Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylbb2 | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.) |
Ref | Expression |
---|---|
sylbb2.1 | ⊢ (𝜑 ↔ 𝜓) |
sylbb2.2 | ⊢ (𝜒 ↔ 𝜓) |
Ref | Expression |
---|---|
sylbb2 | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbb2.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | sylbb2.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 2 | biimpri 227 | . 2 ⊢ (𝜓 → 𝜒) |
4 | 1, 3 | sylbi 216 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: rexprg 4633 ftpg 7037 frrlem13 8123 wfrlem5OLD 8153 sdom0 8904 funsnfsupp 9161 sucprcreg 9369 fin23lem40 10116 ffz0iswrd 14253 s4f1o 14640 fsumsplitsnun 15476 lcmcllem 16310 catcone0 17405 lidldvgen 20535 mat1dimbas 21630 pmatcollpw3fi 21943 nbgrssvwo2 27738 wlkn0 27997 clwlkcompbp 28159 clwlkclwwlkflem 28377 konigsberglem5 28629 difininv 30873 prmidl2 31625 eulerpartlemgs2 32356 bnj1476 32836 bnj1204 33001 dfon2lem3 33770 bj-ccinftydisj 35393 nninfnub 35918 ispridl2 36205 rp-isfinite6 41132 fnresfnco 44546 |
Copyright terms: Public domain | W3C validator |