MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylbb2 Structured version   Visualization version   GIF version

Theorem sylbb2 238
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.)
Hypotheses
Ref Expression
sylbb2.1 (𝜑𝜓)
sylbb2.2 (𝜒𝜓)
Assertion
Ref Expression
sylbb2 (𝜑𝜒)

Proof of Theorem sylbb2
StepHypRef Expression
1 sylbb2.1 . 2 (𝜑𝜓)
2 sylbb2.2 . . 3 (𝜒𝜓)
32biimpri 228 . 2 (𝜓𝜒)
41, 3sylbi 217 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  rexprg  4661  ftpg  7128  frrlem13  8277  brinxper  8700  sdom0  9073  funsnfsupp  9343  sucprcreg  9554  fin23lem40  10304  ffz0iswrd  14506  s4f1o  14884  fsumsplitsnun  15721  lcmcllem  16566  catcone0  17648  lidldvgen  21244  mat1dimbas  22359  pmatcollpw3fi  22672  nbgrssvwo2  29289  wlkn0  29549  clwlkcompbp  29712  clwlkclwwlkflem  29933  konigsberglem5  30185  difininv  32446  prmidl2  33412  eulerpartlemgs2  34371  bnj1476  34837  bnj1204  35002  dfon2lem3  35773  bj-ccinftydisj  37201  nninfnub  37745  ispridl2  38032  rp-isfinite6  43507  fnresfnco  47042
  Copyright terms: Public domain W3C validator