Proof of Theorem eupthp1
| Step | Hyp | Ref
| Expression |
| 1 | | eupthp1.v |
. . 3
⊢ 𝑉 = (Vtx‘𝐺) |
| 2 | | eupthp1.i |
. . 3
⊢ 𝐼 = (iEdg‘𝐺) |
| 3 | | eupthp1.f |
. . 3
⊢ (𝜑 → Fun 𝐼) |
| 4 | | eupthp1.a |
. . 3
⊢ (𝜑 → 𝐼 ∈ Fin) |
| 5 | | eupthp1.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| 6 | | eupthp1.c |
. . 3
⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| 7 | | eupthp1.d |
. . 3
⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) |
| 8 | | eupthp1.p |
. . . 4
⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) |
| 9 | | eupthiswlk 30158 |
. . . 4
⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
| 10 | 8, 9 | syl 17 |
. . 3
⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| 11 | | eupthp1.n |
. . 3
⊢ 𝑁 = (♯‘𝐹) |
| 12 | | eupthp1.e |
. . 3
⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) |
| 13 | | eupthp1.x |
. . 3
⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) |
| 14 | | eupthp1.u |
. . . 4
⊢
(iEdg‘𝑆) =
(𝐼 ∪ {〈𝐵, 𝐸〉}) |
| 15 | 14 | a1i 11 |
. . 3
⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) |
| 16 | | eupthp1.h |
. . 3
⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) |
| 17 | | eupthp1.q |
. . 3
⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) |
| 18 | | eupthp1.s |
. . . 4
⊢
(Vtx‘𝑆) =
𝑉 |
| 19 | 18 | a1i 11 |
. . 3
⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
| 20 | | eupthp1.l |
. . 3
⊢ ((𝜑 ∧ 𝐶 = (𝑃‘𝑁)) → 𝐸 = {𝐶}) |
| 21 | 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 15, 16, 17, 19, 20 | wlkp1 29626 |
. 2
⊢ (𝜑 → 𝐻(Walks‘𝑆)𝑄) |
| 22 | 2 | eupthi 30149 |
. . . . 5
⊢ (𝐹(EulerPaths‘𝐺)𝑃 → (𝐹(Walks‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom
𝐼)) |
| 23 | 11 | eqcomi 2743 |
. . . . . . . . 9
⊢
(♯‘𝐹) =
𝑁 |
| 24 | 23 | oveq2i 7423 |
. . . . . . . 8
⊢
(0..^(♯‘𝐹)) = (0..^𝑁) |
| 25 | | f1oeq2 6816 |
. . . . . . . 8
⊢
((0..^(♯‘𝐹)) = (0..^𝑁) → (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom
𝐼 ↔ 𝐹:(0..^𝑁)–1-1-onto→dom
𝐼)) |
| 26 | 24, 25 | ax-mp 5 |
. . . . . . 7
⊢ (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom
𝐼 ↔ 𝐹:(0..^𝑁)–1-1-onto→dom
𝐼) |
| 27 | 26 | biimpi 216 |
. . . . . 6
⊢ (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom
𝐼 → 𝐹:(0..^𝑁)–1-1-onto→dom
𝐼) |
| 28 | 27 | adantl 481 |
. . . . 5
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom
𝐼) → 𝐹:(0..^𝑁)–1-1-onto→dom
𝐼) |
| 29 | 8, 22, 28 | 3syl 18 |
. . . 4
⊢ (𝜑 → 𝐹:(0..^𝑁)–1-1-onto→dom
𝐼) |
| 30 | 11 | fvexi 6899 |
. . . . . 6
⊢ 𝑁 ∈ V |
| 31 | | f1osng 6868 |
. . . . . 6
⊢ ((𝑁 ∈ V ∧ 𝐵 ∈ 𝑊) → {〈𝑁, 𝐵〉}:{𝑁}–1-1-onto→{𝐵}) |
| 32 | 30, 5, 31 | sylancr 587 |
. . . . 5
⊢ (𝜑 → {〈𝑁, 𝐵〉}:{𝑁}–1-1-onto→{𝐵}) |
| 33 | | dmsnopg 6213 |
. . . . . . 7
⊢ (𝐸 ∈ (Edg‘𝐺) → dom {〈𝐵, 𝐸〉} = {𝐵}) |
| 34 | 12, 33 | syl 17 |
. . . . . 6
⊢ (𝜑 → dom {〈𝐵, 𝐸〉} = {𝐵}) |
| 35 | 34 | f1oeq3d 6824 |
. . . . 5
⊢ (𝜑 → ({〈𝑁, 𝐵〉}:{𝑁}–1-1-onto→dom
{〈𝐵, 𝐸〉} ↔ {〈𝑁, 𝐵〉}:{𝑁}–1-1-onto→{𝐵})) |
| 36 | 32, 35 | mpbird 257 |
. . . 4
⊢ (𝜑 → {〈𝑁, 𝐵〉}:{𝑁}–1-1-onto→dom
{〈𝐵, 𝐸〉}) |
| 37 | | fzodisjsn 13718 |
. . . . 5
⊢
((0..^𝑁) ∩
{𝑁}) =
∅ |
| 38 | 37 | a1i 11 |
. . . 4
⊢ (𝜑 → ((0..^𝑁) ∩ {𝑁}) = ∅) |
| 39 | 34 | ineq2d 4200 |
. . . . 5
⊢ (𝜑 → (dom 𝐼 ∩ dom {〈𝐵, 𝐸〉}) = (dom 𝐼 ∩ {𝐵})) |
| 40 | | disjsn 4691 |
. . . . . 6
⊢ ((dom
𝐼 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ dom 𝐼) |
| 41 | 7, 40 | sylibr 234 |
. . . . 5
⊢ (𝜑 → (dom 𝐼 ∩ {𝐵}) = ∅) |
| 42 | 39, 41 | eqtrd 2769 |
. . . 4
⊢ (𝜑 → (dom 𝐼 ∩ dom {〈𝐵, 𝐸〉}) = ∅) |
| 43 | | f1oun 6846 |
. . . 4
⊢ (((𝐹:(0..^𝑁)–1-1-onto→dom
𝐼 ∧ {〈𝑁, 𝐵〉}:{𝑁}–1-1-onto→dom
{〈𝐵, 𝐸〉}) ∧ (((0..^𝑁) ∩ {𝑁}) = ∅ ∧ (dom 𝐼 ∩ dom {〈𝐵, 𝐸〉}) = ∅)) → (𝐹 ∪ {〈𝑁, 𝐵〉}):((0..^𝑁) ∪ {𝑁})–1-1-onto→(dom
𝐼 ∪ dom {〈𝐵, 𝐸〉})) |
| 44 | 29, 36, 38, 42, 43 | syl22anc 838 |
. . 3
⊢ (𝜑 → (𝐹 ∪ {〈𝑁, 𝐵〉}):((0..^𝑁) ∪ {𝑁})–1-1-onto→(dom
𝐼 ∪ dom {〈𝐵, 𝐸〉})) |
| 45 | 16 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉})) |
| 46 | 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 15, 16 | wlkp1lem2 29619 |
. . . . . 6
⊢ (𝜑 → (♯‘𝐻) = (𝑁 + 1)) |
| 47 | 46 | oveq2d 7428 |
. . . . 5
⊢ (𝜑 → (0..^(♯‘𝐻)) = (0..^(𝑁 + 1))) |
| 48 | | wlkcl 29560 |
. . . . . . . 8
⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈
ℕ0) |
| 49 | 11 | eleq1i 2824 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
↔ (♯‘𝐹)
∈ ℕ0) |
| 50 | | elnn0uz 12904 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
↔ 𝑁 ∈
(ℤ≥‘0)) |
| 51 | 49, 50 | sylbb1 237 |
. . . . . . . 8
⊢
((♯‘𝐹)
∈ ℕ0 → 𝑁 ∈
(ℤ≥‘0)) |
| 52 | 48, 51 | syl 17 |
. . . . . . 7
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑁 ∈
(ℤ≥‘0)) |
| 53 | 8, 9, 52 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘0)) |
| 54 | | fzosplitsn 13795 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘0) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁})) |
| 55 | 53, 54 | syl 17 |
. . . . 5
⊢ (𝜑 → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁})) |
| 56 | 47, 55 | eqtrd 2769 |
. . . 4
⊢ (𝜑 → (0..^(♯‘𝐻)) = ((0..^𝑁) ∪ {𝑁})) |
| 57 | | dmun 5901 |
. . . . 5
⊢ dom
(𝐼 ∪ {〈𝐵, 𝐸〉}) = (dom 𝐼 ∪ dom {〈𝐵, 𝐸〉}) |
| 58 | 57 | a1i 11 |
. . . 4
⊢ (𝜑 → dom (𝐼 ∪ {〈𝐵, 𝐸〉}) = (dom 𝐼 ∪ dom {〈𝐵, 𝐸〉})) |
| 59 | 45, 56, 58 | f1oeq123d 6821 |
. . 3
⊢ (𝜑 → (𝐻:(0..^(♯‘𝐻))–1-1-onto→dom
(𝐼 ∪ {〈𝐵, 𝐸〉}) ↔ (𝐹 ∪ {〈𝑁, 𝐵〉}):((0..^𝑁) ∪ {𝑁})–1-1-onto→(dom
𝐼 ∪ dom {〈𝐵, 𝐸〉}))) |
| 60 | 44, 59 | mpbird 257 |
. 2
⊢ (𝜑 → 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom
(𝐼 ∪ {〈𝐵, 𝐸〉})) |
| 61 | 14 | eqcomi 2743 |
. . 3
⊢ (𝐼 ∪ {〈𝐵, 𝐸〉}) = (iEdg‘𝑆) |
| 62 | 61 | iseupthf1o 30148 |
. 2
⊢ (𝐻(EulerPaths‘𝑆)𝑄 ↔ (𝐻(Walks‘𝑆)𝑄 ∧ 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom
(𝐼 ∪ {〈𝐵, 𝐸〉}))) |
| 63 | 21, 60, 62 | sylanbrc 583 |
1
⊢ (𝜑 → 𝐻(EulerPaths‘𝑆)𝑄) |