MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupthp1 Structured version   Visualization version   GIF version

Theorem eupthp1 28580
Description: Append one path segment to an Eulerian path 𝐹, 𝑃 to become an Eulerian path 𝐻, 𝑄 of the supergraph 𝑆 obtained by adding the new edge to the graph 𝐺. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 7-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) (Revised by AV, 8-Apr-2024.)
Hypotheses
Ref Expression
eupthp1.v 𝑉 = (Vtx‘𝐺)
eupthp1.i 𝐼 = (iEdg‘𝐺)
eupthp1.f (𝜑 → Fun 𝐼)
eupthp1.a (𝜑𝐼 ∈ Fin)
eupthp1.b (𝜑𝐵𝑊)
eupthp1.c (𝜑𝐶𝑉)
eupthp1.d (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
eupthp1.p (𝜑𝐹(EulerPaths‘𝐺)𝑃)
eupthp1.n 𝑁 = (♯‘𝐹)
eupthp1.e (𝜑𝐸 ∈ (Edg‘𝐺))
eupthp1.x (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
eupthp1.u (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩})
eupthp1.h 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
eupthp1.q 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
eupthp1.s (Vtx‘𝑆) = 𝑉
eupthp1.l ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {𝐶})
Assertion
Ref Expression
eupthp1 (𝜑𝐻(EulerPaths‘𝑆)𝑄)

Proof of Theorem eupthp1
StepHypRef Expression
1 eupthp1.v . . 3 𝑉 = (Vtx‘𝐺)
2 eupthp1.i . . 3 𝐼 = (iEdg‘𝐺)
3 eupthp1.f . . 3 (𝜑 → Fun 𝐼)
4 eupthp1.a . . 3 (𝜑𝐼 ∈ Fin)
5 eupthp1.b . . 3 (𝜑𝐵𝑊)
6 eupthp1.c . . 3 (𝜑𝐶𝑉)
7 eupthp1.d . . 3 (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
8 eupthp1.p . . . 4 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
9 eupthiswlk 28576 . . . 4 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
108, 9syl 17 . . 3 (𝜑𝐹(Walks‘𝐺)𝑃)
11 eupthp1.n . . 3 𝑁 = (♯‘𝐹)
12 eupthp1.e . . 3 (𝜑𝐸 ∈ (Edg‘𝐺))
13 eupthp1.x . . 3 (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
14 eupthp1.u . . . 4 (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩})
1514a1i 11 . . 3 (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
16 eupthp1.h . . 3 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
17 eupthp1.q . . 3 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
18 eupthp1.s . . . 4 (Vtx‘𝑆) = 𝑉
1918a1i 11 . . 3 (𝜑 → (Vtx‘𝑆) = 𝑉)
20 eupthp1.l . . 3 ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {𝐶})
211, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 15, 16, 17, 19, 20wlkp1 28049 . 2 (𝜑𝐻(Walks‘𝑆)𝑄)
222eupthi 28567 . . . . 5 (𝐹(EulerPaths‘𝐺)𝑃 → (𝐹(Walks‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼))
2311eqcomi 2747 . . . . . . . . 9 (♯‘𝐹) = 𝑁
2423oveq2i 7286 . . . . . . . 8 (0..^(♯‘𝐹)) = (0..^𝑁)
25 f1oeq2 6705 . . . . . . . 8 ((0..^(♯‘𝐹)) = (0..^𝑁) → (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼𝐹:(0..^𝑁)–1-1-onto→dom 𝐼))
2624, 25ax-mp 5 . . . . . . 7 (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼𝐹:(0..^𝑁)–1-1-onto→dom 𝐼)
2726biimpi 215 . . . . . 6 (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼𝐹:(0..^𝑁)–1-1-onto→dom 𝐼)
2827adantl 482 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼) → 𝐹:(0..^𝑁)–1-1-onto→dom 𝐼)
298, 22, 283syl 18 . . . 4 (𝜑𝐹:(0..^𝑁)–1-1-onto→dom 𝐼)
3011fvexi 6788 . . . . . 6 𝑁 ∈ V
31 f1osng 6757 . . . . . 6 ((𝑁 ∈ V ∧ 𝐵𝑊) → {⟨𝑁, 𝐵⟩}:{𝑁}–1-1-onto→{𝐵})
3230, 5, 31sylancr 587 . . . . 5 (𝜑 → {⟨𝑁, 𝐵⟩}:{𝑁}–1-1-onto→{𝐵})
33 dmsnopg 6116 . . . . . . 7 (𝐸 ∈ (Edg‘𝐺) → dom {⟨𝐵, 𝐸⟩} = {𝐵})
3412, 33syl 17 . . . . . 6 (𝜑 → dom {⟨𝐵, 𝐸⟩} = {𝐵})
3534f1oeq3d 6713 . . . . 5 (𝜑 → ({⟨𝑁, 𝐵⟩}:{𝑁}–1-1-onto→dom {⟨𝐵, 𝐸⟩} ↔ {⟨𝑁, 𝐵⟩}:{𝑁}–1-1-onto→{𝐵}))
3632, 35mpbird 256 . . . 4 (𝜑 → {⟨𝑁, 𝐵⟩}:{𝑁}–1-1-onto→dom {⟨𝐵, 𝐸⟩})
37 fzodisjsn 13425 . . . . 5 ((0..^𝑁) ∩ {𝑁}) = ∅
3837a1i 11 . . . 4 (𝜑 → ((0..^𝑁) ∩ {𝑁}) = ∅)
3934ineq2d 4146 . . . . 5 (𝜑 → (dom 𝐼 ∩ dom {⟨𝐵, 𝐸⟩}) = (dom 𝐼 ∩ {𝐵}))
40 disjsn 4647 . . . . . 6 ((dom 𝐼 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ dom 𝐼)
417, 40sylibr 233 . . . . 5 (𝜑 → (dom 𝐼 ∩ {𝐵}) = ∅)
4239, 41eqtrd 2778 . . . 4 (𝜑 → (dom 𝐼 ∩ dom {⟨𝐵, 𝐸⟩}) = ∅)
43 f1oun 6735 . . . 4 (((𝐹:(0..^𝑁)–1-1-onto→dom 𝐼 ∧ {⟨𝑁, 𝐵⟩}:{𝑁}–1-1-onto→dom {⟨𝐵, 𝐸⟩}) ∧ (((0..^𝑁) ∩ {𝑁}) = ∅ ∧ (dom 𝐼 ∩ dom {⟨𝐵, 𝐸⟩}) = ∅)) → (𝐹 ∪ {⟨𝑁, 𝐵⟩}):((0..^𝑁) ∪ {𝑁})–1-1-onto→(dom 𝐼 ∪ dom {⟨𝐵, 𝐸⟩}))
4429, 36, 38, 42, 43syl22anc 836 . . 3 (𝜑 → (𝐹 ∪ {⟨𝑁, 𝐵⟩}):((0..^𝑁) ∪ {𝑁})–1-1-onto→(dom 𝐼 ∪ dom {⟨𝐵, 𝐸⟩}))
4516a1i 11 . . . 4 (𝜑𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩}))
461, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 15, 16wlkp1lem2 28042 . . . . . 6 (𝜑 → (♯‘𝐻) = (𝑁 + 1))
4746oveq2d 7291 . . . . 5 (𝜑 → (0..^(♯‘𝐻)) = (0..^(𝑁 + 1)))
48 wlkcl 27982 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
4911eleq1i 2829 . . . . . . . . 9 (𝑁 ∈ ℕ0 ↔ (♯‘𝐹) ∈ ℕ0)
50 elnn0uz 12623 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
5149, 50sylbb1 236 . . . . . . . 8 ((♯‘𝐹) ∈ ℕ0𝑁 ∈ (ℤ‘0))
5248, 51syl 17 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃𝑁 ∈ (ℤ‘0))
538, 9, 523syl 18 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘0))
54 fzosplitsn 13495 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
5553, 54syl 17 . . . . 5 (𝜑 → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
5647, 55eqtrd 2778 . . . 4 (𝜑 → (0..^(♯‘𝐻)) = ((0..^𝑁) ∪ {𝑁}))
57 dmun 5819 . . . . 5 dom (𝐼 ∪ {⟨𝐵, 𝐸⟩}) = (dom 𝐼 ∪ dom {⟨𝐵, 𝐸⟩})
5857a1i 11 . . . 4 (𝜑 → dom (𝐼 ∪ {⟨𝐵, 𝐸⟩}) = (dom 𝐼 ∪ dom {⟨𝐵, 𝐸⟩}))
5945, 56, 58f1oeq123d 6710 . . 3 (𝜑 → (𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ∪ {⟨𝐵, 𝐸⟩}) ↔ (𝐹 ∪ {⟨𝑁, 𝐵⟩}):((0..^𝑁) ∪ {𝑁})–1-1-onto→(dom 𝐼 ∪ dom {⟨𝐵, 𝐸⟩})))
6044, 59mpbird 256 . 2 (𝜑𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
6114eqcomi 2747 . . 3 (𝐼 ∪ {⟨𝐵, 𝐸⟩}) = (iEdg‘𝑆)
6261iseupthf1o 28566 . 2 (𝐻(EulerPaths‘𝑆)𝑄 ↔ (𝐻(Walks‘𝑆)𝑄𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ∪ {⟨𝐵, 𝐸⟩})))
6321, 60, 62sylanbrc 583 1 (𝜑𝐻(EulerPaths‘𝑆)𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cun 3885  cin 3886  wss 3887  c0 4256  {csn 4561  {cpr 4563  cop 4567   class class class wbr 5074  dom cdm 5589  Fun wfun 6427  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  Fincfn 8733  0cc0 10871  1c1 10872   + caddc 10874  0cn0 12233  cuz 12582  ..^cfzo 13382  chash 14044  Vtxcvtx 27366  iEdgciedg 27367  Edgcedg 27417  Walkscwlks 27963  EulerPathsceupth 28561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-wlks 27966  df-trls 28060  df-eupth 28562
This theorem is referenced by:  eupth2eucrct  28581
  Copyright terms: Public domain W3C validator