| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elwwlks2s3 | Structured version Visualization version GIF version | ||
| Description: A walk of length 2 as word is a length 3 string. (Contributed by AV, 18-May-2021.) |
| Ref | Expression |
|---|---|
| elwwlks2s3.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| elwwlks2s3 | ⊢ (𝑊 ∈ (2 WWalksN 𝐺) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 𝑊 = 〈“𝑎𝑏𝑐”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wwlknbp1 29826 | . 2 ⊢ (𝑊 ∈ (2 WWalksN 𝐺) → (2 ∈ ℕ0 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (2 + 1))) | |
| 2 | elwwlks2s3.v | . . . . . . 7 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | 2 | wrdeqi 14448 | . . . . . 6 ⊢ Word 𝑉 = Word (Vtx‘𝐺) |
| 4 | 3 | eleq2i 2825 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 ↔ 𝑊 ∈ Word (Vtx‘𝐺)) |
| 5 | df-3 12198 | . . . . . 6 ⊢ 3 = (2 + 1) | |
| 6 | 5 | eqeq2i 2746 | . . . . 5 ⊢ ((♯‘𝑊) = 3 ↔ (♯‘𝑊) = (2 + 1)) |
| 7 | 4, 6 | anbi12i 628 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (2 + 1))) |
| 8 | wrdl3s3 14873 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 𝑊 = 〈“𝑎𝑏𝑐”〉) | |
| 9 | 7, 8 | sylbb1 237 | . . 3 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (2 + 1)) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 𝑊 = 〈“𝑎𝑏𝑐”〉) |
| 10 | 9 | 3adant1 1130 | . 2 ⊢ ((2 ∈ ℕ0 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (2 + 1)) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 𝑊 = 〈“𝑎𝑏𝑐”〉) |
| 11 | 1, 10 | syl 17 | 1 ⊢ (𝑊 ∈ (2 WWalksN 𝐺) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 𝑊 = 〈“𝑎𝑏𝑐”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 ‘cfv 6488 (class class class)co 7354 1c1 11016 + caddc 11018 2c2 12189 3c3 12190 ℕ0cn0 12390 ♯chash 14241 Word cword 14424 〈“cs3 14753 Vtxcvtx 28978 WWalksN cwwlksn 29808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-map 8760 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-n0 12391 df-z 12478 df-uz 12741 df-fz 13412 df-fzo 13559 df-hash 14242 df-word 14425 df-concat 14482 df-s1 14508 df-s2 14759 df-s3 14760 df-wwlks 29812 df-wwlksn 29813 |
| This theorem is referenced by: midwwlks2s3 29934 |
| Copyright terms: Public domain | W3C validator |