Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icceuelpartlem Structured version   Visualization version   GIF version

Theorem icceuelpartlem 42253
Description: Lemma for icceuelpart 42254. (Contributed by AV, 19-Jul-2020.)
Hypotheses
Ref Expression
iccpartiun.m (𝜑𝑀 ∈ ℕ)
iccpartiun.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
icceuelpartlem (𝜑 → ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → (𝐼 < 𝐽 → (𝑃‘(𝐼 + 1)) ≤ (𝑃𝐽))))

Proof of Theorem icceuelpartlem
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6437 . . . . . 6 ((𝐼 + 1) = 𝐽 → (𝑃‘(𝐼 + 1)) = (𝑃𝐽))
21olcd 905 . . . . 5 ((𝐼 + 1) = 𝐽 → ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽)))
32a1d 25 . . . 4 ((𝐼 + 1) = 𝐽 → (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽))))
4 elfzoelz 12772 . . . . . . . . . . 11 (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ ℤ)
5 elfzoelz 12772 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑀) → 𝐽 ∈ ℤ)
6 zltp1le 11762 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽))
76biimpcd 241 . . . . . . . . . . . . . . . 16 (𝐼 < 𝐽 → ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼 + 1) ≤ 𝐽))
87adantr 474 . . . . . . . . . . . . . . 15 ((𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽) → ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼 + 1) ≤ 𝐽))
98impcom 398 . . . . . . . . . . . . . 14 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽)) → (𝐼 + 1) ≤ 𝐽)
10 df-ne 3000 . . . . . . . . . . . . . . . . 17 ((𝐼 + 1) ≠ 𝐽 ↔ ¬ (𝐼 + 1) = 𝐽)
11 necom 3052 . . . . . . . . . . . . . . . . 17 ((𝐼 + 1) ≠ 𝐽𝐽 ≠ (𝐼 + 1))
1210, 11sylbb1 229 . . . . . . . . . . . . . . . 16 (¬ (𝐼 + 1) = 𝐽𝐽 ≠ (𝐼 + 1))
1312adantl 475 . . . . . . . . . . . . . . 15 ((𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽) → 𝐽 ≠ (𝐼 + 1))
1413adantl 475 . . . . . . . . . . . . . 14 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽)) → 𝐽 ≠ (𝐼 + 1))
159, 14jca 507 . . . . . . . . . . . . 13 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽)) → ((𝐼 + 1) ≤ 𝐽𝐽 ≠ (𝐼 + 1)))
16 peano2z 11753 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ ℤ → (𝐼 + 1) ∈ ℤ)
1716zred 11817 . . . . . . . . . . . . . . . 16 (𝐼 ∈ ℤ → (𝐼 + 1) ∈ ℝ)
18 zre 11715 . . . . . . . . . . . . . . . 16 (𝐽 ∈ ℤ → 𝐽 ∈ ℝ)
1917, 18anim12i 606 . . . . . . . . . . . . . . 15 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝐼 + 1) ∈ ℝ ∧ 𝐽 ∈ ℝ))
2019adantr 474 . . . . . . . . . . . . . 14 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽)) → ((𝐼 + 1) ∈ ℝ ∧ 𝐽 ∈ ℝ))
21 ltlen 10464 . . . . . . . . . . . . . 14 (((𝐼 + 1) ∈ ℝ ∧ 𝐽 ∈ ℝ) → ((𝐼 + 1) < 𝐽 ↔ ((𝐼 + 1) ≤ 𝐽𝐽 ≠ (𝐼 + 1))))
2220, 21syl 17 . . . . . . . . . . . . 13 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽)) → ((𝐼 + 1) < 𝐽 ↔ ((𝐼 + 1) ≤ 𝐽𝐽 ≠ (𝐼 + 1))))
2315, 22mpbird 249 . . . . . . . . . . . 12 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽)) → (𝐼 + 1) < 𝐽)
2423ex 403 . . . . . . . . . . 11 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽) → (𝐼 + 1) < 𝐽))
254, 5, 24syl2an 589 . . . . . . . . . 10 ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → ((𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽) → (𝐼 + 1) < 𝐽))
2625adantl 475 . . . . . . . . 9 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → ((𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽) → (𝐼 + 1) < 𝐽))
27 iccpartiun.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
28 iccpartiun.p . . . . . . . . . . 11 (𝜑𝑃 ∈ (RePart‘𝑀))
2927, 28iccpartgt 42245 . . . . . . . . . 10 (𝜑 → ∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)(𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))
30 fzofzp1 12867 . . . . . . . . . . 11 (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀))
31 elfzofz 12787 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑀) → 𝐽 ∈ (0...𝑀))
32 breq1 4878 . . . . . . . . . . . . 13 (𝑖 = (𝐼 + 1) → (𝑖 < 𝑗 ↔ (𝐼 + 1) < 𝑗))
33 fveq2 6437 . . . . . . . . . . . . . 14 (𝑖 = (𝐼 + 1) → (𝑃𝑖) = (𝑃‘(𝐼 + 1)))
3433breq1d 4885 . . . . . . . . . . . . 13 (𝑖 = (𝐼 + 1) → ((𝑃𝑖) < (𝑃𝑗) ↔ (𝑃‘(𝐼 + 1)) < (𝑃𝑗)))
3532, 34imbi12d 336 . . . . . . . . . . . 12 (𝑖 = (𝐼 + 1) → ((𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)) ↔ ((𝐼 + 1) < 𝑗 → (𝑃‘(𝐼 + 1)) < (𝑃𝑗))))
36 breq2 4879 . . . . . . . . . . . . 13 (𝑗 = 𝐽 → ((𝐼 + 1) < 𝑗 ↔ (𝐼 + 1) < 𝐽))
37 fveq2 6437 . . . . . . . . . . . . . 14 (𝑗 = 𝐽 → (𝑃𝑗) = (𝑃𝐽))
3837breq2d 4887 . . . . . . . . . . . . 13 (𝑗 = 𝐽 → ((𝑃‘(𝐼 + 1)) < (𝑃𝑗) ↔ (𝑃‘(𝐼 + 1)) < (𝑃𝐽)))
3936, 38imbi12d 336 . . . . . . . . . . . 12 (𝑗 = 𝐽 → (((𝐼 + 1) < 𝑗 → (𝑃‘(𝐼 + 1)) < (𝑃𝑗)) ↔ ((𝐼 + 1) < 𝐽 → (𝑃‘(𝐼 + 1)) < (𝑃𝐽))))
4035, 39rspc2v 3539 . . . . . . . . . . 11 (((𝐼 + 1) ∈ (0...𝑀) ∧ 𝐽 ∈ (0...𝑀)) → (∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)(𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)) → ((𝐼 + 1) < 𝐽 → (𝑃‘(𝐼 + 1)) < (𝑃𝐽))))
4130, 31, 40syl2an 589 . . . . . . . . . 10 ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → (∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)(𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)) → ((𝐼 + 1) < 𝐽 → (𝑃‘(𝐼 + 1)) < (𝑃𝐽))))
4229, 41mpan9 502 . . . . . . . . 9 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → ((𝐼 + 1) < 𝐽 → (𝑃‘(𝐼 + 1)) < (𝑃𝐽)))
4326, 42syld 47 . . . . . . . 8 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → ((𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽) → (𝑃‘(𝐼 + 1)) < (𝑃𝐽)))
4443expdimp 446 . . . . . . 7 (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → (¬ (𝐼 + 1) = 𝐽 → (𝑃‘(𝐼 + 1)) < (𝑃𝐽)))
4544impcom 398 . . . . . 6 ((¬ (𝐼 + 1) = 𝐽 ∧ ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽)) → (𝑃‘(𝐼 + 1)) < (𝑃𝐽))
4645orcd 904 . . . . 5 ((¬ (𝐼 + 1) = 𝐽 ∧ ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽)) → ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽)))
4746ex 403 . . . 4 (¬ (𝐼 + 1) = 𝐽 → (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽))))
483, 47pm2.61i 177 . . 3 (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽)))
4927adantr 474 . . . . . . 7 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → 𝑀 ∈ ℕ)
5028adantr 474 . . . . . . 7 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → 𝑃 ∈ (RePart‘𝑀))
5130adantr 474 . . . . . . . 8 ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → (𝐼 + 1) ∈ (0...𝑀))
5251adantl 475 . . . . . . 7 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → (𝐼 + 1) ∈ (0...𝑀))
5349, 50, 52iccpartxr 42237 . . . . . 6 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → (𝑃‘(𝐼 + 1)) ∈ ℝ*)
5431adantl 475 . . . . . . . 8 ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → 𝐽 ∈ (0...𝑀))
5554adantl 475 . . . . . . 7 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → 𝐽 ∈ (0...𝑀))
5649, 50, 55iccpartxr 42237 . . . . . 6 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → (𝑃𝐽) ∈ ℝ*)
5753, 56jca 507 . . . . 5 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → ((𝑃‘(𝐼 + 1)) ∈ ℝ* ∧ (𝑃𝐽) ∈ ℝ*))
5857adantr 474 . . . 4 (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → ((𝑃‘(𝐼 + 1)) ∈ ℝ* ∧ (𝑃𝐽) ∈ ℝ*))
59 xrleloe 12270 . . . 4 (((𝑃‘(𝐼 + 1)) ∈ ℝ* ∧ (𝑃𝐽) ∈ ℝ*) → ((𝑃‘(𝐼 + 1)) ≤ (𝑃𝐽) ↔ ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽))))
6058, 59syl 17 . . 3 (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → ((𝑃‘(𝐼 + 1)) ≤ (𝑃𝐽) ↔ ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽))))
6148, 60mpbird 249 . 2 (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → (𝑃‘(𝐼 + 1)) ≤ (𝑃𝐽))
6261exp31 412 1 (𝜑 → ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → (𝐼 < 𝐽 → (𝑃‘(𝐼 + 1)) ≤ (𝑃𝐽))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 878   = wceq 1656  wcel 2164  wne 2999  wral 3117   class class class wbr 4875  cfv 6127  (class class class)co 6910  cr 10258  0cc0 10259  1c1 10260   + caddc 10262  *cxr 10397   < clt 10398  cle 10399  cn 11357  cz 11711  ...cfz 12626  ..^cfzo 12767  RePartciccp 42231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-map 8129  df-en 8229  df-dom 8230  df-sdom 8231  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-n0 11626  df-z 11712  df-uz 11976  df-fz 12627  df-fzo 12768  df-iccp 42232
This theorem is referenced by:  icceuelpart  42254
  Copyright terms: Public domain W3C validator