![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylbb2 | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.) |
Ref | Expression |
---|---|
sylbb2.1 | ⊢ (𝜑 ↔ 𝜓) |
sylbb2.2 | ⊢ (𝜒 ↔ 𝜓) |
Ref | Expression |
---|---|
sylbb2 | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbb2.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | sylbb2.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 2 | biimpri 228 | . 2 ⊢ (𝜓 → 𝜒) |
4 | 1, 3 | sylbi 217 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: rexprg 4721 ftpg 7190 frrlem13 8339 wfrlem5OLD 8369 brinxper 8792 sdom0 9174 funsnfsupp 9461 sucprcreg 9670 fin23lem40 10420 ffz0iswrd 14589 s4f1o 14967 fsumsplitsnun 15803 lcmcllem 16643 catcone0 17745 lidldvgen 21367 mat1dimbas 22499 pmatcollpw3fi 22812 nbgrssvwo2 29397 wlkn0 29657 clwlkcompbp 29818 clwlkclwwlkflem 30036 konigsberglem5 30288 difininv 32547 prmidl2 33434 eulerpartlemgs2 34345 bnj1476 34823 bnj1204 34988 dfon2lem3 35749 bj-ccinftydisj 37179 nninfnub 37711 ispridl2 37998 rp-isfinite6 43480 fnresfnco 46956 |
Copyright terms: Public domain | W3C validator |