Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0iunmpt Structured version   Visualization version   GIF version

Theorem sge0iunmpt 42166
Description: Sum of nonnegative extended reals over a disjoint indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0iunmpt.a (𝜑𝐴𝑉)
sge0iunmpt.b ((𝜑𝑥𝐴) → 𝐵𝑊)
sge0iunmpt.dj (𝜑Disj 𝑥𝐴 𝐵)
sge0iunmpt.c ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
Assertion
Ref Expression
sge0iunmpt (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
Distinct variable groups:   𝐴,𝑘,𝑥   𝐵,𝑘   𝑥,𝐶   𝑥,𝑊   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑘)   𝑉(𝑥,𝑘)   𝑊(𝑘)

Proof of Theorem sge0iunmpt
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1874 . . . 4 𝑥𝜑
2 nfcv 2934 . . . . . 6 𝑥Σ^
3 nfiu1 4828 . . . . . . 7 𝑥 𝑥𝐴 𝐵
4 nfcv 2934 . . . . . . 7 𝑥𝐶
53, 4nfmpt 5029 . . . . . 6 𝑥(𝑘 𝑥𝐴 𝐵𝐶)
62, 5nffv 6514 . . . . 5 𝑥^‘(𝑘 𝑥𝐴 𝐵𝐶))
7 nfmpt1 5030 . . . . . 6 𝑥(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))
82, 7nffv 6514 . . . . 5 𝑥^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
96, 8nfeq 2945 . . . 4 𝑥^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
10 sge0iunmpt.a . . . . . . . . . 10 (𝜑𝐴𝑉)
11 sge0iunmpt.b . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵𝑊)
1211ralrimiva 3134 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴 𝐵𝑊)
13 iunexg 7482 . . . . . . . . . 10 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵𝑊) → 𝑥𝐴 𝐵 ∈ V)
1410, 12, 13syl2anc 576 . . . . . . . . 9 (𝜑 𝑥𝐴 𝐵 ∈ V)
15 eliun 4801 . . . . . . . . . . . . 13 (𝑘 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑘𝐵)
1615biimpi 208 . . . . . . . . . . . 12 (𝑘 𝑥𝐴 𝐵 → ∃𝑥𝐴 𝑘𝐵)
1716adantl 474 . . . . . . . . . . 11 ((𝜑𝑘 𝑥𝐴 𝐵) → ∃𝑥𝐴 𝑘𝐵)
18 nfcv 2934 . . . . . . . . . . . . . 14 𝑥𝑘
1918, 3nfel 2946 . . . . . . . . . . . . 13 𝑥 𝑘 𝑥𝐴 𝐵
201, 19nfan 1863 . . . . . . . . . . . 12 𝑥(𝜑𝑘 𝑥𝐴 𝐵)
214nfel1 2948 . . . . . . . . . . . 12 𝑥 𝐶 ∈ (0[,]+∞)
22 sge0iunmpt.c . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
23223exp 1100 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝐴 → (𝑘𝐵𝐶 ∈ (0[,]+∞))))
2423adantr 473 . . . . . . . . . . . 12 ((𝜑𝑘 𝑥𝐴 𝐵) → (𝑥𝐴 → (𝑘𝐵𝐶 ∈ (0[,]+∞))))
2520, 21, 24rexlimd 3262 . . . . . . . . . . 11 ((𝜑𝑘 𝑥𝐴 𝐵) → (∃𝑥𝐴 𝑘𝐵𝐶 ∈ (0[,]+∞)))
2617, 25mpd 15 . . . . . . . . . 10 ((𝜑𝑘 𝑥𝐴 𝐵) → 𝐶 ∈ (0[,]+∞))
27 eqid 2780 . . . . . . . . . 10 (𝑘 𝑥𝐴 𝐵𝐶) = (𝑘 𝑥𝐴 𝐵𝐶)
2826, 27fmptd 6707 . . . . . . . . 9 (𝜑 → (𝑘 𝑥𝐴 𝐵𝐶): 𝑥𝐴 𝐵⟶(0[,]+∞))
2914, 28sge0xrcl 42133 . . . . . . . 8 (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ∈ ℝ*)
30293ad2ant1 1114 . . . . . . 7 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ∈ ℝ*)
31 id 22 . . . . . . . . . . 11 ((Σ^‘(𝑘𝐵𝐶)) = +∞ → (Σ^‘(𝑘𝐵𝐶)) = +∞)
3231eqcomd 2786 . . . . . . . . . 10 ((Σ^‘(𝑘𝐵𝐶)) = +∞ → +∞ = (Σ^‘(𝑘𝐵𝐶)))
3332adantl 474 . . . . . . . . 9 ((𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → +∞ = (Σ^‘(𝑘𝐵𝐶)))
34333adant1 1111 . . . . . . . 8 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → +∞ = (Σ^‘(𝑘𝐵𝐶)))
3514adantr 473 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥𝐴 𝐵 ∈ V)
3626adantlr 703 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑘 𝑥𝐴 𝐵) → 𝐶 ∈ (0[,]+∞))
37 ssiun2 4842 . . . . . . . . . . 11 (𝑥𝐴𝐵 𝑥𝐴 𝐵)
3837adantl 474 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵 𝑥𝐴 𝐵)
3935, 36, 38sge0lessmpt 42147 . . . . . . . . 9 ((𝜑𝑥𝐴) → (Σ^‘(𝑘𝐵𝐶)) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
40393adant3 1113 . . . . . . . 8 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘𝐵𝐶)) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
4134, 40eqbrtrd 4956 . . . . . . 7 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → +∞ ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
4230, 41xrgepnfd 41063 . . . . . 6 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = +∞)
43103ad2ant1 1114 . . . . . . 7 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → 𝐴𝑉)
44 nfv 1874 . . . . . . . . . . . . 13 𝑥(𝜑𝑦𝐴)
45 nfcsb1v 3806 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥𝐵
46 nfcsb1v 3806 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥𝑊
4745, 46nfel 2946 . . . . . . . . . . . . 13 𝑥𝑦 / 𝑥𝐵𝑦 / 𝑥𝑊
4844, 47nfim 1860 . . . . . . . . . . . 12 𝑥((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑦 / 𝑥𝑊)
49 eleq1w 2850 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
5049anbi2d 620 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝜑𝑥𝐴) ↔ (𝜑𝑦𝐴)))
51 csbeq1a 3797 . . . . . . . . . . . . . 14 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
52 csbeq1a 3797 . . . . . . . . . . . . . 14 (𝑥 = 𝑦𝑊 = 𝑦 / 𝑥𝑊)
5351, 52eleq12d 2862 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐵𝑊𝑦 / 𝑥𝐵𝑦 / 𝑥𝑊))
5450, 53imbi12d 337 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → 𝐵𝑊) ↔ ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑦 / 𝑥𝑊)))
5548, 54, 11chvar 2327 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑦 / 𝑥𝑊)
5655adantlr 703 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑦𝐴) → 𝑦 / 𝑥𝐵𝑦 / 𝑥𝑊)
5745, 4nfmpt 5029 . . . . . . . . . . . . . 14 𝑥(𝑘𝑦 / 𝑥𝐵𝐶)
58 nfcv 2934 . . . . . . . . . . . . . 14 𝑥(0[,]+∞)
5957, 45, 58nff 6345 . . . . . . . . . . . . 13 𝑥(𝑘𝑦 / 𝑥𝐵𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞)
6044, 59nfim 1860 . . . . . . . . . . . 12 𝑥((𝜑𝑦𝐴) → (𝑘𝑦 / 𝑥𝐵𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞))
6151mpteq1d 5021 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑘𝐵𝐶) = (𝑘𝑦 / 𝑥𝐵𝐶))
6261, 51feq12d 6337 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑘𝐵𝐶):𝐵⟶(0[,]+∞) ↔ (𝑘𝑦 / 𝑥𝐵𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞)))
6350, 62imbi12d 337 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → (𝑘𝐵𝐶):𝐵⟶(0[,]+∞)) ↔ ((𝜑𝑦𝐴) → (𝑘𝑦 / 𝑥𝐵𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞))))
6423imp31 410 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
65 eqid 2780 . . . . . . . . . . . . 13 (𝑘𝐵𝐶) = (𝑘𝐵𝐶)
6664, 65fmptd 6707 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑘𝐵𝐶):𝐵⟶(0[,]+∞))
6760, 63, 66chvar 2327 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (𝑘𝑦 / 𝑥𝐵𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞))
6867adantlr 703 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑦𝐴) → (𝑘𝑦 / 𝑥𝐵𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞))
6956, 68sge0cl 42129 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑦𝐴) → (Σ^‘(𝑘𝑦 / 𝑥𝐵𝐶)) ∈ (0[,]+∞))
70 nfcv 2934 . . . . . . . . . 10 𝑦^‘(𝑘𝐵𝐶))
712, 57nffv 6514 . . . . . . . . . 10 𝑥^‘(𝑘𝑦 / 𝑥𝐵𝐶))
7261fveq2d 6508 . . . . . . . . . 10 (𝑥 = 𝑦 → (Σ^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑘𝑦 / 𝑥𝐵𝐶)))
7370, 71, 72cbvmpt 5032 . . . . . . . . 9 (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) = (𝑦𝐴 ↦ (Σ^‘(𝑘𝑦 / 𝑥𝐵𝐶)))
7469, 73fmptd 6707 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))):𝐴⟶(0[,]+∞))
75743adant3 1113 . . . . . . 7 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))):𝐴⟶(0[,]+∞))
76 id 22 . . . . . . . . . . 11 (𝑥𝐴𝑥𝐴)
77 fvexd 6519 . . . . . . . . . . 11 (𝑥𝐴 → (Σ^‘(𝑘𝐵𝐶)) ∈ V)
78 eqid 2780 . . . . . . . . . . . 12 (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) = (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))
7978elrnmpt1 5678 . . . . . . . . . . 11 ((𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) ∈ V) → (Σ^‘(𝑘𝐵𝐶)) ∈ ran (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
8076, 77, 79syl2anc 576 . . . . . . . . . 10 (𝑥𝐴 → (Σ^‘(𝑘𝐵𝐶)) ∈ ran (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
8180adantr 473 . . . . . . . . 9 ((𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘𝐵𝐶)) ∈ ran (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
8233, 81eqeltrd 2868 . . . . . . . 8 ((𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → +∞ ∈ ran (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
83823adant1 1111 . . . . . . 7 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → +∞ ∈ ran (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
8443, 75, 83sge0pnfval 42121 . . . . . 6 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) = +∞)
8542, 84eqtr4d 2819 . . . . 5 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
86853exp 1100 . . . 4 (𝜑 → (𝑥𝐴 → ((Σ^‘(𝑘𝐵𝐶)) = +∞ → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))))
871, 9, 86rexlimd 3262 . . 3 (𝜑 → (∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞ → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))))
8887imp 398 . 2 ((𝜑 ∧ ∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
89 simpl 475 . . 3 ((𝜑 ∧ ¬ ∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞) → 𝜑)
90 ralnex 3185 . . . . 5 (∀𝑥𝐴 ¬ (Σ^‘(𝑘𝐵𝐶)) = +∞ ↔ ¬ ∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞)
91 df-ne 2970 . . . . . . 7 ((Σ^‘(𝑘𝐵𝐶)) ≠ +∞ ↔ ¬ (Σ^‘(𝑘𝐵𝐶)) = +∞)
9291bicomi 216 . . . . . 6 (¬ (Σ^‘(𝑘𝐵𝐶)) = +∞ ↔ (Σ^‘(𝑘𝐵𝐶)) ≠ +∞)
9392ralbii 3117 . . . . 5 (∀𝑥𝐴 ¬ (Σ^‘(𝑘𝐵𝐶)) = +∞ ↔ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞)
9490, 93sylbb1 229 . . . 4 (¬ ∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞ → ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞)
9594adantl 474 . . 3 ((𝜑 ∧ ¬ ∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞) → ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞)
9610adantr 473 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → 𝐴𝑉)
97 nfcv 2934 . . . . . . . . 9 𝑥𝑊
9845, 97nfel 2946 . . . . . . . 8 𝑥𝑦 / 𝑥𝐵𝑊
9944, 98nfim 1860 . . . . . . 7 𝑥((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑊)
10051eleq1d 2852 . . . . . . . 8 (𝑥 = 𝑦 → (𝐵𝑊𝑦 / 𝑥𝐵𝑊))
10150, 100imbi12d 337 . . . . . . 7 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → 𝐵𝑊) ↔ ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑊)))
10299, 101, 11chvar 2327 . . . . . 6 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑊)
103102adantlr 703 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) ∧ 𝑦𝐴) → 𝑦 / 𝑥𝐵𝑊)
104 sge0iunmpt.dj . . . . . . 7 (𝜑Disj 𝑥𝐴 𝐵)
105 nfcv 2934 . . . . . . . 8 𝑦𝐵
106105, 45, 51cbvdisj 4912 . . . . . . 7 (Disj 𝑥𝐴 𝐵Disj 𝑦𝐴 𝑦 / 𝑥𝐵)
107104, 106sylib 210 . . . . . 6 (𝜑Disj 𝑦𝐴 𝑦 / 𝑥𝐵)
108107adantr 473 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → Disj 𝑦𝐴 𝑦 / 𝑥𝐵)
109 nfv 1874 . . . . . . . 8 𝑘(𝜑𝑦𝐴𝑗𝑦 / 𝑥𝐵)
110 nfcsb1v 3806 . . . . . . . . 9 𝑘𝑗 / 𝑘𝐶
111110nfel1 2948 . . . . . . . 8 𝑘𝑗 / 𝑘𝐶 ∈ (0[,]+∞)
112109, 111nfim 1860 . . . . . . 7 𝑘((𝜑𝑦𝐴𝑗𝑦 / 𝑥𝐵) → 𝑗 / 𝑘𝐶 ∈ (0[,]+∞))
113 eleq1w 2850 . . . . . . . . 9 (𝑘 = 𝑗 → (𝑘𝑦 / 𝑥𝐵𝑗𝑦 / 𝑥𝐵))
1141133anbi3d 1422 . . . . . . . 8 (𝑘 = 𝑗 → ((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) ↔ (𝜑𝑦𝐴𝑗𝑦 / 𝑥𝐵)))
115 csbeq1a 3797 . . . . . . . . 9 (𝑘 = 𝑗𝐶 = 𝑗 / 𝑘𝐶)
116115eleq1d 2852 . . . . . . . 8 (𝑘 = 𝑗 → (𝐶 ∈ (0[,]+∞) ↔ 𝑗 / 𝑘𝐶 ∈ (0[,]+∞)))
117114, 116imbi12d 337 . . . . . . 7 (𝑘 = 𝑗 → (((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ (0[,]+∞)) ↔ ((𝜑𝑦𝐴𝑗𝑦 / 𝑥𝐵) → 𝑗 / 𝑘𝐶 ∈ (0[,]+∞))))
118 nfv 1874 . . . . . . . . . 10 𝑥 𝑦𝐴
11918, 45nfel 2946 . . . . . . . . . 10 𝑥 𝑘𝑦 / 𝑥𝐵
1201, 118, 119nf3an 1865 . . . . . . . . 9 𝑥(𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵)
121120, 21nfim 1860 . . . . . . . 8 𝑥((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ (0[,]+∞))
12251eleq2d 2853 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑘𝐵𝑘𝑦 / 𝑥𝐵))
12349, 1223anbi23d 1419 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝜑𝑥𝐴𝑘𝐵) ↔ (𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵)))
124123imbi1d 334 . . . . . . . 8 (𝑥 = 𝑦 → (((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞)) ↔ ((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ (0[,]+∞))))
125121, 124, 22chvar 2327 . . . . . . 7 ((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ (0[,]+∞))
126112, 117, 125chvar 2327 . . . . . 6 ((𝜑𝑦𝐴𝑗𝑦 / 𝑥𝐵) → 𝑗 / 𝑘𝐶 ∈ (0[,]+∞))
1271263adant1r 1158 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) ∧ 𝑦𝐴𝑗𝑦 / 𝑥𝐵) → 𝑗 / 𝑘𝐶 ∈ (0[,]+∞))
128 simpr 477 . . . . . . . . 9 ((∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞ ∧ 𝑦𝐴) → 𝑦𝐴)
129 simpl 475 . . . . . . . . 9 ((∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞ ∧ 𝑦𝐴) → ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞)
130 simpl 475 . . . . . . . . . 10 ((𝑦𝐴 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → 𝑦𝐴)
131 simpr 477 . . . . . . . . . 10 ((𝑦𝐴 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞)
132 nfcv 2934 . . . . . . . . . . . . . 14 𝑥𝑗 / 𝑘𝐶
13345, 132nfmpt 5029 . . . . . . . . . . . . 13 𝑥(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)
1342, 133nffv 6514 . . . . . . . . . . . 12 𝑥^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶))
135 nfcv 2934 . . . . . . . . . . . 12 𝑥+∞
136134, 135nfne 3072 . . . . . . . . . . 11 𝑥^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ≠ +∞
137 nfcv 2934 . . . . . . . . . . . . . . . 16 𝑗𝐶
138137, 110, 115cbvmpt 5032 . . . . . . . . . . . . . . 15 (𝑘𝑦 / 𝑥𝐵𝐶) = (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)
139138a1i 11 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑘𝑦 / 𝑥𝐵𝐶) = (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶))
14061, 139eqtrd 2816 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑘𝐵𝐶) = (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶))
141140fveq2d 6508 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (Σ^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))
142141neeq1d 3028 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((Σ^‘(𝑘𝐵𝐶)) ≠ +∞ ↔ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ≠ +∞))
143136, 142rspc 3531 . . . . . . . . . 10 (𝑦𝐴 → (∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞ → (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ≠ +∞))
144130, 131, 143sylc 65 . . . . . . . . 9 ((𝑦𝐴 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ≠ +∞)
145128, 129, 144syl2anc 576 . . . . . . . 8 ((∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞ ∧ 𝑦𝐴) → (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ≠ +∞)
146145neneqd 2974 . . . . . . 7 ((∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞ ∧ 𝑦𝐴) → ¬ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) = +∞)
147146adantll 702 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) ∧ 𝑦𝐴) → ¬ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) = +∞)
1481263expa 1099 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑗𝑦 / 𝑥𝐵) → 𝑗 / 𝑘𝐶 ∈ (0[,]+∞))
149 eqid 2780 . . . . . . . . 9 (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶) = (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)
150148, 149fmptd 6707 . . . . . . . 8 ((𝜑𝑦𝐴) → (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞))
151150adantlr 703 . . . . . . 7 (((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) ∧ 𝑦𝐴) → (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞))
152103, 151sge0repnf 42134 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) ∧ 𝑦𝐴) → ((Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ∈ ℝ ↔ ¬ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) = +∞))
153147, 152mpbird 249 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) ∧ 𝑦𝐴) → (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ∈ ℝ)
154137, 110, 115cbvmpt 5032 . . . . . . . . 9 (𝑘 𝑥𝐴 𝐵𝐶) = (𝑗 𝑥𝐴 𝐵𝑗 / 𝑘𝐶)
155105, 45, 51cbviun 4836 . . . . . . . . . 10 𝑥𝐴 𝐵 = 𝑦𝐴 𝑦 / 𝑥𝐵
156155mpteq1i 5022 . . . . . . . . 9 (𝑗 𝑥𝐴 𝐵𝑗 / 𝑘𝐶) = (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)
157154, 156eqtri 2804 . . . . . . . 8 (𝑘 𝑥𝐴 𝐵𝐶) = (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)
158157fveq2i 6507 . . . . . . 7 ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶))
159158, 29syl5eqelr 2873 . . . . . 6 (𝜑 → (Σ^‘(𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ∈ ℝ*)
160159adantr 473 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ∈ ℝ*)
16170, 134, 141cbvmpt 5032 . . . . . . . 8 (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) = (𝑦𝐴 ↦ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))
162161fveq2i 6507 . . . . . . 7 ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) = (Σ^‘(𝑦𝐴 ↦ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶))))
16311, 66sge0cl 42129 . . . . . . . . 9 ((𝜑𝑥𝐴) → (Σ^‘(𝑘𝐵𝐶)) ∈ (0[,]+∞))
164163, 78fmptd 6707 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))):𝐴⟶(0[,]+∞))
16510, 164sge0xrcl 42133 . . . . . . 7 (𝜑 → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ∈ ℝ*)
166162, 165syl5eqelr 2873 . . . . . 6 (𝜑 → (Σ^‘(𝑦𝐴 ↦ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))) ∈ ℝ*)
167166adantr 473 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑦𝐴 ↦ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))) ∈ ℝ*)
168 eliun 4801 . . . . . . . . . 10 (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵 ↔ ∃𝑦𝐴 𝑗𝑦 / 𝑥𝐵)
169168biimpi 208 . . . . . . . . 9 (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵 → ∃𝑦𝐴 𝑗𝑦 / 𝑥𝐵)
170169adantl 474 . . . . . . . 8 ((𝜑𝑗 𝑦𝐴 𝑦 / 𝑥𝐵) → ∃𝑦𝐴 𝑗𝑦 / 𝑥𝐵)
171 nfv 1874 . . . . . . . . . 10 𝑦𝜑
172 nfcv 2934 . . . . . . . . . . 11 𝑦𝑗
173 nfiu1 4828 . . . . . . . . . . 11 𝑦 𝑦𝐴 𝑦 / 𝑥𝐵
174172, 173nfel 2946 . . . . . . . . . 10 𝑦 𝑗 𝑦𝐴 𝑦 / 𝑥𝐵
175171, 174nfan 1863 . . . . . . . . 9 𝑦(𝜑𝑗 𝑦𝐴 𝑦 / 𝑥𝐵)
176 nfv 1874 . . . . . . . . 9 𝑦𝑗 / 𝑘𝐶 ∈ (0[,]+∞)
177148exp31 412 . . . . . . . . . 10 (𝜑 → (𝑦𝐴 → (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶 ∈ (0[,]+∞))))
178177adantr 473 . . . . . . . . 9 ((𝜑𝑗 𝑦𝐴 𝑦 / 𝑥𝐵) → (𝑦𝐴 → (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶 ∈ (0[,]+∞))))
179175, 176, 178rexlimd 3262 . . . . . . . 8 ((𝜑𝑗 𝑦𝐴 𝑦 / 𝑥𝐵) → (∃𝑦𝐴 𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶 ∈ (0[,]+∞)))
180170, 179mpd 15 . . . . . . 7 ((𝜑𝑗 𝑦𝐴 𝑦 / 𝑥𝐵) → 𝑗 / 𝑘𝐶 ∈ (0[,]+∞))
181 eqid 2780 . . . . . . 7 (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶) = (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)
182180, 181fmptd 6707 . . . . . 6 (𝜑 → (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶): 𝑦𝐴 𝑦 / 𝑥𝐵⟶(0[,]+∞))
183182adantr 473 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶): 𝑦𝐴 𝑦 / 𝑥𝐵⟶(0[,]+∞))
184155, 14syl5eqelr 2873 . . . . . 6 (𝜑 𝑦𝐴 𝑦 / 𝑥𝐵 ∈ V)
185184adantr 473 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → 𝑦𝐴 𝑦 / 𝑥𝐵 ∈ V)
18696, 103, 108, 127, 153, 160, 167, 183, 185sge0iunmptlemre 42163 . . . 4 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) = (Σ^‘(𝑦𝐴 ↦ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))))
187158a1i 11 . . . 4 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))
188162a1i 11 . . . 4 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) = (Σ^‘(𝑦𝐴 ↦ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))))
189186, 187, 1883eqtr4d 2826 . . 3 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
19089, 95, 189syl2anc 576 . 2 ((𝜑 ∧ ¬ ∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
19188, 190pm2.61dan 801 1 (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  w3a 1069   = wceq 1508  wcel 2051  wne 2969  wral 3090  wrex 3091  Vcvv 3417  csb 3788  wss 3831   ciun 4797  Disj wdisj 4902   class class class wbr 4934  cmpt 5013  ran crn 5412  wf 6189  cfv 6193  (class class class)co 6982  cr 10340  0cc0 10341  +∞cpnf 10477  *cxr 10479  cle 10481  [,]cicc 12563  Σ^csumge0 42110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-inf2 8904  ax-ac2 9689  ax-cnex 10397  ax-resscn 10398  ax-1cn 10399  ax-icn 10400  ax-addcl 10401  ax-addrcl 10402  ax-mulcl 10403  ax-mulrcl 10404  ax-mulcom 10405  ax-addass 10406  ax-mulass 10407  ax-distr 10408  ax-i2m1 10409  ax-1ne0 10410  ax-1rid 10411  ax-rnegex 10412  ax-rrecex 10413  ax-cnre 10414  ax-pre-lttri 10415  ax-pre-lttrn 10416  ax-pre-ltadd 10417  ax-pre-mulgt0 10418  ax-pre-sup 10419
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-int 4755  df-iun 4799  df-disj 4903  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-se 5371  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-isom 6202  df-riota 6943  df-ov 6985  df-oprab 6986  df-mpo 6987  df-om 7403  df-1st 7507  df-2nd 7508  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-1o 7911  df-oadd 7915  df-er 8095  df-map 8214  df-en 8313  df-dom 8314  df-sdom 8315  df-fin 8316  df-sup 8707  df-oi 8775  df-card 9168  df-acn 9171  df-ac 9342  df-pnf 10482  df-mnf 10483  df-xr 10484  df-ltxr 10485  df-le 10486  df-sub 10678  df-neg 10679  df-div 11105  df-nn 11446  df-2 11509  df-3 11510  df-n0 11714  df-z 11800  df-uz 12065  df-rp 12211  df-xadd 12331  df-ico 12566  df-icc 12567  df-fz 12715  df-fzo 12856  df-seq 13191  df-exp 13251  df-hash 13512  df-cj 14325  df-re 14326  df-im 14327  df-sqrt 14461  df-abs 14462  df-clim 14712  df-sum 14910  df-sumge0 42111
This theorem is referenced by:  sge0iun  42167  sge0xp  42177
  Copyright terms: Public domain W3C validator