MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tdrgdrng Structured version   Visualization version   GIF version

Theorem tdrgdrng 23678
Description: A topological division ring is a division ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
tdrgdrng (𝑅 ∈ TopDRing β†’ 𝑅 ∈ DivRing)

Proof of Theorem tdrgdrng
StepHypRef Expression
1 eqid 2733 . . 3 (mulGrpβ€˜π‘…) = (mulGrpβ€˜π‘…)
2 eqid 2733 . . 3 (Unitβ€˜π‘…) = (Unitβ€˜π‘…)
31, 2istdrg 23670 . 2 (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ((mulGrpβ€˜π‘…) β†Ύs (Unitβ€˜π‘…)) ∈ TopGrp))
43simp2bi 1147 1 (𝑅 ∈ TopDRing β†’ 𝑅 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2107  β€˜cfv 6544  (class class class)co 7409   β†Ύs cress 17173  mulGrpcmgp 19987  Unitcui 20169  DivRingcdr 20357  TopGrpctgp 23575  TopRingctrg 23660  TopDRingctdrg 23661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-ov 7412  df-tdrg 23665
This theorem is referenced by:  tvclvec  23703
  Copyright terms: Public domain W3C validator