MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgmatr01 Structured version   Visualization version   GIF version

Theorem symgmatr01 22155
Description: Applying a permutation that does not fix a certain element of a set to a second element to an index of a matrix a row with 0's and a 1. (Contributed by AV, 3-Jan-2019.)
Hypotheses
Ref Expression
symgmatr01.p 𝑃 = (Base‘(SymGrp‘𝑁))
symgmatr01.0 0 = (0g𝑅)
symgmatr01.1 1 = (1r𝑅)
Assertion
Ref Expression
symgmatr01 ((𝐾𝑁𝐿𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → ∃𝑘𝑁 (𝑘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑘)) = 0 ))
Distinct variable groups:   𝑘,𝑞,𝐿   𝑘,𝐾,𝑞   𝑘,𝑀   𝑘,𝑁   𝑃,𝑘,𝑞   𝑄,𝑘,𝑞   𝑖,𝑗,𝑘,𝑞,𝐿   𝑖,𝐾,𝑗   𝑖,𝑀,𝑗   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗   𝑄,𝑖,𝑗   1 ,𝑖,𝑗,𝑘   0 ,𝑖,𝑗,𝑘
Allowed substitution hints:   𝑅(𝑖,𝑗,𝑘,𝑞)   1 (𝑞)   𝑀(𝑞)   𝑁(𝑞)   0 (𝑞)

Proof of Theorem symgmatr01
StepHypRef Expression
1 symgmatr01.p . . . . 5 𝑃 = (Base‘(SymGrp‘𝑁))
21symgmatr01lem 22154 . . . 4 ((𝐾𝑁𝐿𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → ∃𝑘𝑁 if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄𝑘))) = 0 ))
32imp 407 . . 3 (((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → ∃𝑘𝑁 if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄𝑘))) = 0 )
4 eqidd 2733 . . . . . 6 ((((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) ∧ 𝑘𝑁) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))))
5 eqeq1 2736 . . . . . . . . 9 (𝑖 = 𝑘 → (𝑖 = 𝐾𝑘 = 𝐾))
65adantr 481 . . . . . . . 8 ((𝑖 = 𝑘𝑗 = (𝑄𝑘)) → (𝑖 = 𝐾𝑘 = 𝐾))
7 eqeq1 2736 . . . . . . . . . 10 (𝑗 = (𝑄𝑘) → (𝑗 = 𝐿 ↔ (𝑄𝑘) = 𝐿))
87adantl 482 . . . . . . . . 9 ((𝑖 = 𝑘𝑗 = (𝑄𝑘)) → (𝑗 = 𝐿 ↔ (𝑄𝑘) = 𝐿))
98ifbid 4551 . . . . . . . 8 ((𝑖 = 𝑘𝑗 = (𝑄𝑘)) → if(𝑗 = 𝐿, 1 , 0 ) = if((𝑄𝑘) = 𝐿, 1 , 0 ))
10 oveq12 7417 . . . . . . . 8 ((𝑖 = 𝑘𝑗 = (𝑄𝑘)) → (𝑖𝑀𝑗) = (𝑘𝑀(𝑄𝑘)))
116, 9, 10ifbieq12d 4556 . . . . . . 7 ((𝑖 = 𝑘𝑗 = (𝑄𝑘)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)) = if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄𝑘))))
1211adantl 482 . . . . . 6 (((((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) ∧ 𝑘𝑁) ∧ (𝑖 = 𝑘𝑗 = (𝑄𝑘))) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)) = if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄𝑘))))
13 simpr 485 . . . . . 6 ((((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) ∧ 𝑘𝑁) → 𝑘𝑁)
14 eldifi 4126 . . . . . . . . 9 (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → 𝑄𝑃)
15 eqid 2732 . . . . . . . . . . 11 (SymGrp‘𝑁) = (SymGrp‘𝑁)
1615, 1symgfv 19246 . . . . . . . . . 10 ((𝑄𝑃𝑘𝑁) → (𝑄𝑘) ∈ 𝑁)
1716ex 413 . . . . . . . . 9 (𝑄𝑃 → (𝑘𝑁 → (𝑄𝑘) ∈ 𝑁))
1814, 17syl 17 . . . . . . . 8 (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → (𝑘𝑁 → (𝑄𝑘) ∈ 𝑁))
1918adantl 482 . . . . . . 7 (((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → (𝑘𝑁 → (𝑄𝑘) ∈ 𝑁))
2019imp 407 . . . . . 6 ((((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) ∧ 𝑘𝑁) → (𝑄𝑘) ∈ 𝑁)
21 symgmatr01.1 . . . . . . . . . 10 1 = (1r𝑅)
2221fvexi 6905 . . . . . . . . 9 1 ∈ V
23 symgmatr01.0 . . . . . . . . . 10 0 = (0g𝑅)
2423fvexi 6905 . . . . . . . . 9 0 ∈ V
2522, 24ifex 4578 . . . . . . . 8 if((𝑄𝑘) = 𝐿, 1 , 0 ) ∈ V
26 ovex 7441 . . . . . . . 8 (𝑘𝑀(𝑄𝑘)) ∈ V
2725, 26ifex 4578 . . . . . . 7 if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄𝑘))) ∈ V
2827a1i 11 . . . . . 6 ((((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) ∧ 𝑘𝑁) → if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄𝑘))) ∈ V)
294, 12, 13, 20, 28ovmpod 7559 . . . . 5 ((((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) ∧ 𝑘𝑁) → (𝑘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑘)) = if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄𝑘))))
3029eqeq1d 2734 . . . 4 ((((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) ∧ 𝑘𝑁) → ((𝑘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑘)) = 0 ↔ if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄𝑘))) = 0 ))
3130rexbidva 3176 . . 3 (((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → (∃𝑘𝑁 (𝑘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑘)) = 0 ↔ ∃𝑘𝑁 if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄𝑘))) = 0 ))
323, 31mpbird 256 . 2 (((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → ∃𝑘𝑁 (𝑘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑘)) = 0 )
3332ex 413 1 ((𝐾𝑁𝐿𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → ∃𝑘𝑁 (𝑘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑘)) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3070  {crab 3432  Vcvv 3474  cdif 3945  ifcif 4528  cfv 6543  (class class class)co 7408  cmpo 7410  Basecbs 17143  0gc0g 17384  SymGrpcsymg 19233  1rcur 20003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-tset 17215  df-efmnd 18749  df-symg 19234
This theorem is referenced by:  smadiadetlem0  22162
  Copyright terms: Public domain W3C validator