| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylbb2 | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.) |
| Ref | Expression |
|---|---|
| sylbb2.1 | ⊢ (𝜑 ↔ 𝜓) |
| sylbb2.2 | ⊢ (𝜒 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sylbb2 | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbb2.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | sylbb2.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 2 | biimpri 228 | . 2 ⊢ (𝜓 → 𝜒) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: rexprg 4673 ftpg 7146 frrlem13 8297 wfrlem5OLD 8327 brinxper 8748 sdom0 9122 funsnfsupp 9404 sucprcreg 9615 fin23lem40 10365 ffz0iswrd 14559 s4f1o 14937 fsumsplitsnun 15771 lcmcllem 16615 catcone0 17699 lidldvgen 21295 mat1dimbas 22410 pmatcollpw3fi 22723 nbgrssvwo2 29341 wlkn0 29601 clwlkcompbp 29764 clwlkclwwlkflem 29985 konigsberglem5 30237 difininv 32498 prmidl2 33456 eulerpartlemgs2 34412 bnj1476 34878 bnj1204 35043 dfon2lem3 35803 bj-ccinftydisj 37231 nninfnub 37775 ispridl2 38062 rp-isfinite6 43542 fnresfnco 47070 |
| Copyright terms: Public domain | W3C validator |