MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupthp1 Structured version   Visualization version   GIF version

Theorem eupthp1 30245
Description: Append one path segment to an Eulerian path 𝐹, 𝑃 to become an Eulerian path 𝐻, 𝑄 of the supergraph 𝑆 obtained by adding the new edge to the graph 𝐺. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 7-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) (Revised by AV, 8-Apr-2024.)
Hypotheses
Ref Expression
eupthp1.v 𝑉 = (Vtx‘𝐺)
eupthp1.i 𝐼 = (iEdg‘𝐺)
eupthp1.f (𝜑 → Fun 𝐼)
eupthp1.a (𝜑𝐼 ∈ Fin)
eupthp1.b (𝜑𝐵𝑊)
eupthp1.c (𝜑𝐶𝑉)
eupthp1.d (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
eupthp1.p (𝜑𝐹(EulerPaths‘𝐺)𝑃)
eupthp1.n 𝑁 = (♯‘𝐹)
eupthp1.e (𝜑𝐸 ∈ (Edg‘𝐺))
eupthp1.x (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
eupthp1.u (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩})
eupthp1.h 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
eupthp1.q 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
eupthp1.s (Vtx‘𝑆) = 𝑉
eupthp1.l ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {𝐶})
Assertion
Ref Expression
eupthp1 (𝜑𝐻(EulerPaths‘𝑆)𝑄)

Proof of Theorem eupthp1
StepHypRef Expression
1 eupthp1.v . . 3 𝑉 = (Vtx‘𝐺)
2 eupthp1.i . . 3 𝐼 = (iEdg‘𝐺)
3 eupthp1.f . . 3 (𝜑 → Fun 𝐼)
4 eupthp1.a . . 3 (𝜑𝐼 ∈ Fin)
5 eupthp1.b . . 3 (𝜑𝐵𝑊)
6 eupthp1.c . . 3 (𝜑𝐶𝑉)
7 eupthp1.d . . 3 (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
8 eupthp1.p . . . 4 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
9 eupthiswlk 30241 . . . 4 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
108, 9syl 17 . . 3 (𝜑𝐹(Walks‘𝐺)𝑃)
11 eupthp1.n . . 3 𝑁 = (♯‘𝐹)
12 eupthp1.e . . 3 (𝜑𝐸 ∈ (Edg‘𝐺))
13 eupthp1.x . . 3 (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
14 eupthp1.u . . . 4 (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩})
1514a1i 11 . . 3 (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
16 eupthp1.h . . 3 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
17 eupthp1.q . . 3 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
18 eupthp1.s . . . 4 (Vtx‘𝑆) = 𝑉
1918a1i 11 . . 3 (𝜑 → (Vtx‘𝑆) = 𝑉)
20 eupthp1.l . . 3 ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {𝐶})
211, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 15, 16, 17, 19, 20wlkp1 29714 . 2 (𝜑𝐻(Walks‘𝑆)𝑄)
222eupthi 30232 . . . . 5 (𝐹(EulerPaths‘𝐺)𝑃 → (𝐹(Walks‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼))
2311eqcomi 2744 . . . . . . . . 9 (♯‘𝐹) = 𝑁
2423oveq2i 7442 . . . . . . . 8 (0..^(♯‘𝐹)) = (0..^𝑁)
25 f1oeq2 6838 . . . . . . . 8 ((0..^(♯‘𝐹)) = (0..^𝑁) → (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼𝐹:(0..^𝑁)–1-1-onto→dom 𝐼))
2624, 25ax-mp 5 . . . . . . 7 (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼𝐹:(0..^𝑁)–1-1-onto→dom 𝐼)
2726biimpi 216 . . . . . 6 (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼𝐹:(0..^𝑁)–1-1-onto→dom 𝐼)
2827adantl 481 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼) → 𝐹:(0..^𝑁)–1-1-onto→dom 𝐼)
298, 22, 283syl 18 . . . 4 (𝜑𝐹:(0..^𝑁)–1-1-onto→dom 𝐼)
3011fvexi 6921 . . . . . 6 𝑁 ∈ V
31 f1osng 6890 . . . . . 6 ((𝑁 ∈ V ∧ 𝐵𝑊) → {⟨𝑁, 𝐵⟩}:{𝑁}–1-1-onto→{𝐵})
3230, 5, 31sylancr 587 . . . . 5 (𝜑 → {⟨𝑁, 𝐵⟩}:{𝑁}–1-1-onto→{𝐵})
33 dmsnopg 6235 . . . . . . 7 (𝐸 ∈ (Edg‘𝐺) → dom {⟨𝐵, 𝐸⟩} = {𝐵})
3412, 33syl 17 . . . . . 6 (𝜑 → dom {⟨𝐵, 𝐸⟩} = {𝐵})
3534f1oeq3d 6846 . . . . 5 (𝜑 → ({⟨𝑁, 𝐵⟩}:{𝑁}–1-1-onto→dom {⟨𝐵, 𝐸⟩} ↔ {⟨𝑁, 𝐵⟩}:{𝑁}–1-1-onto→{𝐵}))
3632, 35mpbird 257 . . . 4 (𝜑 → {⟨𝑁, 𝐵⟩}:{𝑁}–1-1-onto→dom {⟨𝐵, 𝐸⟩})
37 fzodisjsn 13734 . . . . 5 ((0..^𝑁) ∩ {𝑁}) = ∅
3837a1i 11 . . . 4 (𝜑 → ((0..^𝑁) ∩ {𝑁}) = ∅)
3934ineq2d 4228 . . . . 5 (𝜑 → (dom 𝐼 ∩ dom {⟨𝐵, 𝐸⟩}) = (dom 𝐼 ∩ {𝐵}))
40 disjsn 4716 . . . . . 6 ((dom 𝐼 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ dom 𝐼)
417, 40sylibr 234 . . . . 5 (𝜑 → (dom 𝐼 ∩ {𝐵}) = ∅)
4239, 41eqtrd 2775 . . . 4 (𝜑 → (dom 𝐼 ∩ dom {⟨𝐵, 𝐸⟩}) = ∅)
43 f1oun 6868 . . . 4 (((𝐹:(0..^𝑁)–1-1-onto→dom 𝐼 ∧ {⟨𝑁, 𝐵⟩}:{𝑁}–1-1-onto→dom {⟨𝐵, 𝐸⟩}) ∧ (((0..^𝑁) ∩ {𝑁}) = ∅ ∧ (dom 𝐼 ∩ dom {⟨𝐵, 𝐸⟩}) = ∅)) → (𝐹 ∪ {⟨𝑁, 𝐵⟩}):((0..^𝑁) ∪ {𝑁})–1-1-onto→(dom 𝐼 ∪ dom {⟨𝐵, 𝐸⟩}))
4429, 36, 38, 42, 43syl22anc 839 . . 3 (𝜑 → (𝐹 ∪ {⟨𝑁, 𝐵⟩}):((0..^𝑁) ∪ {𝑁})–1-1-onto→(dom 𝐼 ∪ dom {⟨𝐵, 𝐸⟩}))
4516a1i 11 . . . 4 (𝜑𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩}))
461, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 15, 16wlkp1lem2 29707 . . . . . 6 (𝜑 → (♯‘𝐻) = (𝑁 + 1))
4746oveq2d 7447 . . . . 5 (𝜑 → (0..^(♯‘𝐻)) = (0..^(𝑁 + 1)))
48 wlkcl 29648 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
4911eleq1i 2830 . . . . . . . . 9 (𝑁 ∈ ℕ0 ↔ (♯‘𝐹) ∈ ℕ0)
50 elnn0uz 12921 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
5149, 50sylbb1 237 . . . . . . . 8 ((♯‘𝐹) ∈ ℕ0𝑁 ∈ (ℤ‘0))
5248, 51syl 17 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃𝑁 ∈ (ℤ‘0))
538, 9, 523syl 18 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘0))
54 fzosplitsn 13811 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
5553, 54syl 17 . . . . 5 (𝜑 → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
5647, 55eqtrd 2775 . . . 4 (𝜑 → (0..^(♯‘𝐻)) = ((0..^𝑁) ∪ {𝑁}))
57 dmun 5924 . . . . 5 dom (𝐼 ∪ {⟨𝐵, 𝐸⟩}) = (dom 𝐼 ∪ dom {⟨𝐵, 𝐸⟩})
5857a1i 11 . . . 4 (𝜑 → dom (𝐼 ∪ {⟨𝐵, 𝐸⟩}) = (dom 𝐼 ∪ dom {⟨𝐵, 𝐸⟩}))
5945, 56, 58f1oeq123d 6843 . . 3 (𝜑 → (𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ∪ {⟨𝐵, 𝐸⟩}) ↔ (𝐹 ∪ {⟨𝑁, 𝐵⟩}):((0..^𝑁) ∪ {𝑁})–1-1-onto→(dom 𝐼 ∪ dom {⟨𝐵, 𝐸⟩})))
6044, 59mpbird 257 . 2 (𝜑𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
6114eqcomi 2744 . . 3 (𝐼 ∪ {⟨𝐵, 𝐸⟩}) = (iEdg‘𝑆)
6261iseupthf1o 30231 . 2 (𝐻(EulerPaths‘𝑆)𝑄 ↔ (𝐻(Walks‘𝑆)𝑄𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ∪ {⟨𝐵, 𝐸⟩})))
6321, 60, 62sylanbrc 583 1 (𝜑𝐻(EulerPaths‘𝑆)𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  cun 3961  cin 3962  wss 3963  c0 4339  {csn 4631  {cpr 4633  cop 4637   class class class wbr 5148  dom cdm 5689  Fun wfun 6557  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  Fincfn 8984  0cc0 11153  1c1 11154   + caddc 11156  0cn0 12524  cuz 12876  ..^cfzo 13691  chash 14366  Vtxcvtx 29028  iEdgciedg 29029  Edgcedg 29079  Walkscwlks 29629  EulerPathsceupth 30226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-wlks 29632  df-trls 29725  df-eupth 30227
This theorem is referenced by:  eupth2eucrct  30246
  Copyright terms: Public domain W3C validator