| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clsf2 | Structured version Visualization version GIF version | ||
| Description: The closure function is a map from the powerset of the base set to itself. This is less precise than clsf 22951. (Contributed by RP, 22-Apr-2021.) |
| Ref | Expression |
|---|---|
| clselmap.x | ⊢ 𝑋 = ∪ 𝐽 |
| clselmap.k | ⊢ 𝐾 = (cls‘𝐽) |
| Ref | Expression |
|---|---|
| clsf2 | ⊢ (𝐽 ∈ Top → 𝐾:𝒫 𝑋⟶𝒫 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clselmap.x | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | clsf 22951 | . . 3 ⊢ (𝐽 ∈ Top → (cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽)) |
| 3 | clselmap.k | . . . . 5 ⊢ 𝐾 = (cls‘𝐽) | |
| 4 | 3 | feq1i 6647 | . . . 4 ⊢ (𝐾:𝒫 𝑋⟶(Clsd‘𝐽) ↔ (cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽)) |
| 5 | df-f 6490 | . . . 4 ⊢ (𝐾:𝒫 𝑋⟶(Clsd‘𝐽) ↔ (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ (Clsd‘𝐽))) | |
| 6 | 4, 5 | sylbb1 237 | . . 3 ⊢ ((cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽) → (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ (Clsd‘𝐽))) |
| 7 | 1 | cldss2 22933 | . . . . 5 ⊢ (Clsd‘𝐽) ⊆ 𝒫 𝑋 |
| 8 | sstr2 3944 | . . . . 5 ⊢ (ran 𝐾 ⊆ (Clsd‘𝐽) → ((Clsd‘𝐽) ⊆ 𝒫 𝑋 → ran 𝐾 ⊆ 𝒫 𝑋)) | |
| 9 | 7, 8 | mpi 20 | . . . 4 ⊢ (ran 𝐾 ⊆ (Clsd‘𝐽) → ran 𝐾 ⊆ 𝒫 𝑋) |
| 10 | 9 | anim2i 617 | . . 3 ⊢ ((𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ (Clsd‘𝐽)) → (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ 𝒫 𝑋)) |
| 11 | 2, 6, 10 | 3syl 18 | . 2 ⊢ (𝐽 ∈ Top → (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ 𝒫 𝑋)) |
| 12 | df-f 6490 | . 2 ⊢ (𝐾:𝒫 𝑋⟶𝒫 𝑋 ↔ (𝐾 Fn 𝒫 𝑋 ∧ ran 𝐾 ⊆ 𝒫 𝑋)) | |
| 13 | 11, 12 | sylibr 234 | 1 ⊢ (𝐽 ∈ Top → 𝐾:𝒫 𝑋⟶𝒫 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 𝒫 cpw 4553 ∪ cuni 4861 ran crn 5624 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 Topctop 22796 Clsdccld 22919 clsccl 22921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-top 22797 df-cld 22922 df-cls 22924 |
| This theorem is referenced by: clselmap 44100 |
| Copyright terms: Public domain | W3C validator |