| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tdrgdrng | Structured version Visualization version GIF version | ||
| Description: A topological division ring is a division ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| tdrgdrng | ⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ DivRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 2 | eqid 2734 | . . 3 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 3 | 1, 2 | istdrg 24089 | . 2 ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ TopGrp)) |
| 4 | 3 | simp2bi 1146 | 1 ⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ DivRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ‘cfv 6527 (class class class)co 7399 ↾s cress 17236 mulGrpcmgp 20085 Unitcui 20300 DivRingcdr 20674 TopGrpctgp 23994 TopRingctrg 24079 TopDRingctdrg 24080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-iota 6480 df-fv 6535 df-ov 7402 df-tdrg 24084 |
| This theorem is referenced by: tvclvec 24122 |
| Copyright terms: Public domain | W3C validator |