| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylbb2 | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.) |
| Ref | Expression |
|---|---|
| sylbb2.1 | ⊢ (𝜑 ↔ 𝜓) |
| sylbb2.2 | ⊢ (𝜒 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sylbb2 | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbb2.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | sylbb2.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 2 | biimpri 228 | . 2 ⊢ (𝜓 → 𝜒) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: rexprg 4649 ftpg 7095 frrlem13 8234 brinxper 8657 sdom0 9029 funsnfsupp 9283 sucprcreg 9497 fin23lem40 10249 ffz0iswrd 14450 s4f1o 14827 fsumsplitsnun 15664 lcmcllem 16509 catcone0 17595 lidldvgen 21273 mat1dimbas 22388 pmatcollpw3fi 22701 nbgrssvwo2 29342 wlkn0 29601 clwlkcompbp 29762 clwlkclwwlkflem 29986 konigsberglem5 30238 difininv 32499 prmidl2 33413 eulerpartlemgs2 34414 bnj1476 34880 bnj1204 35045 dfon2lem3 35848 bj-ccinftydisj 37278 nninfnub 37811 ispridl2 38098 rp-isfinite6 43635 fnresfnco 47165 |
| Copyright terms: Public domain | W3C validator |