![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylbb2 | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.) |
Ref | Expression |
---|---|
sylbb2.1 | ⊢ (𝜑 ↔ 𝜓) |
sylbb2.2 | ⊢ (𝜒 ↔ 𝜓) |
Ref | Expression |
---|---|
sylbb2 | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbb2.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | sylbb2.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 2 | biimpri 228 | . 2 ⊢ (𝜓 → 𝜒) |
4 | 1, 3 | sylbi 217 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: rexprg 4702 ftpg 7176 frrlem13 8322 wfrlem5OLD 8352 brinxper 8773 sdom0 9147 funsnfsupp 9430 sucprcreg 9639 fin23lem40 10389 ffz0iswrd 14576 s4f1o 14954 fsumsplitsnun 15788 lcmcllem 16630 catcone0 17732 lidldvgen 21362 mat1dimbas 22494 pmatcollpw3fi 22807 nbgrssvwo2 29394 wlkn0 29654 clwlkcompbp 29815 clwlkclwwlkflem 30033 konigsberglem5 30285 difininv 32545 prmidl2 33449 eulerpartlemgs2 34362 bnj1476 34840 bnj1204 35005 dfon2lem3 35767 bj-ccinftydisj 37196 nninfnub 37738 ispridl2 38025 rp-isfinite6 43508 fnresfnco 46991 |
Copyright terms: Public domain | W3C validator |