Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylbb2 | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.) |
Ref | Expression |
---|---|
sylbb2.1 | ⊢ (𝜑 ↔ 𝜓) |
sylbb2.2 | ⊢ (𝜒 ↔ 𝜓) |
Ref | Expression |
---|---|
sylbb2 | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbb2.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | sylbb2.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 2 | biimpri 227 | . 2 ⊢ (𝜓 → 𝜒) |
4 | 1, 3 | sylbi 216 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: rexprg 4629 ftpg 7010 frrlem13 8085 wfrlem5OLD 8115 funsnfsupp 9082 sucprcreg 9290 fin23lem40 10038 ffz0iswrd 14172 s4f1o 14559 fsumsplitsnun 15395 lcmcllem 16229 catcone0 17313 lidldvgen 20439 mat1dimbas 21529 pmatcollpw3fi 21842 nbgrssvwo2 27632 wlkn0 27890 clwlkcompbp 28051 clwlkclwwlkflem 28269 konigsberglem5 28521 difininv 30765 prmidl2 31518 eulerpartlemgs2 32247 bnj1476 32727 bnj1204 32892 dfon2lem3 33667 bj-ccinftydisj 35311 nninfnub 35836 ispridl2 36123 rp-isfinite6 41023 fnresfnco 44422 |
Copyright terms: Public domain | W3C validator |