![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > maducoevalmin1 | Structured version Visualization version GIF version |
Description: The coefficients of an adjunct (matrix of cofactors) expressed as determinants of the minor matrices (alternative definition) of the original matrix. (Contributed by AV, 31-Dec-2018.) |
Ref | Expression |
---|---|
maducoevalmin1.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
maducoevalmin1.b | ⊢ 𝐵 = (Base‘𝐴) |
maducoevalmin1.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
maducoevalmin1.j | ⊢ 𝐽 = (𝑁 maAdju 𝑅) |
Ref | Expression |
---|---|
maducoevalmin1 | ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | maducoevalmin1.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | maducoevalmin1.d | . . 3 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
3 | maducoevalmin1.j | . . 3 ⊢ 𝐽 = (𝑁 maAdju 𝑅) | |
4 | maducoevalmin1.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
5 | eqid 2733 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
6 | eqid 2733 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | maducoeval 22141 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐻, if(𝑗 = 𝐼, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗))))) |
8 | eqid 2733 | . . . . . 6 ⊢ (𝑁 minMatR1 𝑅) = (𝑁 minMatR1 𝑅) | |
9 | 1, 4, 8, 5, 6 | minmar1val 22150 | . . . . 5 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐻 ∈ 𝑁 ∧ 𝐼 ∈ 𝑁) → (𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐻, if(𝑗 = 𝐼, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))) |
10 | 9 | 3com23 1127 | . . . 4 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐻, if(𝑗 = 𝐼, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))) |
11 | 10 | eqcomd 2739 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐻, if(𝑗 = 𝐼, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗))) = (𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼)) |
12 | 11 | fveq2d 6896 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐻, if(𝑗 = 𝐼, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))) = (𝐷‘(𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼))) |
13 | 7, 12 | eqtrd 2773 | 1 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ifcif 4529 ‘cfv 6544 (class class class)co 7409 ∈ cmpo 7411 Basecbs 17144 0gc0g 17385 1rcur 20004 Mat cmat 21907 maDet cmdat 22086 maAdju cmadu 22134 minMatR1 cminmar1 22135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-1cn 11168 ax-addcl 11170 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-nn 12213 df-slot 17115 df-ndx 17127 df-base 17145 df-mat 21908 df-madu 22136 df-minmar1 22137 |
This theorem is referenced by: madjusmdetlem1 32807 |
Copyright terms: Public domain | W3C validator |