![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendoicbv | Structured version Visualization version GIF version |
Description: Define inverse function for trace-perserving endomorphisms. Change bound variable to isolate it later. (Contributed by NM, 12-Jun-2013.) |
Ref | Expression |
---|---|
tendoi.i | ⊢ 𝐼 = (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) |
Ref | Expression |
---|---|
tendoicbv | ⊢ 𝐼 = (𝑢 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ◡(𝑢‘𝑔))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendoi.i | . 2 ⊢ 𝐼 = (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) | |
2 | fveq1 6445 | . . . . . 6 ⊢ (𝑠 = 𝑢 → (𝑠‘𝑓) = (𝑢‘𝑓)) | |
3 | 2 | cnveqd 5543 | . . . . 5 ⊢ (𝑠 = 𝑢 → ◡(𝑠‘𝑓) = ◡(𝑢‘𝑓)) |
4 | 3 | mpteq2dv 4980 | . . . 4 ⊢ (𝑠 = 𝑢 → (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓)) = (𝑓 ∈ 𝑇 ↦ ◡(𝑢‘𝑓))) |
5 | fveq2 6446 | . . . . . 6 ⊢ (𝑓 = 𝑔 → (𝑢‘𝑓) = (𝑢‘𝑔)) | |
6 | 5 | cnveqd 5543 | . . . . 5 ⊢ (𝑓 = 𝑔 → ◡(𝑢‘𝑓) = ◡(𝑢‘𝑔)) |
7 | 6 | cbvmptv 4985 | . . . 4 ⊢ (𝑓 ∈ 𝑇 ↦ ◡(𝑢‘𝑓)) = (𝑔 ∈ 𝑇 ↦ ◡(𝑢‘𝑔)) |
8 | 4, 7 | syl6eq 2829 | . . 3 ⊢ (𝑠 = 𝑢 → (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓)) = (𝑔 ∈ 𝑇 ↦ ◡(𝑢‘𝑔))) |
9 | 8 | cbvmptv 4985 | . 2 ⊢ (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) = (𝑢 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ◡(𝑢‘𝑔))) |
10 | 1, 9 | eqtri 2801 | 1 ⊢ 𝐼 = (𝑢 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ◡(𝑢‘𝑔))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 ↦ cmpt 4965 ◡ccnv 5354 ‘cfv 6135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-cnv 5363 df-iota 6099 df-fv 6143 |
This theorem is referenced by: tendoi 36943 |
Copyright terms: Public domain | W3C validator |