MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgmatr01 Structured version   Visualization version   GIF version

Theorem symgmatr01 21803
Description: Applying a permutation that does not fix a certain element of a set to a second element to an index of a matrix a row with 0's and a 1. (Contributed by AV, 3-Jan-2019.)
Hypotheses
Ref Expression
symgmatr01.p 𝑃 = (Base‘(SymGrp‘𝑁))
symgmatr01.0 0 = (0g𝑅)
symgmatr01.1 1 = (1r𝑅)
Assertion
Ref Expression
symgmatr01 ((𝐾𝑁𝐿𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → ∃𝑘𝑁 (𝑘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑘)) = 0 ))
Distinct variable groups:   𝑘,𝑞,𝐿   𝑘,𝐾,𝑞   𝑘,𝑀   𝑘,𝑁   𝑃,𝑘,𝑞   𝑄,𝑘,𝑞   𝑖,𝑗,𝑘,𝑞,𝐿   𝑖,𝐾,𝑗   𝑖,𝑀,𝑗   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗   𝑄,𝑖,𝑗   1 ,𝑖,𝑗,𝑘   0 ,𝑖,𝑗,𝑘
Allowed substitution hints:   𝑅(𝑖,𝑗,𝑘,𝑞)   1 (𝑞)   𝑀(𝑞)   𝑁(𝑞)   0 (𝑞)

Proof of Theorem symgmatr01
StepHypRef Expression
1 symgmatr01.p . . . . 5 𝑃 = (Base‘(SymGrp‘𝑁))
21symgmatr01lem 21802 . . . 4 ((𝐾𝑁𝐿𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → ∃𝑘𝑁 if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄𝑘))) = 0 ))
32imp 407 . . 3 (((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → ∃𝑘𝑁 if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄𝑘))) = 0 )
4 eqidd 2739 . . . . . 6 ((((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) ∧ 𝑘𝑁) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))))
5 eqeq1 2742 . . . . . . . . 9 (𝑖 = 𝑘 → (𝑖 = 𝐾𝑘 = 𝐾))
65adantr 481 . . . . . . . 8 ((𝑖 = 𝑘𝑗 = (𝑄𝑘)) → (𝑖 = 𝐾𝑘 = 𝐾))
7 eqeq1 2742 . . . . . . . . . 10 (𝑗 = (𝑄𝑘) → (𝑗 = 𝐿 ↔ (𝑄𝑘) = 𝐿))
87adantl 482 . . . . . . . . 9 ((𝑖 = 𝑘𝑗 = (𝑄𝑘)) → (𝑗 = 𝐿 ↔ (𝑄𝑘) = 𝐿))
98ifbid 4482 . . . . . . . 8 ((𝑖 = 𝑘𝑗 = (𝑄𝑘)) → if(𝑗 = 𝐿, 1 , 0 ) = if((𝑄𝑘) = 𝐿, 1 , 0 ))
10 oveq12 7284 . . . . . . . 8 ((𝑖 = 𝑘𝑗 = (𝑄𝑘)) → (𝑖𝑀𝑗) = (𝑘𝑀(𝑄𝑘)))
116, 9, 10ifbieq12d 4487 . . . . . . 7 ((𝑖 = 𝑘𝑗 = (𝑄𝑘)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)) = if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄𝑘))))
1211adantl 482 . . . . . 6 (((((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) ∧ 𝑘𝑁) ∧ (𝑖 = 𝑘𝑗 = (𝑄𝑘))) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)) = if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄𝑘))))
13 simpr 485 . . . . . 6 ((((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) ∧ 𝑘𝑁) → 𝑘𝑁)
14 eldifi 4061 . . . . . . . . 9 (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → 𝑄𝑃)
15 eqid 2738 . . . . . . . . . . 11 (SymGrp‘𝑁) = (SymGrp‘𝑁)
1615, 1symgfv 18987 . . . . . . . . . 10 ((𝑄𝑃𝑘𝑁) → (𝑄𝑘) ∈ 𝑁)
1716ex 413 . . . . . . . . 9 (𝑄𝑃 → (𝑘𝑁 → (𝑄𝑘) ∈ 𝑁))
1814, 17syl 17 . . . . . . . 8 (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → (𝑘𝑁 → (𝑄𝑘) ∈ 𝑁))
1918adantl 482 . . . . . . 7 (((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → (𝑘𝑁 → (𝑄𝑘) ∈ 𝑁))
2019imp 407 . . . . . 6 ((((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) ∧ 𝑘𝑁) → (𝑄𝑘) ∈ 𝑁)
21 symgmatr01.1 . . . . . . . . . 10 1 = (1r𝑅)
2221fvexi 6788 . . . . . . . . 9 1 ∈ V
23 symgmatr01.0 . . . . . . . . . 10 0 = (0g𝑅)
2423fvexi 6788 . . . . . . . . 9 0 ∈ V
2522, 24ifex 4509 . . . . . . . 8 if((𝑄𝑘) = 𝐿, 1 , 0 ) ∈ V
26 ovex 7308 . . . . . . . 8 (𝑘𝑀(𝑄𝑘)) ∈ V
2725, 26ifex 4509 . . . . . . 7 if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄𝑘))) ∈ V
2827a1i 11 . . . . . 6 ((((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) ∧ 𝑘𝑁) → if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄𝑘))) ∈ V)
294, 12, 13, 20, 28ovmpod 7425 . . . . 5 ((((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) ∧ 𝑘𝑁) → (𝑘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑘)) = if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄𝑘))))
3029eqeq1d 2740 . . . 4 ((((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) ∧ 𝑘𝑁) → ((𝑘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑘)) = 0 ↔ if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄𝑘))) = 0 ))
3130rexbidva 3225 . . 3 (((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → (∃𝑘𝑁 (𝑘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑘)) = 0 ↔ ∃𝑘𝑁 if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 1 , 0 ), (𝑘𝑀(𝑄𝑘))) = 0 ))
323, 31mpbird 256 . 2 (((𝐾𝑁𝐿𝑁) ∧ 𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿})) → ∃𝑘𝑁 (𝑘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑘)) = 0 )
3332ex 413 1 ((𝐾𝑁𝐿𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → ∃𝑘𝑁 (𝑘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑘)) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065  {crab 3068  Vcvv 3432  cdif 3884  ifcif 4459  cfv 6433  (class class class)co 7275  cmpo 7277  Basecbs 16912  0gc0g 17150  SymGrpcsymg 18974  1rcur 19737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-tset 16981  df-efmnd 18508  df-symg 18975
This theorem is referenced by:  smadiadetlem0  21810
  Copyright terms: Public domain W3C validator