| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylbb2 | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.) |
| Ref | Expression |
|---|---|
| sylbb2.1 | ⊢ (𝜑 ↔ 𝜓) |
| sylbb2.2 | ⊢ (𝜒 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sylbb2 | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbb2.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | sylbb2.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 2 | biimpri 228 | . 2 ⊢ (𝜓 → 𝜒) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: rexprg 4661 ftpg 7128 frrlem13 8277 brinxper 8700 sdom0 9073 funsnfsupp 9343 sucprcreg 9554 fin23lem40 10304 ffz0iswrd 14506 s4f1o 14884 fsumsplitsnun 15721 lcmcllem 16566 catcone0 17648 lidldvgen 21244 mat1dimbas 22359 pmatcollpw3fi 22672 nbgrssvwo2 29289 wlkn0 29549 clwlkcompbp 29712 clwlkclwwlkflem 29933 konigsberglem5 30185 difininv 32446 prmidl2 33412 eulerpartlemgs2 34371 bnj1476 34837 bnj1204 35002 dfon2lem3 35773 bj-ccinftydisj 37201 nninfnub 37745 ispridl2 38032 rp-isfinite6 43507 fnresfnco 47042 |
| Copyright terms: Public domain | W3C validator |