Proof of Theorem symgmatr01lem
| Step | Hyp | Ref
| Expression |
| 1 | | simpll 767 |
. . 3
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → 𝐾 ∈ 𝑁) |
| 2 | | eqeq1 2741 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (𝑘 = 𝐾 ↔ 𝐾 = 𝐾)) |
| 3 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → (𝑄‘𝑘) = (𝑄‘𝐾)) |
| 4 | 3 | eqeq1d 2739 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → ((𝑄‘𝑘) = 𝐿 ↔ (𝑄‘𝐾) = 𝐿)) |
| 5 | 4 | ifbid 4549 |
. . . . . 6
⊢ (𝑘 = 𝐾 → if((𝑄‘𝑘) = 𝐿, 𝐴, 𝐵) = if((𝑄‘𝐾) = 𝐿, 𝐴, 𝐵)) |
| 6 | | id 22 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → 𝑘 = 𝐾) |
| 7 | 6, 3 | oveq12d 7449 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (𝑘𝑀(𝑄‘𝑘)) = (𝐾𝑀(𝑄‘𝐾))) |
| 8 | 2, 5, 7 | ifbieq12d 4554 |
. . . . 5
⊢ (𝑘 = 𝐾 → if(𝑘 = 𝐾, if((𝑄‘𝑘) = 𝐿, 𝐴, 𝐵), (𝑘𝑀(𝑄‘𝑘))) = if(𝐾 = 𝐾, if((𝑄‘𝐾) = 𝐿, 𝐴, 𝐵), (𝐾𝑀(𝑄‘𝐾)))) |
| 9 | 8 | eqeq1d 2739 |
. . . 4
⊢ (𝑘 = 𝐾 → (if(𝑘 = 𝐾, if((𝑄‘𝑘) = 𝐿, 𝐴, 𝐵), (𝑘𝑀(𝑄‘𝑘))) = 𝐵 ↔ if(𝐾 = 𝐾, if((𝑄‘𝐾) = 𝐿, 𝐴, 𝐵), (𝐾𝑀(𝑄‘𝐾))) = 𝐵)) |
| 10 | 9 | adantl 481 |
. . 3
⊢ ((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) ∧ 𝑘 = 𝐾) → (if(𝑘 = 𝐾, if((𝑄‘𝑘) = 𝐿, 𝐴, 𝐵), (𝑘𝑀(𝑄‘𝑘))) = 𝐵 ↔ if(𝐾 = 𝐾, if((𝑄‘𝐾) = 𝐿, 𝐴, 𝐵), (𝐾𝑀(𝑄‘𝐾))) = 𝐵)) |
| 11 | | eqidd 2738 |
. . . . 5
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → 𝐾 = 𝐾) |
| 12 | 11 | iftrued 4533 |
. . . 4
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → if(𝐾 = 𝐾, if((𝑄‘𝐾) = 𝐿, 𝐴, 𝐵), (𝐾𝑀(𝑄‘𝐾))) = if((𝑄‘𝐾) = 𝐿, 𝐴, 𝐵)) |
| 13 | | eldif 3961 |
. . . . . . 7
⊢ (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) ↔ (𝑄 ∈ 𝑃 ∧ ¬ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) |
| 14 | | ianor 984 |
. . . . . . . . . 10
⊢ (¬
(𝑄 ∈ 𝑃 ∧ (𝑄‘𝐾) = 𝐿) ↔ (¬ 𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿)) |
| 15 | | fveq1 6905 |
. . . . . . . . . . . 12
⊢ (𝑞 = 𝑄 → (𝑞‘𝐾) = (𝑄‘𝐾)) |
| 16 | 15 | eqeq1d 2739 |
. . . . . . . . . . 11
⊢ (𝑞 = 𝑄 → ((𝑞‘𝐾) = 𝐿 ↔ (𝑄‘𝐾) = 𝐿)) |
| 17 | 16 | elrab 3692 |
. . . . . . . . . 10
⊢ (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿} ↔ (𝑄 ∈ 𝑃 ∧ (𝑄‘𝐾) = 𝐿)) |
| 18 | 14, 17 | xchnxbir 333 |
. . . . . . . . 9
⊢ (¬
𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿} ↔ (¬ 𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿)) |
| 19 | | pm2.21 123 |
. . . . . . . . . 10
⊢ (¬
𝑄 ∈ 𝑃 → (𝑄 ∈ 𝑃 → ¬ (𝑄‘𝐾) = 𝐿)) |
| 20 | | ax-1 6 |
. . . . . . . . . 10
⊢ (¬
(𝑄‘𝐾) = 𝐿 → (𝑄 ∈ 𝑃 → ¬ (𝑄‘𝐾) = 𝐿)) |
| 21 | 19, 20 | jaoi 858 |
. . . . . . . . 9
⊢ ((¬
𝑄 ∈ 𝑃 ∨ ¬ (𝑄‘𝐾) = 𝐿) → (𝑄 ∈ 𝑃 → ¬ (𝑄‘𝐾) = 𝐿)) |
| 22 | 18, 21 | sylbi 217 |
. . . . . . . 8
⊢ (¬
𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿} → (𝑄 ∈ 𝑃 → ¬ (𝑄‘𝐾) = 𝐿)) |
| 23 | 22 | impcom 407 |
. . . . . . 7
⊢ ((𝑄 ∈ 𝑃 ∧ ¬ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → ¬ (𝑄‘𝐾) = 𝐿) |
| 24 | 13, 23 | sylbi 217 |
. . . . . 6
⊢ (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → ¬ (𝑄‘𝐾) = 𝐿) |
| 25 | 24 | adantl 481 |
. . . . 5
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → ¬ (𝑄‘𝐾) = 𝐿) |
| 26 | 25 | iffalsed 4536 |
. . . 4
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → if((𝑄‘𝐾) = 𝐿, 𝐴, 𝐵) = 𝐵) |
| 27 | 12, 26 | eqtrd 2777 |
. . 3
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → if(𝐾 = 𝐾, if((𝑄‘𝐾) = 𝐿, 𝐴, 𝐵), (𝐾𝑀(𝑄‘𝐾))) = 𝐵) |
| 28 | 1, 10, 27 | rspcedvd 3624 |
. 2
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → ∃𝑘 ∈ 𝑁 if(𝑘 = 𝐾, if((𝑄‘𝑘) = 𝐿, 𝐴, 𝐵), (𝑘𝑀(𝑄‘𝑘))) = 𝐵) |
| 29 | 28 | ex 412 |
1
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → ∃𝑘 ∈ 𝑁 if(𝑘 = 𝐾, if((𝑄‘𝑘) = 𝐿, 𝐴, 𝐵), (𝑘𝑀(𝑄‘𝑘))) = 𝐵)) |