Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > maducoevalmin1 | Structured version Visualization version GIF version |
Description: The coefficients of an adjunct (matrix of cofactors) expressed as determinants of the minor matrices (alternative definition) of the original matrix. (Contributed by AV, 31-Dec-2018.) |
Ref | Expression |
---|---|
maducoevalmin1.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
maducoevalmin1.b | ⊢ 𝐵 = (Base‘𝐴) |
maducoevalmin1.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
maducoevalmin1.j | ⊢ 𝐽 = (𝑁 maAdju 𝑅) |
Ref | Expression |
---|---|
maducoevalmin1 | ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | maducoevalmin1.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | maducoevalmin1.d | . . 3 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
3 | maducoevalmin1.j | . . 3 ⊢ 𝐽 = (𝑁 maAdju 𝑅) | |
4 | maducoevalmin1.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
5 | eqid 2739 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
6 | eqid 2739 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | maducoeval 21769 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐻, if(𝑗 = 𝐼, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗))))) |
8 | eqid 2739 | . . . . . 6 ⊢ (𝑁 minMatR1 𝑅) = (𝑁 minMatR1 𝑅) | |
9 | 1, 4, 8, 5, 6 | minmar1val 21778 | . . . . 5 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐻 ∈ 𝑁 ∧ 𝐼 ∈ 𝑁) → (𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐻, if(𝑗 = 𝐼, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))) |
10 | 9 | 3com23 1124 | . . . 4 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐻, if(𝑗 = 𝐼, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))) |
11 | 10 | eqcomd 2745 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐻, if(𝑗 = 𝐼, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗))) = (𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼)) |
12 | 11 | fveq2d 6772 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐻, if(𝑗 = 𝐼, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))) = (𝐷‘(𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼))) |
13 | 7, 12 | eqtrd 2779 | 1 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ifcif 4464 ‘cfv 6430 (class class class)co 7268 ∈ cmpo 7270 Basecbs 16893 0gc0g 17131 1rcur 19718 Mat cmat 21535 maDet cmdat 21714 maAdju cmadu 21762 minMatR1 cminmar1 21763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-1cn 10913 ax-addcl 10915 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-nn 11957 df-slot 16864 df-ndx 16876 df-base 16894 df-mat 21536 df-madu 21764 df-minmar1 21765 |
This theorem is referenced by: madjusmdetlem1 31756 |
Copyright terms: Public domain | W3C validator |