| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylbb2 | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.) |
| Ref | Expression |
|---|---|
| sylbb2.1 | ⊢ (𝜑 ↔ 𝜓) |
| sylbb2.2 | ⊢ (𝜒 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sylbb2 | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbb2.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | sylbb2.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 2 | biimpri 228 | . 2 ⊢ (𝜓 → 𝜒) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: rexprg 4650 ftpg 7089 frrlem13 8228 brinxper 8651 sdom0 9022 funsnfsupp 9276 sucprcreg 9490 fin23lem40 10239 ffz0iswrd 14445 s4f1o 14822 fsumsplitsnun 15659 lcmcllem 16504 catcone0 17590 lidldvgen 21269 mat1dimbas 22385 pmatcollpw3fi 22698 nbgrssvwo2 29338 wlkn0 29597 clwlkcompbp 29758 clwlkclwwlkflem 29979 konigsberglem5 30231 difininv 32492 prmidl2 33401 eulerpartlemgs2 34388 bnj1476 34854 bnj1204 35019 dfon2lem3 35818 bj-ccinftydisj 37246 nninfnub 37790 ispridl2 38077 rp-isfinite6 43550 fnresfnco 47071 |
| Copyright terms: Public domain | W3C validator |