Proof of Theorem symgmatr01lem
Step | Hyp | Ref
| Expression |
1 | | simpll 763 |
. . 3
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → 𝐾 ∈ 𝑁) |
2 | | eqeq1 2742 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (𝑘 = 𝐾 ↔ 𝐾 = 𝐾)) |
3 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → (𝑄‘𝑘) = (𝑄‘𝐾)) |
4 | 3 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → ((𝑄‘𝑘) = 𝐿 ↔ (𝑄‘𝐾) = 𝐿)) |
5 | 4 | ifbid 4479 |
. . . . . 6
⊢ (𝑘 = 𝐾 → if((𝑄‘𝑘) = 𝐿, 𝐴, 𝐵) = if((𝑄‘𝐾) = 𝐿, 𝐴, 𝐵)) |
6 | | id 22 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → 𝑘 = 𝐾) |
7 | 6, 3 | oveq12d 7273 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (𝑘𝑀(𝑄‘𝑘)) = (𝐾𝑀(𝑄‘𝐾))) |
8 | 2, 5, 7 | ifbieq12d 4484 |
. . . . 5
⊢ (𝑘 = 𝐾 → if(𝑘 = 𝐾, if((𝑄‘𝑘) = 𝐿, 𝐴, 𝐵), (𝑘𝑀(𝑄‘𝑘))) = if(𝐾 = 𝐾, if((𝑄‘𝐾) = 𝐿, 𝐴, 𝐵), (𝐾𝑀(𝑄‘𝐾)))) |
9 | 8 | eqeq1d 2740 |
. . . 4
⊢ (𝑘 = 𝐾 → (if(𝑘 = 𝐾, if((𝑄‘𝑘) = 𝐿, 𝐴, 𝐵), (𝑘𝑀(𝑄‘𝑘))) = 𝐵 ↔ if(𝐾 = 𝐾, if((𝑄‘𝐾) = 𝐿, 𝐴, 𝐵), (𝐾𝑀(𝑄‘𝐾))) = 𝐵)) |
10 | 9 | adantl 481 |
. . 3
⊢ ((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) ∧ 𝑘 = 𝐾) → (if(𝑘 = 𝐾, if((𝑄‘𝑘) = 𝐿, 𝐴, 𝐵), (𝑘𝑀(𝑄‘𝑘))) = 𝐵 ↔ if(𝐾 = 𝐾, if((𝑄‘𝐾) = 𝐿, 𝐴, 𝐵), (𝐾𝑀(𝑄‘𝐾))) = 𝐵)) |
11 | | eqidd 2739 |
. . . . 5
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → 𝐾 = 𝐾) |
12 | 11 | iftrued 4464 |
. . . 4
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → if(𝐾 = 𝐾, if((𝑄‘𝐾) = 𝐿, 𝐴, 𝐵), (𝐾𝑀(𝑄‘𝐾))) = if((𝑄‘𝐾) = 𝐿, 𝐴, 𝐵)) |
13 | | eldif 3893 |
. . . . . . 7
⊢ (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↔ (𝑄 ∈ 𝑃 ∧ ¬ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) |
14 | | ianor 978 |
. . . . . . . . . 10
⊢ (¬
(𝑄 ∈ 𝑃 ∧ (𝑄‘𝐾) = 𝐿) ↔ (¬ 𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿)) |
15 | | fveq1 6755 |
. . . . . . . . . . . 12
⊢ (𝑞 = 𝑄 → (𝑞‘𝐾) = (𝑄‘𝐾)) |
16 | 15 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ (𝑞 = 𝑄 → ((𝑞‘𝐾) = 𝐿 ↔ (𝑄‘𝐾) = 𝐿)) |
17 | 16 | elrab 3617 |
. . . . . . . . . 10
⊢ (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿} ↔ (𝑄 ∈ 𝑃 ∧ (𝑄‘𝐾) = 𝐿)) |
18 | 14, 17 | xchnxbir 332 |
. . . . . . . . 9
⊢ (¬
𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿} ↔ (¬ 𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿)) |
19 | | pm2.21 123 |
. . . . . . . . . 10
⊢ (¬
𝑄 ∈ 𝑃 → (𝑄 ∈ 𝑃 → ¬ (𝑄‘𝐾) = 𝐿)) |
20 | | ax-1 6 |
. . . . . . . . . 10
⊢ (¬
(𝑄‘𝐾) = 𝐿 → (𝑄 ∈ 𝑃 → ¬ (𝑄‘𝐾) = 𝐿)) |
21 | 19, 20 | jaoi 853 |
. . . . . . . . 9
⊢ ((¬
𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿) → (𝑄 ∈ 𝑃 → ¬ (𝑄‘𝐾) = 𝐿)) |
22 | 18, 21 | sylbi 216 |
. . . . . . . 8
⊢ (¬
𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿} → (𝑄 ∈ 𝑃 → ¬ (𝑄‘𝐾) = 𝐿)) |
23 | 22 | impcom 407 |
. . . . . . 7
⊢ ((𝑄 ∈ 𝑃 ∧ ¬ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → ¬ (𝑄‘𝐾) = 𝐿) |
24 | 13, 23 | sylbi 216 |
. . . . . 6
⊢ (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → ¬ (𝑄‘𝐾) = 𝐿) |
25 | 24 | adantl 481 |
. . . . 5
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → ¬ (𝑄‘𝐾) = 𝐿) |
26 | 25 | iffalsed 4467 |
. . . 4
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → if((𝑄‘𝐾) = 𝐿, 𝐴, 𝐵) = 𝐵) |
27 | 12, 26 | eqtrd 2778 |
. . 3
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → if(𝐾 = 𝐾, if((𝑄‘𝐾) = 𝐿, 𝐴, 𝐵), (𝐾𝑀(𝑄‘𝐾))) = 𝐵) |
28 | 1, 10, 27 | rspcedvd 3555 |
. 2
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → ∃𝑘 ∈ 𝑁 if(𝑘 = 𝐾, if((𝑄‘𝑘) = 𝐿, 𝐴, 𝐵), (𝑘𝑀(𝑄‘𝑘))) = 𝐵) |
29 | 28 | ex 412 |
1
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → ∃𝑘 ∈ 𝑁 if(𝑘 = 𝐾, if((𝑄‘𝑘) = 𝐿, 𝐴, 𝐵), (𝑘𝑀(𝑄‘𝑘))) = 𝐵)) |