Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elwwlks2s3 | Structured version Visualization version GIF version |
Description: A walk of length 2 as word is a length 3 string. (Contributed by AV, 18-May-2021.) |
Ref | Expression |
---|---|
elwwlks2s3.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
elwwlks2s3 | ⊢ (𝑊 ∈ (2 WWalksN 𝐺) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 𝑊 = 〈“𝑎𝑏𝑐”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wwlknbp1 27714 | . 2 ⊢ (𝑊 ∈ (2 WWalksN 𝐺) → (2 ∈ ℕ0 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (2 + 1))) | |
2 | elwwlks2s3.v | . . . . . . 7 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 2 | wrdeqi 13921 | . . . . . 6 ⊢ Word 𝑉 = Word (Vtx‘𝐺) |
4 | 3 | eleq2i 2842 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 ↔ 𝑊 ∈ Word (Vtx‘𝐺)) |
5 | df-3 11723 | . . . . . 6 ⊢ 3 = (2 + 1) | |
6 | 5 | eqeq2i 2772 | . . . . 5 ⊢ ((♯‘𝑊) = 3 ↔ (♯‘𝑊) = (2 + 1)) |
7 | 4, 6 | anbi12i 630 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (2 + 1))) |
8 | wrdl3s3 14358 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 𝑊 = 〈“𝑎𝑏𝑐”〉) | |
9 | 7, 8 | sylbb1 240 | . . 3 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (2 + 1)) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 𝑊 = 〈“𝑎𝑏𝑐”〉) |
10 | 9 | 3adant1 1128 | . 2 ⊢ ((2 ∈ ℕ0 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (2 + 1)) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 𝑊 = 〈“𝑎𝑏𝑐”〉) |
11 | 1, 10 | syl 17 | 1 ⊢ (𝑊 ∈ (2 WWalksN 𝐺) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 𝑊 = 〈“𝑎𝑏𝑐”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ∃wrex 3069 ‘cfv 6328 (class class class)co 7143 1c1 10561 + caddc 10563 2c2 11714 3c3 11715 ℕ0cn0 11919 ♯chash 13725 Word cword 13898 〈“cs3 14236 Vtxcvtx 26873 WWalksN cwwlksn 27696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5149 ax-sep 5162 ax-nul 5169 ax-pow 5227 ax-pr 5291 ax-un 7452 ax-cnex 10616 ax-resscn 10617 ax-1cn 10618 ax-icn 10619 ax-addcl 10620 ax-addrcl 10621 ax-mulcl 10622 ax-mulrcl 10623 ax-mulcom 10624 ax-addass 10625 ax-mulass 10626 ax-distr 10627 ax-i2m1 10628 ax-1ne0 10629 ax-1rid 10630 ax-rnegex 10631 ax-rrecex 10632 ax-cnre 10633 ax-pre-lttri 10634 ax-pre-lttrn 10635 ax-pre-ltadd 10636 ax-pre-mulgt0 10637 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2899 df-ne 2950 df-nel 3054 df-ral 3073 df-rex 3074 df-reu 3075 df-rab 3077 df-v 3409 df-sbc 3694 df-csb 3802 df-dif 3857 df-un 3859 df-in 3861 df-ss 3871 df-pss 3873 df-nul 4222 df-if 4414 df-pw 4489 df-sn 4516 df-pr 4518 df-tp 4520 df-op 4522 df-uni 4792 df-int 4832 df-iun 4878 df-br 5026 df-opab 5088 df-mpt 5106 df-tr 5132 df-id 5423 df-eprel 5428 df-po 5436 df-so 5437 df-fr 5476 df-we 5478 df-xp 5523 df-rel 5524 df-cnv 5525 df-co 5526 df-dm 5527 df-rn 5528 df-res 5529 df-ima 5530 df-pred 6119 df-ord 6165 df-on 6166 df-lim 6167 df-suc 6168 df-iota 6287 df-fun 6330 df-fn 6331 df-f 6332 df-f1 6333 df-fo 6334 df-f1o 6335 df-fv 6336 df-riota 7101 df-ov 7146 df-oprab 7147 df-mpo 7148 df-om 7573 df-1st 7686 df-2nd 7687 df-wrecs 7950 df-recs 8011 df-rdg 8049 df-1o 8105 df-oadd 8109 df-er 8292 df-map 8411 df-en 8521 df-dom 8522 df-sdom 8523 df-fin 8524 df-card 9386 df-pnf 10700 df-mnf 10701 df-xr 10702 df-ltxr 10703 df-le 10704 df-sub 10895 df-neg 10896 df-nn 11660 df-2 11722 df-3 11723 df-n0 11920 df-z 12006 df-uz 12268 df-fz 12925 df-fzo 13068 df-hash 13726 df-word 13899 df-concat 13955 df-s1 13982 df-s2 14242 df-s3 14243 df-wwlks 27700 df-wwlksn 27701 |
This theorem is referenced by: midwwlks2s3 27822 |
Copyright terms: Public domain | W3C validator |