MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  maducoevalmin1 Structured version   Visualization version   GIF version

Theorem maducoevalmin1 21521
Description: The coefficients of an adjunct (matrix of cofactors) expressed as determinants of the minor matrices (alternative definition) of the original matrix. (Contributed by AV, 31-Dec-2018.)
Hypotheses
Ref Expression
maducoevalmin1.a 𝐴 = (𝑁 Mat 𝑅)
maducoevalmin1.b 𝐵 = (Base‘𝐴)
maducoevalmin1.d 𝐷 = (𝑁 maDet 𝑅)
maducoevalmin1.j 𝐽 = (𝑁 maAdju 𝑅)
Assertion
Ref Expression
maducoevalmin1 ((𝑀𝐵𝐼𝑁𝐻𝑁) → (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼)))

Proof of Theorem maducoevalmin1
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 maducoevalmin1.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 maducoevalmin1.d . . 3 𝐷 = (𝑁 maDet 𝑅)
3 maducoevalmin1.j . . 3 𝐽 = (𝑁 maAdju 𝑅)
4 maducoevalmin1.b . . 3 𝐵 = (Base‘𝐴)
5 eqid 2734 . . 3 (1r𝑅) = (1r𝑅)
6 eqid 2734 . . 3 (0g𝑅) = (0g𝑅)
71, 2, 3, 4, 5, 6maducoeval 21508 . 2 ((𝑀𝐵𝐼𝑁𝐻𝑁) → (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐻, if(𝑗 = 𝐼, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))))
8 eqid 2734 . . . . . 6 (𝑁 minMatR1 𝑅) = (𝑁 minMatR1 𝑅)
91, 4, 8, 5, 6minmar1val 21517 . . . . 5 ((𝑀𝐵𝐻𝑁𝐼𝑁) → (𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐻, if(𝑗 = 𝐼, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
1093com23 1128 . . . 4 ((𝑀𝐵𝐼𝑁𝐻𝑁) → (𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐻, if(𝑗 = 𝐼, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
1110eqcomd 2740 . . 3 ((𝑀𝐵𝐼𝑁𝐻𝑁) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐻, if(𝑗 = 𝐼, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) = (𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼))
1211fveq2d 6710 . 2 ((𝑀𝐵𝐼𝑁𝐻𝑁) → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐻, if(𝑗 = 𝐼, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))) = (𝐷‘(𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼)))
137, 12eqtrd 2774 1 ((𝑀𝐵𝐼𝑁𝐻𝑁) → (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1089   = wceq 1543  wcel 2110  ifcif 4429  cfv 6369  (class class class)co 7202  cmpo 7204  Basecbs 16684  0gc0g 16916  1rcur 19488   Mat cmat 21276   maDet cmdat 21453   maAdju cmadu 21501   minMatR1 cminmar1 21502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-1cn 10770  ax-addcl 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-nn 11814  df-ndx 16687  df-slot 16688  df-base 16690  df-mat 21277  df-madu 21503  df-minmar1 21504
This theorem is referenced by:  madjusmdetlem1  31463
  Copyright terms: Public domain W3C validator