| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylbb2 | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.) |
| Ref | Expression |
|---|---|
| sylbb2.1 | ⊢ (𝜑 ↔ 𝜓) |
| sylbb2.2 | ⊢ (𝜒 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sylbb2 | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbb2.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | sylbb2.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 2 | biimpri 228 | . 2 ⊢ (𝜓 → 𝜒) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: rexprg 4664 ftpg 7131 frrlem13 8280 brinxper 8703 sdom0 9079 funsnfsupp 9350 sucprcreg 9561 fin23lem40 10311 ffz0iswrd 14513 s4f1o 14891 fsumsplitsnun 15728 lcmcllem 16573 catcone0 17655 lidldvgen 21251 mat1dimbas 22366 pmatcollpw3fi 22679 nbgrssvwo2 29296 wlkn0 29556 clwlkcompbp 29719 clwlkclwwlkflem 29940 konigsberglem5 30192 difininv 32453 prmidl2 33419 eulerpartlemgs2 34378 bnj1476 34844 bnj1204 35009 dfon2lem3 35780 bj-ccinftydisj 37208 nninfnub 37752 ispridl2 38039 rp-isfinite6 43514 fnresfnco 47046 |
| Copyright terms: Public domain | W3C validator |