝐽
clselmap.k 𝐾 = (cls‘𝐽)
Assertion
Ref Expression
clsf2 (𝐽 ∈ Top → 𝐾:𝒫 𝑋⟶𝒫 𝑋)

Proof of Theorem clsf2
StepHypRef Expression
1 clselmap.x . . . 4 𝑋 = 𝐽
21clsf 23043 . . 3 (𝐽 ∈ Top → (cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽))
3 clselmap.k . . . . 5 𝐾 = (cls‘𝐽)
43feq1i 6719 . . . 4 (𝐾:𝒫 𝑋⟶(Clsd‘𝐽) ↔ (cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽))
5 df-f 6558 . . . 4 (𝐾:𝒫 𝑋⟶(Clsd‘𝐽) ↔ (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ (Clsd‘𝐽)))
64, 5sylbb1 236 . . 3 ((cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽) → (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ (Clsd‘𝐽)))
71cldss2 23025 . . . . 5 (Clsd‘𝐽) ⊆ 𝒫 𝑋
8 sstr2 3986 . . . . 5 (ran 𝐾 ⊆ (Clsd‘𝐽) → ((Clsd‘𝐽) ⊆ 𝒫 𝑋 → ran 𝐾 ⊆ 𝒫 𝑋))
97, 8mpi 20 . . . 4 (ran 𝐾 ⊆ (Clsd‘𝐽) → ran 𝐾 ⊆ 𝒫 𝑋)
109anim2i 615 . . 3 ((𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ (Clsd‘𝐽)) → (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ 𝒫 𝑋))
112, 6, 103syl 18 . 2 (𝐽 ∈ Top → (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ 𝒫 𝑋))
12 df-f 6558 . 2 (𝐾:𝒫 𝑋⟶𝒫 𝑋 ↔ (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ 𝒫 𝑋))
1311, 12sylibr 233 1 (𝐽 ∈ Top → 𝐾:𝒫 𝑋⟶𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  wss 3947  𝒫 cpw 4607   cuni 4913  ran crn 5683   Fn wfn 6549  wf 6550  cfv 6554  Topctop 22886  Clsdccld 23011  clsccl 23013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-top 22887  df-cld 23014  df-cls 23016
This theorem is referenced by:  clselmap  43794
  Copyright terms: Public domain W3C validator