Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0iunmpt Structured version   Visualization version   GIF version

Theorem sge0iunmpt 45134
Description: Sum of nonnegative extended reals over a disjoint indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0iunmpt.a (𝜑𝐴𝑉)
sge0iunmpt.b ((𝜑𝑥𝐴) → 𝐵𝑊)
sge0iunmpt.dj (𝜑Disj 𝑥𝐴 𝐵)
sge0iunmpt.c ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
Assertion
Ref Expression
sge0iunmpt (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
Distinct variable groups:   𝐴,𝑘,𝑥   𝐵,𝑘   𝑥,𝐶   𝑥,𝑊   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑘)   𝑉(𝑥,𝑘)   𝑊(𝑘)

Proof of Theorem sge0iunmpt
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1918 . . . 4 𝑥𝜑
2 nfcv 2904 . . . . . 6 𝑥Σ^
3 nfiu1 5032 . . . . . . 7 𝑥 𝑥𝐴 𝐵
4 nfcv 2904 . . . . . . 7 𝑥𝐶
53, 4nfmpt 5256 . . . . . 6 𝑥(𝑘 𝑥𝐴 𝐵𝐶)
62, 5nffv 6902 . . . . 5 𝑥^‘(𝑘 𝑥𝐴 𝐵𝐶))
7 nfmpt1 5257 . . . . . 6 𝑥(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))
82, 7nffv 6902 . . . . 5 𝑥^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
96, 8nfeq 2917 . . . 4 𝑥^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
10 sge0iunmpt.a . . . . . . . . . 10 (𝜑𝐴𝑉)
11 sge0iunmpt.b . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵𝑊)
1211ralrimiva 3147 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴 𝐵𝑊)
13 iunexg 7950 . . . . . . . . . 10 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵𝑊) → 𝑥𝐴 𝐵 ∈ V)
1410, 12, 13syl2anc 585 . . . . . . . . 9 (𝜑 𝑥𝐴 𝐵 ∈ V)
15 eliun 5002 . . . . . . . . . . . . 13 (𝑘 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑘𝐵)
1615biimpi 215 . . . . . . . . . . . 12 (𝑘 𝑥𝐴 𝐵 → ∃𝑥𝐴 𝑘𝐵)
1716adantl 483 . . . . . . . . . . 11 ((𝜑𝑘 𝑥𝐴 𝐵) → ∃𝑥𝐴 𝑘𝐵)
18 nfcv 2904 . . . . . . . . . . . . . 14 𝑥𝑘
1918, 3nfel 2918 . . . . . . . . . . . . 13 𝑥 𝑘 𝑥𝐴 𝐵
201, 19nfan 1903 . . . . . . . . . . . 12 𝑥(𝜑𝑘 𝑥𝐴 𝐵)
214nfel1 2920 . . . . . . . . . . . 12 𝑥 𝐶 ∈ (0[,]+∞)
22 sge0iunmpt.c . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
23223exp 1120 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝐴 → (𝑘𝐵𝐶 ∈ (0[,]+∞))))
2423adantr 482 . . . . . . . . . . . 12 ((𝜑𝑘 𝑥𝐴 𝐵) → (𝑥𝐴 → (𝑘𝐵𝐶 ∈ (0[,]+∞))))
2520, 21, 24rexlimd 3264 . . . . . . . . . . 11 ((𝜑𝑘 𝑥𝐴 𝐵) → (∃𝑥𝐴 𝑘𝐵𝐶 ∈ (0[,]+∞)))
2617, 25mpd 15 . . . . . . . . . 10 ((𝜑𝑘 𝑥𝐴 𝐵) → 𝐶 ∈ (0[,]+∞))
27 eqid 2733 . . . . . . . . . 10 (𝑘 𝑥𝐴 𝐵𝐶) = (𝑘 𝑥𝐴 𝐵𝐶)
2826, 27fmptd 7114 . . . . . . . . 9 (𝜑 → (𝑘 𝑥𝐴 𝐵𝐶): 𝑥𝐴 𝐵⟶(0[,]+∞))
2914, 28sge0xrcl 45101 . . . . . . . 8 (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ∈ ℝ*)
30293ad2ant1 1134 . . . . . . 7 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ∈ ℝ*)
31 id 22 . . . . . . . . . . 11 ((Σ^‘(𝑘𝐵𝐶)) = +∞ → (Σ^‘(𝑘𝐵𝐶)) = +∞)
3231eqcomd 2739 . . . . . . . . . 10 ((Σ^‘(𝑘𝐵𝐶)) = +∞ → +∞ = (Σ^‘(𝑘𝐵𝐶)))
3332adantl 483 . . . . . . . . 9 ((𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → +∞ = (Σ^‘(𝑘𝐵𝐶)))
34333adant1 1131 . . . . . . . 8 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → +∞ = (Σ^‘(𝑘𝐵𝐶)))
3514adantr 482 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥𝐴 𝐵 ∈ V)
3626adantlr 714 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑘 𝑥𝐴 𝐵) → 𝐶 ∈ (0[,]+∞))
37 ssiun2 5051 . . . . . . . . . . 11 (𝑥𝐴𝐵 𝑥𝐴 𝐵)
3837adantl 483 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵 𝑥𝐴 𝐵)
3935, 36, 38sge0lessmpt 45115 . . . . . . . . 9 ((𝜑𝑥𝐴) → (Σ^‘(𝑘𝐵𝐶)) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
40393adant3 1133 . . . . . . . 8 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘𝐵𝐶)) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
4134, 40eqbrtrd 5171 . . . . . . 7 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → +∞ ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
4230, 41xrgepnfd 44041 . . . . . 6 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = +∞)
43103ad2ant1 1134 . . . . . . 7 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → 𝐴𝑉)
44 nfv 1918 . . . . . . . . . . . . 13 𝑥(𝜑𝑦𝐴)
45 nfcsb1v 3919 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥𝐵
46 nfcsb1v 3919 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥𝑊
4745, 46nfel 2918 . . . . . . . . . . . . 13 𝑥𝑦 / 𝑥𝐵𝑦 / 𝑥𝑊
4844, 47nfim 1900 . . . . . . . . . . . 12 𝑥((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑦 / 𝑥𝑊)
49 eleq1w 2817 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
5049anbi2d 630 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝜑𝑥𝐴) ↔ (𝜑𝑦𝐴)))
51 csbeq1a 3908 . . . . . . . . . . . . . 14 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
52 csbeq1a 3908 . . . . . . . . . . . . . 14 (𝑥 = 𝑦𝑊 = 𝑦 / 𝑥𝑊)
5351, 52eleq12d 2828 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐵𝑊𝑦 / 𝑥𝐵𝑦 / 𝑥𝑊))
5450, 53imbi12d 345 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → 𝐵𝑊) ↔ ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑦 / 𝑥𝑊)))
5548, 54, 11chvarfv 2234 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑦 / 𝑥𝑊)
5655adantlr 714 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑦𝐴) → 𝑦 / 𝑥𝐵𝑦 / 𝑥𝑊)
5745, 4nfmpt 5256 . . . . . . . . . . . . . 14 𝑥(𝑘𝑦 / 𝑥𝐵𝐶)
58 nfcv 2904 . . . . . . . . . . . . . 14 𝑥(0[,]+∞)
5957, 45, 58nff 6714 . . . . . . . . . . . . 13 𝑥(𝑘𝑦 / 𝑥𝐵𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞)
6044, 59nfim 1900 . . . . . . . . . . . 12 𝑥((𝜑𝑦𝐴) → (𝑘𝑦 / 𝑥𝐵𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞))
6151mpteq1d 5244 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑘𝐵𝐶) = (𝑘𝑦 / 𝑥𝐵𝐶))
6261, 51feq12d 6706 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑘𝐵𝐶):𝐵⟶(0[,]+∞) ↔ (𝑘𝑦 / 𝑥𝐵𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞)))
6350, 62imbi12d 345 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → (𝑘𝐵𝐶):𝐵⟶(0[,]+∞)) ↔ ((𝜑𝑦𝐴) → (𝑘𝑦 / 𝑥𝐵𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞))))
6423imp31 419 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
65 eqid 2733 . . . . . . . . . . . . 13 (𝑘𝐵𝐶) = (𝑘𝐵𝐶)
6664, 65fmptd 7114 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑘𝐵𝐶):𝐵⟶(0[,]+∞))
6760, 63, 66chvarfv 2234 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (𝑘𝑦 / 𝑥𝐵𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞))
6867adantlr 714 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑦𝐴) → (𝑘𝑦 / 𝑥𝐵𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞))
6956, 68sge0cl 45097 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑦𝐴) → (Σ^‘(𝑘𝑦 / 𝑥𝐵𝐶)) ∈ (0[,]+∞))
70 nfcv 2904 . . . . . . . . . 10 𝑦^‘(𝑘𝐵𝐶))
712, 57nffv 6902 . . . . . . . . . 10 𝑥^‘(𝑘𝑦 / 𝑥𝐵𝐶))
7261fveq2d 6896 . . . . . . . . . 10 (𝑥 = 𝑦 → (Σ^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑘𝑦 / 𝑥𝐵𝐶)))
7370, 71, 72cbvmpt 5260 . . . . . . . . 9 (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) = (𝑦𝐴 ↦ (Σ^‘(𝑘𝑦 / 𝑥𝐵𝐶)))
7469, 73fmptd 7114 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))):𝐴⟶(0[,]+∞))
75743adant3 1133 . . . . . . 7 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))):𝐴⟶(0[,]+∞))
76 id 22 . . . . . . . . . . 11 (𝑥𝐴𝑥𝐴)
77 fvexd 6907 . . . . . . . . . . 11 (𝑥𝐴 → (Σ^‘(𝑘𝐵𝐶)) ∈ V)
78 eqid 2733 . . . . . . . . . . . 12 (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) = (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))
7978elrnmpt1 5958 . . . . . . . . . . 11 ((𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) ∈ V) → (Σ^‘(𝑘𝐵𝐶)) ∈ ran (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
8076, 77, 79syl2anc 585 . . . . . . . . . 10 (𝑥𝐴 → (Σ^‘(𝑘𝐵𝐶)) ∈ ran (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
8180adantr 482 . . . . . . . . 9 ((𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘𝐵𝐶)) ∈ ran (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
8233, 81eqeltrd 2834 . . . . . . . 8 ((𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → +∞ ∈ ran (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
83823adant1 1131 . . . . . . 7 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → +∞ ∈ ran (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
8443, 75, 83sge0pnfval 45089 . . . . . 6 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) = +∞)
8542, 84eqtr4d 2776 . . . . 5 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
86853exp 1120 . . . 4 (𝜑 → (𝑥𝐴 → ((Σ^‘(𝑘𝐵𝐶)) = +∞ → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))))
871, 9, 86rexlimd 3264 . . 3 (𝜑 → (∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞ → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))))
8887imp 408 . 2 ((𝜑 ∧ ∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
89 simpl 484 . . 3 ((𝜑 ∧ ¬ ∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞) → 𝜑)
90 ralnex 3073 . . . . 5 (∀𝑥𝐴 ¬ (Σ^‘(𝑘𝐵𝐶)) = +∞ ↔ ¬ ∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞)
91 df-ne 2942 . . . . . . 7 ((Σ^‘(𝑘𝐵𝐶)) ≠ +∞ ↔ ¬ (Σ^‘(𝑘𝐵𝐶)) = +∞)
9291bicomi 223 . . . . . 6 (¬ (Σ^‘(𝑘𝐵𝐶)) = +∞ ↔ (Σ^‘(𝑘𝐵𝐶)) ≠ +∞)
9392ralbii 3094 . . . . 5 (∀𝑥𝐴 ¬ (Σ^‘(𝑘𝐵𝐶)) = +∞ ↔ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞)
9490, 93sylbb1 236 . . . 4 (¬ ∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞ → ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞)
9594adantl 483 . . 3 ((𝜑 ∧ ¬ ∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞) → ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞)
9610adantr 482 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → 𝐴𝑉)
97 nfcv 2904 . . . . . . . . 9 𝑥𝑊
9845, 97nfel 2918 . . . . . . . 8 𝑥𝑦 / 𝑥𝐵𝑊
9944, 98nfim 1900 . . . . . . 7 𝑥((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑊)
10051eleq1d 2819 . . . . . . . 8 (𝑥 = 𝑦 → (𝐵𝑊𝑦 / 𝑥𝐵𝑊))
10150, 100imbi12d 345 . . . . . . 7 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → 𝐵𝑊) ↔ ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑊)))
10299, 101, 11chvarfv 2234 . . . . . 6 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑊)
103102adantlr 714 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) ∧ 𝑦𝐴) → 𝑦 / 𝑥𝐵𝑊)
104 sge0iunmpt.dj . . . . . . 7 (𝜑Disj 𝑥𝐴 𝐵)
105 nfcv 2904 . . . . . . . 8 𝑦𝐵
106105, 45, 51cbvdisj 5124 . . . . . . 7 (Disj 𝑥𝐴 𝐵Disj 𝑦𝐴 𝑦 / 𝑥𝐵)
107104, 106sylib 217 . . . . . 6 (𝜑Disj 𝑦𝐴 𝑦 / 𝑥𝐵)
108107adantr 482 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → Disj 𝑦𝐴 𝑦 / 𝑥𝐵)
109 nfv 1918 . . . . . . . 8 𝑘(𝜑𝑦𝐴𝑗𝑦 / 𝑥𝐵)
110 nfcsb1v 3919 . . . . . . . . 9 𝑘𝑗 / 𝑘𝐶
111110nfel1 2920 . . . . . . . 8 𝑘𝑗 / 𝑘𝐶 ∈ (0[,]+∞)
112109, 111nfim 1900 . . . . . . 7 𝑘((𝜑𝑦𝐴𝑗𝑦 / 𝑥𝐵) → 𝑗 / 𝑘𝐶 ∈ (0[,]+∞))
113 eleq1w 2817 . . . . . . . . 9 (𝑘 = 𝑗 → (𝑘𝑦 / 𝑥𝐵𝑗𝑦 / 𝑥𝐵))
1141133anbi3d 1443 . . . . . . . 8 (𝑘 = 𝑗 → ((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) ↔ (𝜑𝑦𝐴𝑗𝑦 / 𝑥𝐵)))
115 csbeq1a 3908 . . . . . . . . 9 (𝑘 = 𝑗𝐶 = 𝑗 / 𝑘𝐶)
116115eleq1d 2819 . . . . . . . 8 (𝑘 = 𝑗 → (𝐶 ∈ (0[,]+∞) ↔ 𝑗 / 𝑘𝐶 ∈ (0[,]+∞)))
117114, 116imbi12d 345 . . . . . . 7 (𝑘 = 𝑗 → (((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ (0[,]+∞)) ↔ ((𝜑𝑦𝐴𝑗𝑦 / 𝑥𝐵) → 𝑗 / 𝑘𝐶 ∈ (0[,]+∞))))
118 nfv 1918 . . . . . . . . . 10 𝑥 𝑦𝐴
11918, 45nfel 2918 . . . . . . . . . 10 𝑥 𝑘𝑦 / 𝑥𝐵
1201, 118, 119nf3an 1905 . . . . . . . . 9 𝑥(𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵)
121120, 21nfim 1900 . . . . . . . 8 𝑥((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ (0[,]+∞))
12251eleq2d 2820 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑘𝐵𝑘𝑦 / 𝑥𝐵))
12349, 1223anbi23d 1440 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝜑𝑥𝐴𝑘𝐵) ↔ (𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵)))
124123imbi1d 342 . . . . . . . 8 (𝑥 = 𝑦 → (((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞)) ↔ ((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ (0[,]+∞))))
125121, 124, 22chvarfv 2234 . . . . . . 7 ((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ (0[,]+∞))
126112, 117, 125chvarfv 2234 . . . . . 6 ((𝜑𝑦𝐴𝑗𝑦 / 𝑥𝐵) → 𝑗 / 𝑘𝐶 ∈ (0[,]+∞))
1271263adant1r 1178 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) ∧ 𝑦𝐴𝑗𝑦 / 𝑥𝐵) → 𝑗 / 𝑘𝐶 ∈ (0[,]+∞))
128 simpr 486 . . . . . . . . 9 ((∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞ ∧ 𝑦𝐴) → 𝑦𝐴)
129 simpl 484 . . . . . . . . 9 ((∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞ ∧ 𝑦𝐴) → ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞)
130 simpl 484 . . . . . . . . . 10 ((𝑦𝐴 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → 𝑦𝐴)
131 simpr 486 . . . . . . . . . 10 ((𝑦𝐴 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞)
132 nfcv 2904 . . . . . . . . . . . . . 14 𝑥𝑗 / 𝑘𝐶
13345, 132nfmpt 5256 . . . . . . . . . . . . 13 𝑥(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)
1342, 133nffv 6902 . . . . . . . . . . . 12 𝑥^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶))
135 nfcv 2904 . . . . . . . . . . . 12 𝑥+∞
136134, 135nfne 3044 . . . . . . . . . . 11 𝑥^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ≠ +∞
137 nfcv 2904 . . . . . . . . . . . . . . . 16 𝑗𝐶
138137, 110, 115cbvmpt 5260 . . . . . . . . . . . . . . 15 (𝑘𝑦 / 𝑥𝐵𝐶) = (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)
139138a1i 11 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑘𝑦 / 𝑥𝐵𝐶) = (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶))
14061, 139eqtrd 2773 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑘𝐵𝐶) = (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶))
141140fveq2d 6896 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (Σ^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))
142141neeq1d 3001 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((Σ^‘(𝑘𝐵𝐶)) ≠ +∞ ↔ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ≠ +∞))
143136, 142rspc 3601 . . . . . . . . . 10 (𝑦𝐴 → (∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞ → (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ≠ +∞))
144130, 131, 143sylc 65 . . . . . . . . 9 ((𝑦𝐴 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ≠ +∞)
145128, 129, 144syl2anc 585 . . . . . . . 8 ((∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞ ∧ 𝑦𝐴) → (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ≠ +∞)
146145neneqd 2946 . . . . . . 7 ((∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞ ∧ 𝑦𝐴) → ¬ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) = +∞)
147146adantll 713 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) ∧ 𝑦𝐴) → ¬ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) = +∞)
1481263expa 1119 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑗𝑦 / 𝑥𝐵) → 𝑗 / 𝑘𝐶 ∈ (0[,]+∞))
149 eqid 2733 . . . . . . . . 9 (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶) = (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)
150148, 149fmptd 7114 . . . . . . . 8 ((𝜑𝑦𝐴) → (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞))
151150adantlr 714 . . . . . . 7 (((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) ∧ 𝑦𝐴) → (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞))
152103, 151sge0repnf 45102 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) ∧ 𝑦𝐴) → ((Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ∈ ℝ ↔ ¬ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) = +∞))
153147, 152mpbird 257 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) ∧ 𝑦𝐴) → (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ∈ ℝ)
154137, 110, 115cbvmpt 5260 . . . . . . . . 9 (𝑘 𝑥𝐴 𝐵𝐶) = (𝑗 𝑥𝐴 𝐵𝑗 / 𝑘𝐶)
155105, 45, 51cbviun 5040 . . . . . . . . . 10 𝑥𝐴 𝐵 = 𝑦𝐴 𝑦 / 𝑥𝐵
156155mpteq1i 5245 . . . . . . . . 9 (𝑗 𝑥𝐴 𝐵𝑗 / 𝑘𝐶) = (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)
157154, 156eqtri 2761 . . . . . . . 8 (𝑘 𝑥𝐴 𝐵𝐶) = (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)
158157fveq2i 6895 . . . . . . 7 ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶))
159158, 29eqeltrrid 2839 . . . . . 6 (𝜑 → (Σ^‘(𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ∈ ℝ*)
160159adantr 482 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ∈ ℝ*)
16170, 134, 141cbvmpt 5260 . . . . . . . 8 (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) = (𝑦𝐴 ↦ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))
162161fveq2i 6895 . . . . . . 7 ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) = (Σ^‘(𝑦𝐴 ↦ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶))))
16311, 66sge0cl 45097 . . . . . . . . 9 ((𝜑𝑥𝐴) → (Σ^‘(𝑘𝐵𝐶)) ∈ (0[,]+∞))
164163, 78fmptd 7114 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))):𝐴⟶(0[,]+∞))
16510, 164sge0xrcl 45101 . . . . . . 7 (𝜑 → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ∈ ℝ*)
166162, 165eqeltrrid 2839 . . . . . 6 (𝜑 → (Σ^‘(𝑦𝐴 ↦ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))) ∈ ℝ*)
167166adantr 482 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑦𝐴 ↦ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))) ∈ ℝ*)
168 eliun 5002 . . . . . . . . . 10 (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵 ↔ ∃𝑦𝐴 𝑗𝑦 / 𝑥𝐵)
169168biimpi 215 . . . . . . . . 9 (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵 → ∃𝑦𝐴 𝑗𝑦 / 𝑥𝐵)
170169adantl 483 . . . . . . . 8 ((𝜑𝑗 𝑦𝐴 𝑦 / 𝑥𝐵) → ∃𝑦𝐴 𝑗𝑦 / 𝑥𝐵)
171 nfv 1918 . . . . . . . . . 10 𝑦𝜑
172 nfcv 2904 . . . . . . . . . . 11 𝑦𝑗
173 nfiu1 5032 . . . . . . . . . . 11 𝑦 𝑦𝐴 𝑦 / 𝑥𝐵
174172, 173nfel 2918 . . . . . . . . . 10 𝑦 𝑗 𝑦𝐴 𝑦 / 𝑥𝐵
175171, 174nfan 1903 . . . . . . . . 9 𝑦(𝜑𝑗 𝑦𝐴 𝑦 / 𝑥𝐵)
176 nfv 1918 . . . . . . . . 9 𝑦𝑗 / 𝑘𝐶 ∈ (0[,]+∞)
177148exp31 421 . . . . . . . . . 10 (𝜑 → (𝑦𝐴 → (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶 ∈ (0[,]+∞))))
178177adantr 482 . . . . . . . . 9 ((𝜑𝑗 𝑦𝐴 𝑦 / 𝑥𝐵) → (𝑦𝐴 → (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶 ∈ (0[,]+∞))))
179175, 176, 178rexlimd 3264 . . . . . . . 8 ((𝜑𝑗 𝑦𝐴 𝑦 / 𝑥𝐵) → (∃𝑦𝐴 𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶 ∈ (0[,]+∞)))
180170, 179mpd 15 . . . . . . 7 ((𝜑𝑗 𝑦𝐴 𝑦 / 𝑥𝐵) → 𝑗 / 𝑘𝐶 ∈ (0[,]+∞))
181 eqid 2733 . . . . . . 7 (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶) = (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)
182180, 181fmptd 7114 . . . . . 6 (𝜑 → (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶): 𝑦𝐴 𝑦 / 𝑥𝐵⟶(0[,]+∞))
183182adantr 482 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶): 𝑦𝐴 𝑦 / 𝑥𝐵⟶(0[,]+∞))
184155, 14eqeltrrid 2839 . . . . . 6 (𝜑 𝑦𝐴 𝑦 / 𝑥𝐵 ∈ V)
185184adantr 482 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → 𝑦𝐴 𝑦 / 𝑥𝐵 ∈ V)
18696, 103, 108, 127, 153, 160, 167, 183, 185sge0iunmptlemre 45131 . . . 4 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) = (Σ^‘(𝑦𝐴 ↦ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))))
187158a1i 11 . . . 4 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))
188162a1i 11 . . . 4 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) = (Σ^‘(𝑦𝐴 ↦ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))))
189186, 187, 1883eqtr4d 2783 . . 3 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
19089, 95, 189syl2anc 585 . 2 ((𝜑 ∧ ¬ ∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
19188, 190pm2.61dan 812 1 (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wral 3062  wrex 3071  Vcvv 3475  csb 3894  wss 3949   ciun 4998  Disj wdisj 5114   class class class wbr 5149  cmpt 5232  ran crn 5678  wf 6540  cfv 6544  (class class class)co 7409  cr 11109  0cc0 11110  +∞cpnf 11245  *cxr 11247  cle 11249  [,]cicc 13327  Σ^csumge0 45078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-ac2 10458  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-oi 9505  df-card 9934  df-acn 9937  df-ac 10111  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-xadd 13093  df-ico 13330  df-icc 13331  df-fz 13485  df-fzo 13628  df-seq 13967  df-exp 14028  df-hash 14291  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-clim 15432  df-sum 15633  df-sumge0 45079
This theorem is referenced by:  sge0iun  45135  sge0xp  45145
  Copyright terms: Public domain W3C validator