| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylbb2 | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.) |
| Ref | Expression |
|---|---|
| sylbb2.1 | ⊢ (𝜑 ↔ 𝜓) |
| sylbb2.2 | ⊢ (𝜒 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sylbb2 | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbb2.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | sylbb2.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 2 | biimpri 228 | . 2 ⊢ (𝜓 → 𝜒) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: rexprg 4651 ftpg 7094 frrlem13 8238 brinxper 8661 sdom0 9033 funsnfsupp 9301 sucprcreg 9515 fin23lem40 10264 ffz0iswrd 14466 s4f1o 14843 fsumsplitsnun 15680 lcmcllem 16525 catcone0 17611 lidldvgen 21259 mat1dimbas 22375 pmatcollpw3fi 22688 nbgrssvwo2 29325 wlkn0 29584 clwlkcompbp 29745 clwlkclwwlkflem 29966 konigsberglem5 30218 difininv 32479 prmidl2 33388 eulerpartlemgs2 34347 bnj1476 34813 bnj1204 34978 dfon2lem3 35758 bj-ccinftydisj 37186 nninfnub 37730 ispridl2 38017 rp-isfinite6 43491 fnresfnco 47026 |
| Copyright terms: Public domain | W3C validator |