![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendoicbv | Structured version Visualization version GIF version |
Description: Define inverse function for trace-preserving endomorphisms. Change bound variable to isolate it later. (Contributed by NM, 12-Jun-2013.) |
Ref | Expression |
---|---|
tendoi.i | ⊢ 𝐼 = (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) |
Ref | Expression |
---|---|
tendoicbv | ⊢ 𝐼 = (𝑢 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ◡(𝑢‘𝑔))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendoi.i | . 2 ⊢ 𝐼 = (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) | |
2 | fveq1 6905 | . . . . . 6 ⊢ (𝑠 = 𝑢 → (𝑠‘𝑓) = (𝑢‘𝑓)) | |
3 | 2 | cnveqd 5888 | . . . . 5 ⊢ (𝑠 = 𝑢 → ◡(𝑠‘𝑓) = ◡(𝑢‘𝑓)) |
4 | 3 | mpteq2dv 5249 | . . . 4 ⊢ (𝑠 = 𝑢 → (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓)) = (𝑓 ∈ 𝑇 ↦ ◡(𝑢‘𝑓))) |
5 | fveq2 6906 | . . . . . 6 ⊢ (𝑓 = 𝑔 → (𝑢‘𝑓) = (𝑢‘𝑔)) | |
6 | 5 | cnveqd 5888 | . . . . 5 ⊢ (𝑓 = 𝑔 → ◡(𝑢‘𝑓) = ◡(𝑢‘𝑔)) |
7 | 6 | cbvmptv 5260 | . . . 4 ⊢ (𝑓 ∈ 𝑇 ↦ ◡(𝑢‘𝑓)) = (𝑔 ∈ 𝑇 ↦ ◡(𝑢‘𝑔)) |
8 | 4, 7 | eqtrdi 2790 | . . 3 ⊢ (𝑠 = 𝑢 → (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓)) = (𝑔 ∈ 𝑇 ↦ ◡(𝑢‘𝑔))) |
9 | 8 | cbvmptv 5260 | . 2 ⊢ (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) = (𝑢 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ◡(𝑢‘𝑔))) |
10 | 1, 9 | eqtri 2762 | 1 ⊢ 𝐼 = (𝑢 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ◡(𝑢‘𝑔))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ↦ cmpt 5230 ◡ccnv 5687 ‘cfv 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-cnv 5696 df-iota 6515 df-fv 6570 |
This theorem is referenced by: tendoi 40776 |
Copyright terms: Public domain | W3C validator |