MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupthp1 Structured version   Visualization version   GIF version

Theorem eupthp1 30195
Description: Append one path segment to an Eulerian path 𝐹, 𝑃 to become an Eulerian path 𝐻, 𝑄 of the supergraph 𝑆 obtained by adding the new edge to the graph 𝐺. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 7-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) (Revised by AV, 8-Apr-2024.)
Hypotheses
Ref Expression
eupthp1.v 𝑉 = (Vtx‘𝐺)
eupthp1.i 𝐼 = (iEdg‘𝐺)
eupthp1.f (𝜑 → Fun 𝐼)
eupthp1.a (𝜑𝐼 ∈ Fin)
eupthp1.b (𝜑𝐵𝑊)
eupthp1.c (𝜑𝐶𝑉)
eupthp1.d (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
eupthp1.p (𝜑𝐹(EulerPaths‘𝐺)𝑃)
eupthp1.n 𝑁 = (♯‘𝐹)
eupthp1.e (𝜑𝐸 ∈ (Edg‘𝐺))
eupthp1.x (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
eupthp1.u (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩})
eupthp1.h 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
eupthp1.q 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
eupthp1.s (Vtx‘𝑆) = 𝑉
eupthp1.l ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {𝐶})
Assertion
Ref Expression
eupthp1 (𝜑𝐻(EulerPaths‘𝑆)𝑄)

Proof of Theorem eupthp1
StepHypRef Expression
1 eupthp1.v . . 3 𝑉 = (Vtx‘𝐺)
2 eupthp1.i . . 3 𝐼 = (iEdg‘𝐺)
3 eupthp1.f . . 3 (𝜑 → Fun 𝐼)
4 eupthp1.a . . 3 (𝜑𝐼 ∈ Fin)
5 eupthp1.b . . 3 (𝜑𝐵𝑊)
6 eupthp1.c . . 3 (𝜑𝐶𝑉)
7 eupthp1.d . . 3 (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
8 eupthp1.p . . . 4 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
9 eupthiswlk 30191 . . . 4 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
108, 9syl 17 . . 3 (𝜑𝐹(Walks‘𝐺)𝑃)
11 eupthp1.n . . 3 𝑁 = (♯‘𝐹)
12 eupthp1.e . . 3 (𝜑𝐸 ∈ (Edg‘𝐺))
13 eupthp1.x . . 3 (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
14 eupthp1.u . . . 4 (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩})
1514a1i 11 . . 3 (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
16 eupthp1.h . . 3 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
17 eupthp1.q . . 3 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
18 eupthp1.s . . . 4 (Vtx‘𝑆) = 𝑉
1918a1i 11 . . 3 (𝜑 → (Vtx‘𝑆) = 𝑉)
20 eupthp1.l . . 3 ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {𝐶})
211, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 15, 16, 17, 19, 20wlkp1 29660 . 2 (𝜑𝐻(Walks‘𝑆)𝑄)
222eupthi 30182 . . . . 5 (𝐹(EulerPaths‘𝐺)𝑃 → (𝐹(Walks‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼))
2311eqcomi 2738 . . . . . . . . 9 (♯‘𝐹) = 𝑁
2423oveq2i 7380 . . . . . . . 8 (0..^(♯‘𝐹)) = (0..^𝑁)
25 f1oeq2 6771 . . . . . . . 8 ((0..^(♯‘𝐹)) = (0..^𝑁) → (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼𝐹:(0..^𝑁)–1-1-onto→dom 𝐼))
2624, 25ax-mp 5 . . . . . . 7 (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼𝐹:(0..^𝑁)–1-1-onto→dom 𝐼)
2726biimpi 216 . . . . . 6 (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼𝐹:(0..^𝑁)–1-1-onto→dom 𝐼)
2827adantl 481 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼) → 𝐹:(0..^𝑁)–1-1-onto→dom 𝐼)
298, 22, 283syl 18 . . . 4 (𝜑𝐹:(0..^𝑁)–1-1-onto→dom 𝐼)
3011fvexi 6854 . . . . . 6 𝑁 ∈ V
31 f1osng 6823 . . . . . 6 ((𝑁 ∈ V ∧ 𝐵𝑊) → {⟨𝑁, 𝐵⟩}:{𝑁}–1-1-onto→{𝐵})
3230, 5, 31sylancr 587 . . . . 5 (𝜑 → {⟨𝑁, 𝐵⟩}:{𝑁}–1-1-onto→{𝐵})
33 dmsnopg 6174 . . . . . . 7 (𝐸 ∈ (Edg‘𝐺) → dom {⟨𝐵, 𝐸⟩} = {𝐵})
3412, 33syl 17 . . . . . 6 (𝜑 → dom {⟨𝐵, 𝐸⟩} = {𝐵})
3534f1oeq3d 6779 . . . . 5 (𝜑 → ({⟨𝑁, 𝐵⟩}:{𝑁}–1-1-onto→dom {⟨𝐵, 𝐸⟩} ↔ {⟨𝑁, 𝐵⟩}:{𝑁}–1-1-onto→{𝐵}))
3632, 35mpbird 257 . . . 4 (𝜑 → {⟨𝑁, 𝐵⟩}:{𝑁}–1-1-onto→dom {⟨𝐵, 𝐸⟩})
37 fzodisjsn 13634 . . . . 5 ((0..^𝑁) ∩ {𝑁}) = ∅
3837a1i 11 . . . 4 (𝜑 → ((0..^𝑁) ∩ {𝑁}) = ∅)
3934ineq2d 4179 . . . . 5 (𝜑 → (dom 𝐼 ∩ dom {⟨𝐵, 𝐸⟩}) = (dom 𝐼 ∩ {𝐵}))
40 disjsn 4671 . . . . . 6 ((dom 𝐼 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ dom 𝐼)
417, 40sylibr 234 . . . . 5 (𝜑 → (dom 𝐼 ∩ {𝐵}) = ∅)
4239, 41eqtrd 2764 . . . 4 (𝜑 → (dom 𝐼 ∩ dom {⟨𝐵, 𝐸⟩}) = ∅)
43 f1oun 6801 . . . 4 (((𝐹:(0..^𝑁)–1-1-onto→dom 𝐼 ∧ {⟨𝑁, 𝐵⟩}:{𝑁}–1-1-onto→dom {⟨𝐵, 𝐸⟩}) ∧ (((0..^𝑁) ∩ {𝑁}) = ∅ ∧ (dom 𝐼 ∩ dom {⟨𝐵, 𝐸⟩}) = ∅)) → (𝐹 ∪ {⟨𝑁, 𝐵⟩}):((0..^𝑁) ∪ {𝑁})–1-1-onto→(dom 𝐼 ∪ dom {⟨𝐵, 𝐸⟩}))
4429, 36, 38, 42, 43syl22anc 838 . . 3 (𝜑 → (𝐹 ∪ {⟨𝑁, 𝐵⟩}):((0..^𝑁) ∪ {𝑁})–1-1-onto→(dom 𝐼 ∪ dom {⟨𝐵, 𝐸⟩}))
4516a1i 11 . . . 4 (𝜑𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩}))
461, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 15, 16wlkp1lem2 29653 . . . . . 6 (𝜑 → (♯‘𝐻) = (𝑁 + 1))
4746oveq2d 7385 . . . . 5 (𝜑 → (0..^(♯‘𝐻)) = (0..^(𝑁 + 1)))
48 wlkcl 29596 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
4911eleq1i 2819 . . . . . . . . 9 (𝑁 ∈ ℕ0 ↔ (♯‘𝐹) ∈ ℕ0)
50 elnn0uz 12814 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
5149, 50sylbb1 237 . . . . . . . 8 ((♯‘𝐹) ∈ ℕ0𝑁 ∈ (ℤ‘0))
5248, 51syl 17 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃𝑁 ∈ (ℤ‘0))
538, 9, 523syl 18 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘0))
54 fzosplitsn 13712 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
5553, 54syl 17 . . . . 5 (𝜑 → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
5647, 55eqtrd 2764 . . . 4 (𝜑 → (0..^(♯‘𝐻)) = ((0..^𝑁) ∪ {𝑁}))
57 dmun 5864 . . . . 5 dom (𝐼 ∪ {⟨𝐵, 𝐸⟩}) = (dom 𝐼 ∪ dom {⟨𝐵, 𝐸⟩})
5857a1i 11 . . . 4 (𝜑 → dom (𝐼 ∪ {⟨𝐵, 𝐸⟩}) = (dom 𝐼 ∪ dom {⟨𝐵, 𝐸⟩}))
5945, 56, 58f1oeq123d 6776 . . 3 (𝜑 → (𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ∪ {⟨𝐵, 𝐸⟩}) ↔ (𝐹 ∪ {⟨𝑁, 𝐵⟩}):((0..^𝑁) ∪ {𝑁})–1-1-onto→(dom 𝐼 ∪ dom {⟨𝐵, 𝐸⟩})))
6044, 59mpbird 257 . 2 (𝜑𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
6114eqcomi 2738 . . 3 (𝐼 ∪ {⟨𝐵, 𝐸⟩}) = (iEdg‘𝑆)
6261iseupthf1o 30181 . 2 (𝐻(EulerPaths‘𝑆)𝑄 ↔ (𝐻(Walks‘𝑆)𝑄𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ∪ {⟨𝐵, 𝐸⟩})))
6321, 60, 62sylanbrc 583 1 (𝜑𝐻(EulerPaths‘𝑆)𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cun 3909  cin 3910  wss 3911  c0 4292  {csn 4585  {cpr 4587  cop 4591   class class class wbr 5102  dom cdm 5631  Fun wfun 6493  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  Fincfn 8895  0cc0 11044  1c1 11045   + caddc 11047  0cn0 12418  cuz 12769  ..^cfzo 13591  chash 14271  Vtxcvtx 28976  iEdgciedg 28977  Edgcedg 29027  Walkscwlks 29577  EulerPathsceupth 30176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-wlks 29580  df-trls 29671  df-eupth 30177
This theorem is referenced by:  eupth2eucrct  30196
  Copyright terms: Public domain W3C validator