Proof of Theorem symgmatr01
Step | Hyp | Ref
| Expression |
1 | | symgmatr01.p |
. . . . 5
⊢ 𝑃 =
(Base‘(SymGrp‘𝑁)) |
2 | 1 | symgmatr01lem 21550 |
. . . 4
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → ∃𝑘 ∈ 𝑁 if(𝑘 = 𝐾, if((𝑄‘𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄‘𝑘))) = 0 )) |
3 | 2 | imp 410 |
. . 3
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → ∃𝑘 ∈ 𝑁 if(𝑘 = 𝐾, if((𝑄‘𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄‘𝑘))) = 0 ) |
4 | | eqidd 2738 |
. . . . . 6
⊢ ((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) ∧ 𝑘 ∈ 𝑁) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))) |
5 | | eqeq1 2741 |
. . . . . . . . 9
⊢ (𝑖 = 𝑘 → (𝑖 = 𝐾 ↔ 𝑘 = 𝐾)) |
6 | 5 | adantr 484 |
. . . . . . . 8
⊢ ((𝑖 = 𝑘 ∧ 𝑗 = (𝑄‘𝑘)) → (𝑖 = 𝐾 ↔ 𝑘 = 𝐾)) |
7 | | eqeq1 2741 |
. . . . . . . . . 10
⊢ (𝑗 = (𝑄‘𝑘) → (𝑗 = 𝐿 ↔ (𝑄‘𝑘) = 𝐿)) |
8 | 7 | adantl 485 |
. . . . . . . . 9
⊢ ((𝑖 = 𝑘 ∧ 𝑗 = (𝑄‘𝑘)) → (𝑗 = 𝐿 ↔ (𝑄‘𝑘) = 𝐿)) |
9 | 8 | ifbid 4462 |
. . . . . . . 8
⊢ ((𝑖 = 𝑘 ∧ 𝑗 = (𝑄‘𝑘)) → if(𝑗 = 𝐿, 1 , 0 ) = if((𝑄‘𝑘) = 𝐿, 1 , 0 )) |
10 | | oveq12 7222 |
. . . . . . . 8
⊢ ((𝑖 = 𝑘 ∧ 𝑗 = (𝑄‘𝑘)) → (𝑖𝑀𝑗) = (𝑘𝑀(𝑄‘𝑘))) |
11 | 6, 9, 10 | ifbieq12d 4467 |
. . . . . . 7
⊢ ((𝑖 = 𝑘 ∧ 𝑗 = (𝑄‘𝑘)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)) = if(𝑘 = 𝐾, if((𝑄‘𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄‘𝑘)))) |
12 | 11 | adantl 485 |
. . . . . 6
⊢
(((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) ∧ 𝑘 ∈ 𝑁) ∧ (𝑖 = 𝑘 ∧ 𝑗 = (𝑄‘𝑘))) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)) = if(𝑘 = 𝐾, if((𝑄‘𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄‘𝑘)))) |
13 | | simpr 488 |
. . . . . 6
⊢ ((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) ∧ 𝑘 ∈ 𝑁) → 𝑘 ∈ 𝑁) |
14 | | eldifi 4041 |
. . . . . . . . 9
⊢ (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → 𝑄 ∈ 𝑃) |
15 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(SymGrp‘𝑁) =
(SymGrp‘𝑁) |
16 | 15, 1 | symgfv 18772 |
. . . . . . . . . 10
⊢ ((𝑄 ∈ 𝑃 ∧ 𝑘 ∈ 𝑁) → (𝑄‘𝑘) ∈ 𝑁) |
17 | 16 | ex 416 |
. . . . . . . . 9
⊢ (𝑄 ∈ 𝑃 → (𝑘 ∈ 𝑁 → (𝑄‘𝑘) ∈ 𝑁)) |
18 | 14, 17 | syl 17 |
. . . . . . . 8
⊢ (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → (𝑘 ∈ 𝑁 → (𝑄‘𝑘) ∈ 𝑁)) |
19 | 18 | adantl 485 |
. . . . . . 7
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → (𝑘 ∈ 𝑁 → (𝑄‘𝑘) ∈ 𝑁)) |
20 | 19 | imp 410 |
. . . . . 6
⊢ ((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) ∧ 𝑘 ∈ 𝑁) → (𝑄‘𝑘) ∈ 𝑁) |
21 | | symgmatr01.1 |
. . . . . . . . . 10
⊢ 1 =
(1r‘𝑅) |
22 | 21 | fvexi 6731 |
. . . . . . . . 9
⊢ 1 ∈
V |
23 | | symgmatr01.0 |
. . . . . . . . . 10
⊢ 0 =
(0g‘𝑅) |
24 | 23 | fvexi 6731 |
. . . . . . . . 9
⊢ 0 ∈
V |
25 | 22, 24 | ifex 4489 |
. . . . . . . 8
⊢ if((𝑄‘𝑘) = 𝐿, 1 , 0 ) ∈
V |
26 | | ovex 7246 |
. . . . . . . 8
⊢ (𝑘𝑀(𝑄‘𝑘)) ∈ V |
27 | 25, 26 | ifex 4489 |
. . . . . . 7
⊢ if(𝑘 = 𝐾, if((𝑄‘𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄‘𝑘))) ∈ V |
28 | 27 | a1i 11 |
. . . . . 6
⊢ ((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) ∧ 𝑘 ∈ 𝑁) → if(𝑘 = 𝐾, if((𝑄‘𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄‘𝑘))) ∈ V) |
29 | 4, 12, 13, 20, 28 | ovmpod 7361 |
. . . . 5
⊢ ((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) ∧ 𝑘 ∈ 𝑁) → (𝑘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑘)) = if(𝑘 = 𝐾, if((𝑄‘𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄‘𝑘)))) |
30 | 29 | eqeq1d 2739 |
. . . 4
⊢ ((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) ∧ 𝑘 ∈ 𝑁) → ((𝑘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑘)) = 0 ↔ if(𝑘 = 𝐾, if((𝑄‘𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄‘𝑘))) = 0 )) |
31 | 30 | rexbidva 3215 |
. . 3
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → (∃𝑘 ∈ 𝑁 (𝑘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑘)) = 0 ↔ ∃𝑘 ∈ 𝑁 if(𝑘 = 𝐾, if((𝑄‘𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄‘𝑘))) = 0 )) |
32 | 3, 31 | mpbird 260 |
. 2
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿})) → ∃𝑘 ∈ 𝑁 (𝑘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑘)) = 0 ) |
33 | 32 | ex 416 |
1
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → ∃𝑘 ∈ 𝑁 (𝑘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄‘𝑘)) = 0 )) |