MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylbb2 Structured version   Visualization version   GIF version

Theorem sylbb2 238
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.)
Hypotheses
Ref Expression
sylbb2.1 (𝜑𝜓)
sylbb2.2 (𝜒𝜓)
Assertion
Ref Expression
sylbb2 (𝜑𝜒)

Proof of Theorem sylbb2
StepHypRef Expression
1 sylbb2.1 . 2 (𝜑𝜓)
2 sylbb2.2 . . 3 (𝜒𝜓)
32biimpri 228 . 2 (𝜓𝜒)
41, 3sylbi 217 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  rexprg  4649  ftpg  7095  frrlem13  8234  brinxper  8657  sdom0  9029  funsnfsupp  9283  sucprcreg  9497  fin23lem40  10249  ffz0iswrd  14450  s4f1o  14827  fsumsplitsnun  15664  lcmcllem  16509  catcone0  17595  lidldvgen  21273  mat1dimbas  22388  pmatcollpw3fi  22701  nbgrssvwo2  29342  wlkn0  29601  clwlkcompbp  29762  clwlkclwwlkflem  29986  konigsberglem5  30238  difininv  32499  prmidl2  33413  eulerpartlemgs2  34414  bnj1476  34880  bnj1204  35045  dfon2lem3  35848  bj-ccinftydisj  37278  nninfnub  37811  ispridl2  38098  rp-isfinite6  43635  fnresfnco  47165
  Copyright terms: Public domain W3C validator