![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tdrgring | Structured version Visualization version GIF version |
Description: A topological division ring is a ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
tdrgring | ⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tdrgtrg 24202 | . 2 ⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ TopRing) | |
2 | trgring 24200 | . 2 ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ Ring) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Ringcrg 20260 TopRingctrg 24185 TopDRingctdrg 24186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-trg 24189 df-tdrg 24190 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |