MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tdrgring Structured version   Visualization version   GIF version

Theorem tdrgring 24062
Description: A topological division ring is a ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
tdrgring (𝑅 ∈ TopDRing → 𝑅 ∈ Ring)

Proof of Theorem tdrgring
StepHypRef Expression
1 tdrgtrg 24060 . 2 (𝑅 ∈ TopDRing → 𝑅 ∈ TopRing)
2 trgring 24058 . 2 (𝑅 ∈ TopRing → 𝑅 ∈ Ring)
31, 2syl 17 1 (𝑅 ∈ TopDRing → 𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Ringcrg 20142  TopRingctrg 24043  TopDRingctdrg 24044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-trg 24047  df-tdrg 24048
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator