Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendoicbv | Structured version Visualization version GIF version |
Description: Define inverse function for trace-preserving endomorphisms. Change bound variable to isolate it later. (Contributed by NM, 12-Jun-2013.) |
Ref | Expression |
---|---|
tendoi.i | ⊢ 𝐼 = (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) |
Ref | Expression |
---|---|
tendoicbv | ⊢ 𝐼 = (𝑢 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ◡(𝑢‘𝑔))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendoi.i | . 2 ⊢ 𝐼 = (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) | |
2 | fveq1 6755 | . . . . . 6 ⊢ (𝑠 = 𝑢 → (𝑠‘𝑓) = (𝑢‘𝑓)) | |
3 | 2 | cnveqd 5773 | . . . . 5 ⊢ (𝑠 = 𝑢 → ◡(𝑠‘𝑓) = ◡(𝑢‘𝑓)) |
4 | 3 | mpteq2dv 5172 | . . . 4 ⊢ (𝑠 = 𝑢 → (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓)) = (𝑓 ∈ 𝑇 ↦ ◡(𝑢‘𝑓))) |
5 | fveq2 6756 | . . . . . 6 ⊢ (𝑓 = 𝑔 → (𝑢‘𝑓) = (𝑢‘𝑔)) | |
6 | 5 | cnveqd 5773 | . . . . 5 ⊢ (𝑓 = 𝑔 → ◡(𝑢‘𝑓) = ◡(𝑢‘𝑔)) |
7 | 6 | cbvmptv 5183 | . . . 4 ⊢ (𝑓 ∈ 𝑇 ↦ ◡(𝑢‘𝑓)) = (𝑔 ∈ 𝑇 ↦ ◡(𝑢‘𝑔)) |
8 | 4, 7 | eqtrdi 2795 | . . 3 ⊢ (𝑠 = 𝑢 → (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓)) = (𝑔 ∈ 𝑇 ↦ ◡(𝑢‘𝑔))) |
9 | 8 | cbvmptv 5183 | . 2 ⊢ (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) = (𝑢 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ◡(𝑢‘𝑔))) |
10 | 1, 9 | eqtri 2766 | 1 ⊢ 𝐼 = (𝑢 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ◡(𝑢‘𝑔))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ↦ cmpt 5153 ◡ccnv 5579 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-cnv 5588 df-iota 6376 df-fv 6426 |
This theorem is referenced by: tendoi 38735 |
Copyright terms: Public domain | W3C validator |