Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oeord2com Structured version   Visualization version   GIF version

Theorem oeord2com 42516
Description: When the same base at least as large as two is raised to ordinal powers, , ordering of the power is equivalent to the ordering of the exponents. Theorem 3.24 of [Schloeder] p. 11. (Contributed by RP, 30-Jan-2025.)
Assertion
Ref Expression
oeord2com (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐶 ↔ (𝐴o 𝐵) ∈ (𝐴o 𝐶)))

Proof of Theorem oeord2com
StepHypRef Expression
1 ondif2 8497 . . . 4 (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ 1o𝐴))
213anbi1i 1154 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ↔ ((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On))
3 3anrot 1097 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ↔ (𝐵 ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)))
42, 3sylbb1 236 . 2 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)))
5 oeord 8583 . 2 ((𝐵 ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)) → (𝐵𝐶 ↔ (𝐴o 𝐵) ∈ (𝐴o 𝐶)))
64, 5syl 17 1 (((𝐴 ∈ On ∧ 1o𝐴) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐶 ↔ (𝐴o 𝐵) ∈ (𝐴o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084  wcel 2098  cdif 3937  Oncon0 6354  (class class class)co 7401  1oc1o 8454  2oc2o 8455  o coe 8460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-oadd 8465  df-omul 8466  df-oexp 8467
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator