Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icceuelpartlem Structured version   Visualization version   GIF version

Theorem icceuelpartlem 47360
Description: Lemma for icceuelpart 47361. (Contributed by AV, 19-Jul-2020.)
Hypotheses
Ref Expression
iccpartiun.m (𝜑𝑀 ∈ ℕ)
iccpartiun.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
icceuelpartlem (𝜑 → ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → (𝐼 < 𝐽 → (𝑃‘(𝐼 + 1)) ≤ (𝑃𝐽))))

Proof of Theorem icceuelpartlem
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6907 . . . . . 6 ((𝐼 + 1) = 𝐽 → (𝑃‘(𝐼 + 1)) = (𝑃𝐽))
21olcd 874 . . . . 5 ((𝐼 + 1) = 𝐽 → ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽)))
32a1d 25 . . . 4 ((𝐼 + 1) = 𝐽 → (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽))))
4 elfzoelz 13696 . . . . . . . . . . 11 (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ ℤ)
5 elfzoelz 13696 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑀) → 𝐽 ∈ ℤ)
6 zltp1le 12665 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽))
76biimpcd 249 . . . . . . . . . . . . . . . 16 (𝐼 < 𝐽 → ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼 + 1) ≤ 𝐽))
87adantr 480 . . . . . . . . . . . . . . 15 ((𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽) → ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼 + 1) ≤ 𝐽))
98impcom 407 . . . . . . . . . . . . . 14 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽)) → (𝐼 + 1) ≤ 𝐽)
10 df-ne 2939 . . . . . . . . . . . . . . . . 17 ((𝐼 + 1) ≠ 𝐽 ↔ ¬ (𝐼 + 1) = 𝐽)
11 necom 2992 . . . . . . . . . . . . . . . . 17 ((𝐼 + 1) ≠ 𝐽𝐽 ≠ (𝐼 + 1))
1210, 11sylbb1 237 . . . . . . . . . . . . . . . 16 (¬ (𝐼 + 1) = 𝐽𝐽 ≠ (𝐼 + 1))
1312adantl 481 . . . . . . . . . . . . . . 15 ((𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽) → 𝐽 ≠ (𝐼 + 1))
1413adantl 481 . . . . . . . . . . . . . 14 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽)) → 𝐽 ≠ (𝐼 + 1))
159, 14jca 511 . . . . . . . . . . . . 13 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽)) → ((𝐼 + 1) ≤ 𝐽𝐽 ≠ (𝐼 + 1)))
16 peano2z 12656 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ ℤ → (𝐼 + 1) ∈ ℤ)
1716zred 12720 . . . . . . . . . . . . . . . 16 (𝐼 ∈ ℤ → (𝐼 + 1) ∈ ℝ)
18 zre 12615 . . . . . . . . . . . . . . . 16 (𝐽 ∈ ℤ → 𝐽 ∈ ℝ)
1917, 18anim12i 613 . . . . . . . . . . . . . . 15 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝐼 + 1) ∈ ℝ ∧ 𝐽 ∈ ℝ))
2019adantr 480 . . . . . . . . . . . . . 14 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽)) → ((𝐼 + 1) ∈ ℝ ∧ 𝐽 ∈ ℝ))
21 ltlen 11360 . . . . . . . . . . . . . 14 (((𝐼 + 1) ∈ ℝ ∧ 𝐽 ∈ ℝ) → ((𝐼 + 1) < 𝐽 ↔ ((𝐼 + 1) ≤ 𝐽𝐽 ≠ (𝐼 + 1))))
2220, 21syl 17 . . . . . . . . . . . . 13 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽)) → ((𝐼 + 1) < 𝐽 ↔ ((𝐼 + 1) ≤ 𝐽𝐽 ≠ (𝐼 + 1))))
2315, 22mpbird 257 . . . . . . . . . . . 12 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽)) → (𝐼 + 1) < 𝐽)
2423ex 412 . . . . . . . . . . 11 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽) → (𝐼 + 1) < 𝐽))
254, 5, 24syl2an 596 . . . . . . . . . 10 ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → ((𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽) → (𝐼 + 1) < 𝐽))
2625adantl 481 . . . . . . . . 9 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → ((𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽) → (𝐼 + 1) < 𝐽))
27 iccpartiun.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
28 iccpartiun.p . . . . . . . . . . 11 (𝜑𝑃 ∈ (RePart‘𝑀))
2927, 28iccpartgt 47352 . . . . . . . . . 10 (𝜑 → ∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)(𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)))
30 fzofzp1 13800 . . . . . . . . . . 11 (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀))
31 elfzofz 13712 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑀) → 𝐽 ∈ (0...𝑀))
32 breq1 5151 . . . . . . . . . . . . 13 (𝑖 = (𝐼 + 1) → (𝑖 < 𝑗 ↔ (𝐼 + 1) < 𝑗))
33 fveq2 6907 . . . . . . . . . . . . . 14 (𝑖 = (𝐼 + 1) → (𝑃𝑖) = (𝑃‘(𝐼 + 1)))
3433breq1d 5158 . . . . . . . . . . . . 13 (𝑖 = (𝐼 + 1) → ((𝑃𝑖) < (𝑃𝑗) ↔ (𝑃‘(𝐼 + 1)) < (𝑃𝑗)))
3532, 34imbi12d 344 . . . . . . . . . . . 12 (𝑖 = (𝐼 + 1) → ((𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)) ↔ ((𝐼 + 1) < 𝑗 → (𝑃‘(𝐼 + 1)) < (𝑃𝑗))))
36 breq2 5152 . . . . . . . . . . . . 13 (𝑗 = 𝐽 → ((𝐼 + 1) < 𝑗 ↔ (𝐼 + 1) < 𝐽))
37 fveq2 6907 . . . . . . . . . . . . . 14 (𝑗 = 𝐽 → (𝑃𝑗) = (𝑃𝐽))
3837breq2d 5160 . . . . . . . . . . . . 13 (𝑗 = 𝐽 → ((𝑃‘(𝐼 + 1)) < (𝑃𝑗) ↔ (𝑃‘(𝐼 + 1)) < (𝑃𝐽)))
3936, 38imbi12d 344 . . . . . . . . . . . 12 (𝑗 = 𝐽 → (((𝐼 + 1) < 𝑗 → (𝑃‘(𝐼 + 1)) < (𝑃𝑗)) ↔ ((𝐼 + 1) < 𝐽 → (𝑃‘(𝐼 + 1)) < (𝑃𝐽))))
4035, 39rspc2v 3633 . . . . . . . . . . 11 (((𝐼 + 1) ∈ (0...𝑀) ∧ 𝐽 ∈ (0...𝑀)) → (∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)(𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)) → ((𝐼 + 1) < 𝐽 → (𝑃‘(𝐼 + 1)) < (𝑃𝐽))))
4130, 31, 40syl2an 596 . . . . . . . . . 10 ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → (∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)(𝑖 < 𝑗 → (𝑃𝑖) < (𝑃𝑗)) → ((𝐼 + 1) < 𝐽 → (𝑃‘(𝐼 + 1)) < (𝑃𝐽))))
4229, 41mpan9 506 . . . . . . . . 9 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → ((𝐼 + 1) < 𝐽 → (𝑃‘(𝐼 + 1)) < (𝑃𝐽)))
4326, 42syld 47 . . . . . . . 8 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → ((𝐼 < 𝐽 ∧ ¬ (𝐼 + 1) = 𝐽) → (𝑃‘(𝐼 + 1)) < (𝑃𝐽)))
4443expdimp 452 . . . . . . 7 (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → (¬ (𝐼 + 1) = 𝐽 → (𝑃‘(𝐼 + 1)) < (𝑃𝐽)))
4544impcom 407 . . . . . 6 ((¬ (𝐼 + 1) = 𝐽 ∧ ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽)) → (𝑃‘(𝐼 + 1)) < (𝑃𝐽))
4645orcd 873 . . . . 5 ((¬ (𝐼 + 1) = 𝐽 ∧ ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽)) → ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽)))
4746ex 412 . . . 4 (¬ (𝐼 + 1) = 𝐽 → (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽))))
483, 47pm2.61i 182 . . 3 (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽)))
4927adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → 𝑀 ∈ ℕ)
5028adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → 𝑃 ∈ (RePart‘𝑀))
5130adantr 480 . . . . . . . 8 ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → (𝐼 + 1) ∈ (0...𝑀))
5251adantl 481 . . . . . . 7 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → (𝐼 + 1) ∈ (0...𝑀))
5349, 50, 52iccpartxr 47344 . . . . . 6 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → (𝑃‘(𝐼 + 1)) ∈ ℝ*)
5431adantl 481 . . . . . . . 8 ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → 𝐽 ∈ (0...𝑀))
5554adantl 481 . . . . . . 7 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → 𝐽 ∈ (0...𝑀))
5649, 50, 55iccpartxr 47344 . . . . . 6 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → (𝑃𝐽) ∈ ℝ*)
5753, 56jca 511 . . . . 5 ((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) → ((𝑃‘(𝐼 + 1)) ∈ ℝ* ∧ (𝑃𝐽) ∈ ℝ*))
5857adantr 480 . . . 4 (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → ((𝑃‘(𝐼 + 1)) ∈ ℝ* ∧ (𝑃𝐽) ∈ ℝ*))
59 xrleloe 13183 . . . 4 (((𝑃‘(𝐼 + 1)) ∈ ℝ* ∧ (𝑃𝐽) ∈ ℝ*) → ((𝑃‘(𝐼 + 1)) ≤ (𝑃𝐽) ↔ ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽))))
6058, 59syl 17 . . 3 (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → ((𝑃‘(𝐼 + 1)) ≤ (𝑃𝐽) ↔ ((𝑃‘(𝐼 + 1)) < (𝑃𝐽) ∨ (𝑃‘(𝐼 + 1)) = (𝑃𝐽))))
6148, 60mpbird 257 . 2 (((𝜑 ∧ (𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀))) ∧ 𝐼 < 𝐽) → (𝑃‘(𝐼 + 1)) ≤ (𝑃𝐽))
6261exp31 419 1 (𝜑 → ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → (𝐼 < 𝐽 → (𝑃‘(𝐼 + 1)) ≤ (𝑃𝐽))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  wne 2938  wral 3059   class class class wbr 5148  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   + caddc 11156  *cxr 11292   < clt 11293  cle 11294  cn 12264  cz 12611  ...cfz 13544  ..^cfzo 13691  RePartciccp 47338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-iccp 47339
This theorem is referenced by:  icceuelpart  47361
  Copyright terms: Public domain W3C validator