MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgmatr01lem Structured version   Visualization version   GIF version

Theorem symgmatr01lem 20876
Description: Lemma for symgmatr01 20877. (Contributed by AV, 3-Jan-2019.)
Hypothesis
Ref Expression
symgmatr01.p 𝑃 = (Base‘(SymGrp‘𝑁))
Assertion
Ref Expression
symgmatr01lem ((𝐾𝑁𝐿𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → ∃𝑘𝑁 if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 𝐴, 𝐵), (𝑘𝑀(𝑄𝑘))) = 𝐵))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑞,𝐿   𝑘,𝐾,𝑞   𝑘,𝑀   𝑘,𝑁   𝑃,𝑘,𝑞   𝑄,𝑘,𝑞
Allowed substitution hints:   𝐴(𝑞)   𝐵(𝑞)   𝑀(𝑞)   𝑁(𝑞)

Proof of Theorem symgmatr01lem
StepHypRef Expression
1 simpll 757 . . 3 (((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → 𝐾𝑁)
2 eqeq1 2782 . . . . . 6 (𝑘 = 𝐾 → (𝑘 = 𝐾𝐾 = 𝐾))
3 fveq2 6448 . . . . . . . 8 (𝑘 = 𝐾 → (𝑄𝑘) = (𝑄𝐾))
43eqeq1d 2780 . . . . . . 7 (𝑘 = 𝐾 → ((𝑄𝑘) = 𝐿 ↔ (𝑄𝐾) = 𝐿))
54ifbid 4329 . . . . . 6 (𝑘 = 𝐾 → if((𝑄𝑘) = 𝐿, 𝐴, 𝐵) = if((𝑄𝐾) = 𝐿, 𝐴, 𝐵))
6 id 22 . . . . . . 7 (𝑘 = 𝐾𝑘 = 𝐾)
76, 3oveq12d 6942 . . . . . 6 (𝑘 = 𝐾 → (𝑘𝑀(𝑄𝑘)) = (𝐾𝑀(𝑄𝐾)))
82, 5, 7ifbieq12d 4334 . . . . 5 (𝑘 = 𝐾 → if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 𝐴, 𝐵), (𝑘𝑀(𝑄𝑘))) = if(𝐾 = 𝐾, if((𝑄𝐾) = 𝐿, 𝐴, 𝐵), (𝐾𝑀(𝑄𝐾))))
98eqeq1d 2780 . . . 4 (𝑘 = 𝐾 → (if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 𝐴, 𝐵), (𝑘𝑀(𝑄𝑘))) = 𝐵 ↔ if(𝐾 = 𝐾, if((𝑄𝐾) = 𝐿, 𝐴, 𝐵), (𝐾𝑀(𝑄𝐾))) = 𝐵))
109adantl 475 . . 3 ((((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) ∧ 𝑘 = 𝐾) → (if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 𝐴, 𝐵), (𝑘𝑀(𝑄𝑘))) = 𝐵 ↔ if(𝐾 = 𝐾, if((𝑄𝐾) = 𝐿, 𝐴, 𝐵), (𝐾𝑀(𝑄𝐾))) = 𝐵))
11 eqidd 2779 . . . . 5 (((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → 𝐾 = 𝐾)
1211iftrued 4315 . . . 4 (((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → if(𝐾 = 𝐾, if((𝑄𝐾) = 𝐿, 𝐴, 𝐵), (𝐾𝑀(𝑄𝐾))) = if((𝑄𝐾) = 𝐿, 𝐴, 𝐵))
13 eldif 3802 . . . . . . 7 (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) ↔ (𝑄𝑃 ∧ ¬ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}))
14 ianor 967 . . . . . . . . . 10 (¬ (𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ↔ (¬ 𝑄𝑃 ∨ ¬ (𝑄𝐾) = 𝐿))
15 fveq1 6447 . . . . . . . . . . . 12 (𝑞 = 𝑄 → (𝑞𝐾) = (𝑄𝐾))
1615eqeq1d 2780 . . . . . . . . . . 11 (𝑞 = 𝑄 → ((𝑞𝐾) = 𝐿 ↔ (𝑄𝐾) = 𝐿))
1716elrab 3572 . . . . . . . . . 10 (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿} ↔ (𝑄𝑃 ∧ (𝑄𝐾) = 𝐿))
1814, 17xchnxbir 325 . . . . . . . . 9 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿} ↔ (¬ 𝑄𝑃 ∨ ¬ (𝑄𝐾) = 𝐿))
19 pm2.21 121 . . . . . . . . . 10 𝑄𝑃 → (𝑄𝑃 → ¬ (𝑄𝐾) = 𝐿))
20 ax-1 6 . . . . . . . . . 10 (¬ (𝑄𝐾) = 𝐿 → (𝑄𝑃 → ¬ (𝑄𝐾) = 𝐿))
2119, 20jaoi 846 . . . . . . . . 9 ((¬ 𝑄𝑃 ∨ ¬ (𝑄𝐾) = 𝐿) → (𝑄𝑃 → ¬ (𝑄𝐾) = 𝐿))
2218, 21sylbi 209 . . . . . . . 8 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿} → (𝑄𝑃 → ¬ (𝑄𝐾) = 𝐿))
2322impcom 398 . . . . . . 7 ((𝑄𝑃 ∧ ¬ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → ¬ (𝑄𝐾) = 𝐿)
2413, 23sylbi 209 . . . . . 6 (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → ¬ (𝑄𝐾) = 𝐿)
2524adantl 475 . . . . 5 (((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → ¬ (𝑄𝐾) = 𝐿)
2625iffalsed 4318 . . . 4 (((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → if((𝑄𝐾) = 𝐿, 𝐴, 𝐵) = 𝐵)
2712, 26eqtrd 2814 . . 3 (((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → if(𝐾 = 𝐾, if((𝑄𝐾) = 𝐿, 𝐴, 𝐵), (𝐾𝑀(𝑄𝐾))) = 𝐵)
281, 10, 27rspcedvd 3518 . 2 (((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → ∃𝑘𝑁 if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 𝐴, 𝐵), (𝑘𝑀(𝑄𝑘))) = 𝐵)
2928ex 403 1 ((𝐾𝑁𝐿𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → ∃𝑘𝑁 if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 𝐴, 𝐵), (𝑘𝑀(𝑄𝑘))) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 836   = wceq 1601  wcel 2107  wrex 3091  {crab 3094  cdif 3789  ifcif 4307  cfv 6137  (class class class)co 6924  Basecbs 16266  SymGrpcsymg 18191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-iota 6101  df-fv 6145  df-ov 6927
This theorem is referenced by:  symgmatr01  20877
  Copyright terms: Public domain W3C validator