![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > maducoevalmin1 | Structured version Visualization version GIF version |
Description: The coefficients of an adjunct (matrix of cofactors) expressed as determinants of the minor matrices (alternative definition) of the original matrix. (Contributed by AV, 31-Dec-2018.) |
Ref | Expression |
---|---|
maducoevalmin1.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
maducoevalmin1.b | ⊢ 𝐵 = (Base‘𝐴) |
maducoevalmin1.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
maducoevalmin1.j | ⊢ 𝐽 = (𝑁 maAdju 𝑅) |
Ref | Expression |
---|---|
maducoevalmin1 | ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | maducoevalmin1.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | maducoevalmin1.d | . . 3 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
3 | maducoevalmin1.j | . . 3 ⊢ 𝐽 = (𝑁 maAdju 𝑅) | |
4 | maducoevalmin1.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
5 | eqid 2728 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
6 | eqid 2728 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | maducoeval 22554 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐻, if(𝑗 = 𝐼, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗))))) |
8 | eqid 2728 | . . . . . 6 ⊢ (𝑁 minMatR1 𝑅) = (𝑁 minMatR1 𝑅) | |
9 | 1, 4, 8, 5, 6 | minmar1val 22563 | . . . . 5 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐻 ∈ 𝑁 ∧ 𝐼 ∈ 𝑁) → (𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐻, if(𝑗 = 𝐼, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))) |
10 | 9 | 3com23 1124 | . . . 4 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐻, if(𝑗 = 𝐼, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))) |
11 | 10 | eqcomd 2734 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐻, if(𝑗 = 𝐼, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗))) = (𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼)) |
12 | 11 | fveq2d 6901 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐻, if(𝑗 = 𝐼, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))) = (𝐷‘(𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼))) |
13 | 7, 12 | eqtrd 2768 | 1 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ifcif 4529 ‘cfv 6548 (class class class)co 7420 ∈ cmpo 7422 Basecbs 17180 0gc0g 17421 1rcur 20121 Mat cmat 22320 maDet cmdat 22499 maAdju cmadu 22547 minMatR1 cminmar1 22548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-1cn 11197 ax-addcl 11199 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-nn 12244 df-slot 17151 df-ndx 17163 df-base 17181 df-mat 22321 df-madu 22549 df-minmar1 22550 |
This theorem is referenced by: madjusmdetlem1 33428 |
Copyright terms: Public domain | W3C validator |