Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icceuelpartlem Structured version   Visualization version   GIF version

Theorem icceuelpartlem 47423
Description: Lemma for icceuelpart 47424. (Contributed by AV, 19-Jul-2020.)
Hypotheses
Ref Expression
iccpartiun.m (𝜑𝑀 ∈ ℕ)
iccpartiun.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
icceuelpartlem (𝜑 → ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → (𝐼 < 𝐽 → (𝑃‘(𝐼 + 1)) ≤ (𝑃𝐽))))

Proof of Theorem icceuelpartlem
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6826 . . . . . 6 ((𝐼 + 1) = 𝐽 → (𝑃‘(𝐼 + 1)) = (𝑃𝐽))
21olcd 874 . . . . 5 ((𝐼 + 1) = 𝐽 → ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽)))
32a1d 25 . . . 4 ((𝐼 + 1) = 𝐽 → (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽))))
4 elfzoelz 13580 . . . . . . . . . . 11 (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ ℤ)
5 elfzoelz 13580 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑀) → 𝐽 ∈ ℤ)
6 zltp1le 12543 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽))
76biimpcd 249 . . . . . . . . . . . . . . . 16 (𝐼 < 𝐽 → ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼 + 1) ≤ 𝐽))
87adantr 480 . . . . . . . . . . . . . . 15 ((𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽) → ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼 + 1) ≤ 𝐽))
98impcom 407 . . . . . . . . . . . . . 14 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽)) → (𝐼 + 1) ≤ 𝐽)
10 df-ne 2926 . . . . . . . . . . . . . . . . 17 ((𝐼 + 1) ≠ 𝐽 ↔ ¬ (𝐼 + 1) = 𝐽)
11 necom 2978 . . . . . . . . . . . . . . . . 17 ((𝐼 + 1) ≠ 𝐽𝐽 ≠ (𝐼 + 1))
1210, 11sylbb1 237 . . . . . . . . . . . . . . . 16 (¬ (𝐼 + 1) = 𝐽𝐽 ≠ (𝐼 + 1))
1312adantl 481 . . . . . . . . . . . . . . 15 ((𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽) → 𝐽 ≠ (𝐼 + 1))
1413adantl 481 . . . . . . . . . . . . . 14 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽)) → 𝐽 ≠ (𝐼 + 1))
159, 14jca 511 . . . . . . . . . . . . 13 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽)) → ((𝐼 + 1) ≤ 𝐽𝐽 ≠ (𝐼 + 1)))
16 peano2z 12534 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ ℤ → (𝐼 + 1) ∈ ℤ)
1716zred 12598 . . . . . . . . . . . . . . . 16 (𝐼 ∈ ℤ → (𝐼 + 1) ∈ ℝ)
18 zre 12493 . . . . . . . . . . . . . . . 16 (𝐽 ∈ ℤ → 𝐽 ∈ ℝ)
1917, 18anim12i 613 . . . . . . . . . . . . . . 15 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝐼 + 1) ∈ ℝ ∧ 𝐽 ∈ ℝ))
2019adantr 480 . . . . . . . . . . . . . 14 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽)) → ((𝐼 + 1) ∈ ℝ ∧ 𝐽 ∈ ℝ))
21 ltlen 11235 . . . . . . . . . . . . . 14 (((𝐼 + 1) ∈ ℝ ∧ 𝐽 ∈ ℝ) → ((𝐼 + 1) < 𝐽 ↔ ((𝐼 + 1) ≤ 𝐽𝐽 ≠ (𝐼 + 1))))
2220, 21syl 17 . . . . . . . . . . . . 13 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽)) → ((𝐼 + 1) < 𝐽 ↔ ((𝐼 + 1) ≤ 𝐽𝐽 ≠ (𝐼 + 1))))
2315, 22mpbird 257 . . . . . . . . . . . 12 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽)) → (𝐼 + 1) < 𝐽)
2423ex 412 . . . . . . . . . . 11 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽) → (𝐼 + 1) < 𝐽))
254, 5, 24syl2an 596 . . . . . . . . . 10 ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → ((𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽) → (𝐼 + 1) < 𝐽))
2625adantl 481 . . . . . . . . 9 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → ((𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽) → (𝐼 + 1) < 𝐽))
27 iccpartiun.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
28 iccpartiun.p . . . . . . . . . . 11 (𝜑𝑃 ∈ (RePart‘𝑀))
2927, 28iccpartgt 47415 . . . . . . . . . 10 (𝜑 → ∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)(𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))
30 fzofzp1 13685 . . . . . . . . . . 11 (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀))
31 elfzofz 13596 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑀) → 𝐽 ∈ (0...𝑀))
32 breq1 5098 . . . . . . . . . . . . 13 (𝑖 = (𝐼 + 1) → (𝑖 < 𝑗 ↔ (𝐼 + 1) < 𝑗))
33 fveq2 6826 . . . . . . . . . . . . . 14 (𝑖 = (𝐼 + 1) → (𝑃𝑖) = (𝑃‘(𝐼 + 1)))
3433breq1d 5105 . . . . . . . . . . . . 13 (𝑖 = (𝐼 + 1) → ((𝑃𝑖) < (𝑃𝑗) ↔ (𝑃‘(𝐼 + 1)) < (𝑃𝑗)))
3532, 34imbi12d 344 . . . . . . . . . . . 12 (𝑖 = (𝐼 + 1) → ((𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)) ↔ ((𝐼 + 1) < 𝑗 → (𝑃‘(𝐼 + 1)) < (𝑃𝑗))))
36 breq2 5099 . . . . . . . . . . . . 13 (𝑗 = 𝐽 → ((𝐼 + 1) < 𝑗 ↔ (𝐼 + 1) < 𝐽))
37 fveq2 6826 . . . . . . . . . . . . . 14 (𝑗 = 𝐽 → (𝑃𝑗) = (𝑃𝐽))
3837breq2d 5107 . . . . . . . . . . . . 13 (𝑗 = 𝐽 → ((𝑃‘(𝐼 + 1)) < (𝑃𝑗) ↔ (𝑃‘(𝐼 + 1)) < (𝑃𝐽)))
3936, 38imbi12d 344 . . . . . . . . . . . 12 (𝑗 = 𝐽 → (((𝐼 + 1) < 𝑗 → (𝑃‘(𝐼 + 1)) < (𝑃𝑗)) ↔ ((𝐼 + 1) < 𝐽 → (𝑃‘(𝐼 + 1)) < (𝑃𝐽))))
4035, 39rspc2v 3590 . . . . . . . . . . 11 (((𝐼 + 1) ∈ (0...𝑀) ∧ 𝐽 ∈ (0...𝑀)) → (∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)(𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)) → ((𝐼 + 1) < 𝐽 → (𝑃‘(𝐼 + 1)) < (𝑃𝐽))))
4130, 31, 40syl2an 596 . . . . . . . . . 10 ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → (∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)(𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)) → ((𝐼 + 1) < 𝐽 → (𝑃‘(𝐼 + 1)) < (𝑃𝐽))))
4229, 41mpan9 506 . . . . . . . . 9 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → ((𝐼 + 1) < 𝐽 → (𝑃‘(𝐼 + 1)) < (𝑃𝐽)))
4326, 42syld 47 . . . . . . . 8 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → ((𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽) → (𝑃‘(𝐼 + 1)) < (𝑃𝐽)))
4443expdimp 452 . . . . . . 7 (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → (¬ (𝐼 + 1) = 𝐽 → (𝑃‘(𝐼 + 1)) < (𝑃𝐽)))
4544impcom 407 . . . . . 6 ((¬ (𝐼 + 1) = 𝐽 ∧ ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽)) → (𝑃‘(𝐼 + 1)) < (𝑃𝐽))
4645orcd 873 . . . . 5 ((¬ (𝐼 + 1) = 𝐽 ∧ ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽)) → ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽)))
4746ex 412 . . . 4 (¬ (𝐼 + 1) = 𝐽 → (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽))))
483, 47pm2.61i 182 . . 3 (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽)))
4927adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → 𝑀 ∈ ℕ)
5028adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → 𝑃 ∈ (RePart‘𝑀))
5130adantr 480 . . . . . . . 8 ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → (𝐼 + 1) ∈ (0...𝑀))
5251adantl 481 . . . . . . 7 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → (𝐼 + 1) ∈ (0...𝑀))
5349, 50, 52iccpartxr 47407 . . . . . 6 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → (𝑃‘(𝐼 + 1)) ∈ ℝ*)
5431adantl 481 . . . . . . . 8 ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → 𝐽 ∈ (0...𝑀))
5554adantl 481 . . . . . . 7 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → 𝐽 ∈ (0...𝑀))
5649, 50, 55iccpartxr 47407 . . . . . 6 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → (𝑃𝐽) ∈ ℝ*)
5753, 56jca 511 . . . . 5 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → ((𝑃‘(𝐼 + 1)) ∈ ℝ* ∧ (𝑃𝐽) ∈ ℝ*))
5857adantr 480 . . . 4 (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → ((𝑃‘(𝐼 + 1)) ∈ ℝ* ∧ (𝑃𝐽) ∈ ℝ*))
59 xrleloe 13064 . . . 4 (((𝑃‘(𝐼 + 1)) ∈ ℝ* ∧ (𝑃𝐽) ∈ ℝ*) → ((𝑃‘(𝐼 + 1)) ≤ (𝑃𝐽) ↔ ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽))))
6058, 59syl 17 . . 3 (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → ((𝑃‘(𝐼 + 1)) ≤ (𝑃𝐽) ↔ ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽))))
6148, 60mpbird 257 . 2 (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → (𝑃‘(𝐼 + 1)) ≤ (𝑃𝐽))
6261exp31 419 1 (𝜑 → ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → (𝐼 < 𝐽 → (𝑃‘(𝐼 + 1)) ≤ (𝑃𝐽))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044   class class class wbr 5095  cfv 6486  (class class class)co 7353  cr 11027  0cc0 11028  1c1 11029   + caddc 11031  *cxr 11167   < clt 11168  cle 11169  cn 12146  cz 12489  ...cfz 13428  ..^cfzo 13575  RePartciccp 47401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-iccp 47402
This theorem is referenced by:  icceuelpart  47424
  Copyright terms: Public domain W3C validator