MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tdrgtmd Structured version   Visualization version   GIF version

Theorem tdrgtmd 24092
Description: A topological division ring is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
tdrgtmd (𝑅 ∈ TopDRing → 𝑅 ∈ TopMnd)

Proof of Theorem tdrgtmd
StepHypRef Expression
1 tdrgtrg 24089 . 2 (𝑅 ∈ TopDRing → 𝑅 ∈ TopRing)
2 trgtmd2 24085 . 2 (𝑅 ∈ TopRing → 𝑅 ∈ TopMnd)
31, 2syl 17 1 (𝑅 ∈ TopDRing → 𝑅 ∈ TopMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  TopMndctmd 23986  TopRingctrg 24072  TopDRingctdrg 24073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5246
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-iota 6442  df-fv 6494  df-ov 7355  df-tgp 23989  df-trg 24076  df-tdrg 24077
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator