MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tdrgdrng Structured version   Visualization version   GIF version

Theorem tdrgdrng 23233
Description: A topological division ring is a division ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
tdrgdrng (𝑅 ∈ TopDRing → 𝑅 ∈ DivRing)

Proof of Theorem tdrgdrng
StepHypRef Expression
1 eqid 2738 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2 eqid 2738 . . 3 (Unit‘𝑅) = (Unit‘𝑅)
31, 2istdrg 23225 . 2 (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ TopGrp))
43simp2bi 1144 1 (𝑅 ∈ TopDRing → 𝑅 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cfv 6418  (class class class)co 7255  s cress 16867  mulGrpcmgp 19635  Unitcui 19796  DivRingcdr 19906  TopGrpctgp 23130  TopRingctrg 23215  TopDRingctdrg 23216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-tdrg 23220
This theorem is referenced by:  tvclvec  23258
  Copyright terms: Public domain W3C validator