Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icceuelpartlem Structured version   Visualization version   GIF version

Theorem icceuelpartlem 44775
Description: Lemma for icceuelpart 44776. (Contributed by AV, 19-Jul-2020.)
Hypotheses
Ref Expression
iccpartiun.m (𝜑𝑀 ∈ ℕ)
iccpartiun.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
icceuelpartlem (𝜑 → ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → (𝐼 < 𝐽 → (𝑃‘(𝐼 + 1)) ≤ (𝑃𝐽))))

Proof of Theorem icceuelpartlem
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . . . . 6 ((𝐼 + 1) = 𝐽 → (𝑃‘(𝐼 + 1)) = (𝑃𝐽))
21olcd 870 . . . . 5 ((𝐼 + 1) = 𝐽 → ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽)))
32a1d 25 . . . 4 ((𝐼 + 1) = 𝐽 → (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽))))
4 elfzoelz 13316 . . . . . . . . . . 11 (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ ℤ)
5 elfzoelz 13316 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑀) → 𝐽 ∈ ℤ)
6 zltp1le 12300 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽))
76biimpcd 248 . . . . . . . . . . . . . . . 16 (𝐼 < 𝐽 → ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼 + 1) ≤ 𝐽))
87adantr 480 . . . . . . . . . . . . . . 15 ((𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽) → ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼 + 1) ≤ 𝐽))
98impcom 407 . . . . . . . . . . . . . 14 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽)) → (𝐼 + 1) ≤ 𝐽)
10 df-ne 2943 . . . . . . . . . . . . . . . . 17 ((𝐼 + 1) ≠ 𝐽 ↔ ¬ (𝐼 + 1) = 𝐽)
11 necom 2996 . . . . . . . . . . . . . . . . 17 ((𝐼 + 1) ≠ 𝐽𝐽 ≠ (𝐼 + 1))
1210, 11sylbb1 236 . . . . . . . . . . . . . . . 16 (¬ (𝐼 + 1) = 𝐽𝐽 ≠ (𝐼 + 1))
1312adantl 481 . . . . . . . . . . . . . . 15 ((𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽) → 𝐽 ≠ (𝐼 + 1))
1413adantl 481 . . . . . . . . . . . . . 14 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽)) → 𝐽 ≠ (𝐼 + 1))
159, 14jca 511 . . . . . . . . . . . . 13 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽)) → ((𝐼 + 1) ≤ 𝐽𝐽 ≠ (𝐼 + 1)))
16 peano2z 12291 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ ℤ → (𝐼 + 1) ∈ ℤ)
1716zred 12355 . . . . . . . . . . . . . . . 16 (𝐼 ∈ ℤ → (𝐼 + 1) ∈ ℝ)
18 zre 12253 . . . . . . . . . . . . . . . 16 (𝐽 ∈ ℤ → 𝐽 ∈ ℝ)
1917, 18anim12i 612 . . . . . . . . . . . . . . 15 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝐼 + 1) ∈ ℝ ∧ 𝐽 ∈ ℝ))
2019adantr 480 . . . . . . . . . . . . . 14 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽)) → ((𝐼 + 1) ∈ ℝ ∧ 𝐽 ∈ ℝ))
21 ltlen 11006 . . . . . . . . . . . . . 14 (((𝐼 + 1) ∈ ℝ ∧ 𝐽 ∈ ℝ) → ((𝐼 + 1) < 𝐽 ↔ ((𝐼 + 1) ≤ 𝐽𝐽 ≠ (𝐼 + 1))))
2220, 21syl 17 . . . . . . . . . . . . 13 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽)) → ((𝐼 + 1) < 𝐽 ↔ ((𝐼 + 1) ≤ 𝐽𝐽 ≠ (𝐼 + 1))))
2315, 22mpbird 256 . . . . . . . . . . . 12 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽)) → (𝐼 + 1) < 𝐽)
2423ex 412 . . . . . . . . . . 11 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽) → (𝐼 + 1) < 𝐽))
254, 5, 24syl2an 595 . . . . . . . . . 10 ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → ((𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽) → (𝐼 + 1) < 𝐽))
2625adantl 481 . . . . . . . . 9 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → ((𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽) → (𝐼 + 1) < 𝐽))
27 iccpartiun.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
28 iccpartiun.p . . . . . . . . . . 11 (𝜑𝑃 ∈ (RePart‘𝑀))
2927, 28iccpartgt 44767 . . . . . . . . . 10 (𝜑 → ∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)(𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))
30 fzofzp1 13412 . . . . . . . . . . 11 (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀))
31 elfzofz 13331 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑀) → 𝐽 ∈ (0...𝑀))
32 breq1 5073 . . . . . . . . . . . . 13 (𝑖 = (𝐼 + 1) → (𝑖 < 𝑗 ↔ (𝐼 + 1) < 𝑗))
33 fveq2 6756 . . . . . . . . . . . . . 14 (𝑖 = (𝐼 + 1) → (𝑃𝑖) = (𝑃‘(𝐼 + 1)))
3433breq1d 5080 . . . . . . . . . . . . 13 (𝑖 = (𝐼 + 1) → ((𝑃𝑖) < (𝑃𝑗) ↔ (𝑃‘(𝐼 + 1)) < (𝑃𝑗)))
3532, 34imbi12d 344 . . . . . . . . . . . 12 (𝑖 = (𝐼 + 1) → ((𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)) ↔ ((𝐼 + 1) < 𝑗 → (𝑃‘(𝐼 + 1)) < (𝑃𝑗))))
36 breq2 5074 . . . . . . . . . . . . 13 (𝑗 = 𝐽 → ((𝐼 + 1) < 𝑗 ↔ (𝐼 + 1) < 𝐽))
37 fveq2 6756 . . . . . . . . . . . . . 14 (𝑗 = 𝐽 → (𝑃𝑗) = (𝑃𝐽))
3837breq2d 5082 . . . . . . . . . . . . 13 (𝑗 = 𝐽 → ((𝑃‘(𝐼 + 1)) < (𝑃𝑗) ↔ (𝑃‘(𝐼 + 1)) < (𝑃𝐽)))
3936, 38imbi12d 344 . . . . . . . . . . . 12 (𝑗 = 𝐽 → (((𝐼 + 1) < 𝑗 → (𝑃‘(𝐼 + 1)) < (𝑃𝑗)) ↔ ((𝐼 + 1) < 𝐽 → (𝑃‘(𝐼 + 1)) < (𝑃𝐽))))
4035, 39rspc2v 3562 . . . . . . . . . . 11 (((𝐼 + 1) ∈ (0...𝑀) ∧ 𝐽 ∈ (0...𝑀)) → (∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)(𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)) → ((𝐼 + 1) < 𝐽 → (𝑃‘(𝐼 + 1)) < (𝑃𝐽))))
4130, 31, 40syl2an 595 . . . . . . . . . 10 ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → (∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)(𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)) → ((𝐼 + 1) < 𝐽 → (𝑃‘(𝐼 + 1)) < (𝑃𝐽))))
4229, 41mpan9 506 . . . . . . . . 9 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → ((𝐼 + 1) < 𝐽 → (𝑃‘(𝐼 + 1)) < (𝑃𝐽)))
4326, 42syld 47 . . . . . . . 8 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → ((𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽) → (𝑃‘(𝐼 + 1)) < (𝑃𝐽)))
4443expdimp 452 . . . . . . 7 (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → (¬ (𝐼 + 1) = 𝐽 → (𝑃‘(𝐼 + 1)) < (𝑃𝐽)))
4544impcom 407 . . . . . 6 ((¬ (𝐼 + 1) = 𝐽 ∧ ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽)) → (𝑃‘(𝐼 + 1)) < (𝑃𝐽))
4645orcd 869 . . . . 5 ((¬ (𝐼 + 1) = 𝐽 ∧ ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽)) → ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽)))
4746ex 412 . . . 4 (¬ (𝐼 + 1) = 𝐽 → (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽))))
483, 47pm2.61i 182 . . 3 (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽)))
4927adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → 𝑀 ∈ ℕ)
5028adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → 𝑃 ∈ (RePart‘𝑀))
5130adantr 480 . . . . . . . 8 ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → (𝐼 + 1) ∈ (0...𝑀))
5251adantl 481 . . . . . . 7 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → (𝐼 + 1) ∈ (0...𝑀))
5349, 50, 52iccpartxr 44759 . . . . . 6 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → (𝑃‘(𝐼 + 1)) ∈ ℝ*)
5431adantl 481 . . . . . . . 8 ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → 𝐽 ∈ (0...𝑀))
5554adantl 481 . . . . . . 7 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → 𝐽 ∈ (0...𝑀))
5649, 50, 55iccpartxr 44759 . . . . . 6 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → (𝑃𝐽) ∈ ℝ*)
5753, 56jca 511 . . . . 5 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → ((𝑃‘(𝐼 + 1)) ∈ ℝ* ∧ (𝑃𝐽) ∈ ℝ*))
5857adantr 480 . . . 4 (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → ((𝑃‘(𝐼 + 1)) ∈ ℝ* ∧ (𝑃𝐽) ∈ ℝ*))
59 xrleloe 12807 . . . 4 (((𝑃‘(𝐼 + 1)) ∈ ℝ* ∧ (𝑃𝐽) ∈ ℝ*) → ((𝑃‘(𝐼 + 1)) ≤ (𝑃𝐽) ↔ ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽))))
6058, 59syl 17 . . 3 (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → ((𝑃‘(𝐼 + 1)) ≤ (𝑃𝐽) ↔ ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽))))
6148, 60mpbird 256 . 2 (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → (𝑃‘(𝐼 + 1)) ≤ (𝑃𝐽))
6261exp31 419 1 (𝜑 → ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → (𝐼 < 𝐽 → (𝑃‘(𝐼 + 1)) ≤ (𝑃𝐽))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wral 3063   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  *cxr 10939   < clt 10940  cle 10941  cn 11903  cz 12249  ...cfz 13168  ..^cfzo 13311  RePartciccp 44753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-iccp 44754
This theorem is referenced by:  icceuelpart  44776
  Copyright terms: Public domain W3C validator