MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupthp1 Structured version   Visualization version   GIF version

Theorem eupthp1 30152
Description: Append one path segment to an Eulerian path 𝐹, 𝑃 to become an Eulerian path 𝐻, 𝑄 of the supergraph 𝑆 obtained by adding the new edge to the graph 𝐺. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 7-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) (Revised by AV, 8-Apr-2024.)
Hypotheses
Ref Expression
eupthp1.v 𝑉 = (Vtx‘𝐺)
eupthp1.i 𝐼 = (iEdg‘𝐺)
eupthp1.f (𝜑 → Fun 𝐼)
eupthp1.a (𝜑𝐼 ∈ Fin)
eupthp1.b (𝜑𝐵𝑊)
eupthp1.c (𝜑𝐶𝑉)
eupthp1.d (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
eupthp1.p (𝜑𝐹(EulerPaths‘𝐺)𝑃)
eupthp1.n 𝑁 = (♯‘𝐹)
eupthp1.e (𝜑𝐸 ∈ (Edg‘𝐺))
eupthp1.x (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
eupthp1.u (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩})
eupthp1.h 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
eupthp1.q 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
eupthp1.s (Vtx‘𝑆) = 𝑉
eupthp1.l ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {𝐶})
Assertion
Ref Expression
eupthp1 (𝜑𝐻(EulerPaths‘𝑆)𝑄)

Proof of Theorem eupthp1
StepHypRef Expression
1 eupthp1.v . . 3 𝑉 = (Vtx‘𝐺)
2 eupthp1.i . . 3 𝐼 = (iEdg‘𝐺)
3 eupthp1.f . . 3 (𝜑 → Fun 𝐼)
4 eupthp1.a . . 3 (𝜑𝐼 ∈ Fin)
5 eupthp1.b . . 3 (𝜑𝐵𝑊)
6 eupthp1.c . . 3 (𝜑𝐶𝑉)
7 eupthp1.d . . 3 (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
8 eupthp1.p . . . 4 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
9 eupthiswlk 30148 . . . 4 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
108, 9syl 17 . . 3 (𝜑𝐹(Walks‘𝐺)𝑃)
11 eupthp1.n . . 3 𝑁 = (♯‘𝐹)
12 eupthp1.e . . 3 (𝜑𝐸 ∈ (Edg‘𝐺))
13 eupthp1.x . . 3 (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
14 eupthp1.u . . . 4 (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩})
1514a1i 11 . . 3 (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
16 eupthp1.h . . 3 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
17 eupthp1.q . . 3 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
18 eupthp1.s . . . 4 (Vtx‘𝑆) = 𝑉
1918a1i 11 . . 3 (𝜑 → (Vtx‘𝑆) = 𝑉)
20 eupthp1.l . . 3 ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {𝐶})
211, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 15, 16, 17, 19, 20wlkp1 29616 . 2 (𝜑𝐻(Walks‘𝑆)𝑄)
222eupthi 30139 . . . . 5 (𝐹(EulerPaths‘𝐺)𝑃 → (𝐹(Walks‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼))
2311eqcomi 2739 . . . . . . . . 9 (♯‘𝐹) = 𝑁
2423oveq2i 7405 . . . . . . . 8 (0..^(♯‘𝐹)) = (0..^𝑁)
25 f1oeq2 6796 . . . . . . . 8 ((0..^(♯‘𝐹)) = (0..^𝑁) → (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼𝐹:(0..^𝑁)–1-1-onto→dom 𝐼))
2624, 25ax-mp 5 . . . . . . 7 (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼𝐹:(0..^𝑁)–1-1-onto→dom 𝐼)
2726biimpi 216 . . . . . 6 (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼𝐹:(0..^𝑁)–1-1-onto→dom 𝐼)
2827adantl 481 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼) → 𝐹:(0..^𝑁)–1-1-onto→dom 𝐼)
298, 22, 283syl 18 . . . 4 (𝜑𝐹:(0..^𝑁)–1-1-onto→dom 𝐼)
3011fvexi 6879 . . . . . 6 𝑁 ∈ V
31 f1osng 6848 . . . . . 6 ((𝑁 ∈ V ∧ 𝐵𝑊) → {⟨𝑁, 𝐵⟩}:{𝑁}–1-1-onto→{𝐵})
3230, 5, 31sylancr 587 . . . . 5 (𝜑 → {⟨𝑁, 𝐵⟩}:{𝑁}–1-1-onto→{𝐵})
33 dmsnopg 6194 . . . . . . 7 (𝐸 ∈ (Edg‘𝐺) → dom {⟨𝐵, 𝐸⟩} = {𝐵})
3412, 33syl 17 . . . . . 6 (𝜑 → dom {⟨𝐵, 𝐸⟩} = {𝐵})
3534f1oeq3d 6804 . . . . 5 (𝜑 → ({⟨𝑁, 𝐵⟩}:{𝑁}–1-1-onto→dom {⟨𝐵, 𝐸⟩} ↔ {⟨𝑁, 𝐵⟩}:{𝑁}–1-1-onto→{𝐵}))
3632, 35mpbird 257 . . . 4 (𝜑 → {⟨𝑁, 𝐵⟩}:{𝑁}–1-1-onto→dom {⟨𝐵, 𝐸⟩})
37 fzodisjsn 13671 . . . . 5 ((0..^𝑁) ∩ {𝑁}) = ∅
3837a1i 11 . . . 4 (𝜑 → ((0..^𝑁) ∩ {𝑁}) = ∅)
3934ineq2d 4191 . . . . 5 (𝜑 → (dom 𝐼 ∩ dom {⟨𝐵, 𝐸⟩}) = (dom 𝐼 ∩ {𝐵}))
40 disjsn 4683 . . . . . 6 ((dom 𝐼 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ dom 𝐼)
417, 40sylibr 234 . . . . 5 (𝜑 → (dom 𝐼 ∩ {𝐵}) = ∅)
4239, 41eqtrd 2765 . . . 4 (𝜑 → (dom 𝐼 ∩ dom {⟨𝐵, 𝐸⟩}) = ∅)
43 f1oun 6826 . . . 4 (((𝐹:(0..^𝑁)–1-1-onto→dom 𝐼 ∧ {⟨𝑁, 𝐵⟩}:{𝑁}–1-1-onto→dom {⟨𝐵, 𝐸⟩}) ∧ (((0..^𝑁) ∩ {𝑁}) = ∅ ∧ (dom 𝐼 ∩ dom {⟨𝐵, 𝐸⟩}) = ∅)) → (𝐹 ∪ {⟨𝑁, 𝐵⟩}):((0..^𝑁) ∪ {𝑁})–1-1-onto→(dom 𝐼 ∪ dom {⟨𝐵, 𝐸⟩}))
4429, 36, 38, 42, 43syl22anc 838 . . 3 (𝜑 → (𝐹 ∪ {⟨𝑁, 𝐵⟩}):((0..^𝑁) ∪ {𝑁})–1-1-onto→(dom 𝐼 ∪ dom {⟨𝐵, 𝐸⟩}))
4516a1i 11 . . . 4 (𝜑𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩}))
461, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 15, 16wlkp1lem2 29609 . . . . . 6 (𝜑 → (♯‘𝐻) = (𝑁 + 1))
4746oveq2d 7410 . . . . 5 (𝜑 → (0..^(♯‘𝐻)) = (0..^(𝑁 + 1)))
48 wlkcl 29550 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
4911eleq1i 2820 . . . . . . . . 9 (𝑁 ∈ ℕ0 ↔ (♯‘𝐹) ∈ ℕ0)
50 elnn0uz 12854 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
5149, 50sylbb1 237 . . . . . . . 8 ((♯‘𝐹) ∈ ℕ0𝑁 ∈ (ℤ‘0))
5248, 51syl 17 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃𝑁 ∈ (ℤ‘0))
538, 9, 523syl 18 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘0))
54 fzosplitsn 13748 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
5553, 54syl 17 . . . . 5 (𝜑 → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
5647, 55eqtrd 2765 . . . 4 (𝜑 → (0..^(♯‘𝐻)) = ((0..^𝑁) ∪ {𝑁}))
57 dmun 5882 . . . . 5 dom (𝐼 ∪ {⟨𝐵, 𝐸⟩}) = (dom 𝐼 ∪ dom {⟨𝐵, 𝐸⟩})
5857a1i 11 . . . 4 (𝜑 → dom (𝐼 ∪ {⟨𝐵, 𝐸⟩}) = (dom 𝐼 ∪ dom {⟨𝐵, 𝐸⟩}))
5945, 56, 58f1oeq123d 6801 . . 3 (𝜑 → (𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ∪ {⟨𝐵, 𝐸⟩}) ↔ (𝐹 ∪ {⟨𝑁, 𝐵⟩}):((0..^𝑁) ∪ {𝑁})–1-1-onto→(dom 𝐼 ∪ dom {⟨𝐵, 𝐸⟩})))
6044, 59mpbird 257 . 2 (𝜑𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
6114eqcomi 2739 . . 3 (𝐼 ∪ {⟨𝐵, 𝐸⟩}) = (iEdg‘𝑆)
6261iseupthf1o 30138 . 2 (𝐻(EulerPaths‘𝑆)𝑄 ↔ (𝐻(Walks‘𝑆)𝑄𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ∪ {⟨𝐵, 𝐸⟩})))
6321, 60, 62sylanbrc 583 1 (𝜑𝐻(EulerPaths‘𝑆)𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3455  cun 3920  cin 3921  wss 3922  c0 4304  {csn 4597  {cpr 4599  cop 4603   class class class wbr 5115  dom cdm 5646  Fun wfun 6513  1-1-ontowf1o 6518  cfv 6519  (class class class)co 7394  Fincfn 8922  0cc0 11086  1c1 11087   + caddc 11089  0cn0 12458  cuz 12809  ..^cfzo 13628  chash 14305  Vtxcvtx 28930  iEdgciedg 28931  Edgcedg 28981  Walkscwlks 29531  EulerPathsceupth 30133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-1st 7977  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-oadd 8447  df-er 8682  df-map 8805  df-pm 8806  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-dju 9872  df-card 9910  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-nn 12198  df-n0 12459  df-z 12546  df-uz 12810  df-fz 13482  df-fzo 13629  df-hash 14306  df-word 14489  df-wlks 29534  df-trls 29627  df-eupth 30134
This theorem is referenced by:  eupth2eucrct  30153
  Copyright terms: Public domain W3C validator