Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoicbv Structured version   Visualization version   GIF version

Theorem tendoicbv 36942
 Description: Define inverse function for trace-perserving endomorphisms. Change bound variable to isolate it later. (Contributed by NM, 12-Jun-2013.)
Hypothesis
Ref Expression
tendoi.i 𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))
Assertion
Ref Expression
tendoicbv 𝐼 = (𝑢𝐸 ↦ (𝑔𝑇(𝑢𝑔)))
Distinct variable groups:   𝑢,𝑠,𝐸   𝑓,𝑔,𝑠,𝑢,𝑇
Allowed substitution hints:   𝐸(𝑓,𝑔)   𝐼(𝑢,𝑓,𝑔,𝑠)

Proof of Theorem tendoicbv
StepHypRef Expression
1 tendoi.i . 2 𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))
2 fveq1 6445 . . . . . 6 (𝑠 = 𝑢 → (𝑠𝑓) = (𝑢𝑓))
32cnveqd 5543 . . . . 5 (𝑠 = 𝑢(𝑠𝑓) = (𝑢𝑓))
43mpteq2dv 4980 . . . 4 (𝑠 = 𝑢 → (𝑓𝑇(𝑠𝑓)) = (𝑓𝑇(𝑢𝑓)))
5 fveq2 6446 . . . . . 6 (𝑓 = 𝑔 → (𝑢𝑓) = (𝑢𝑔))
65cnveqd 5543 . . . . 5 (𝑓 = 𝑔(𝑢𝑓) = (𝑢𝑔))
76cbvmptv 4985 . . . 4 (𝑓𝑇(𝑢𝑓)) = (𝑔𝑇(𝑢𝑔))
84, 7syl6eq 2829 . . 3 (𝑠 = 𝑢 → (𝑓𝑇(𝑠𝑓)) = (𝑔𝑇(𝑢𝑔)))
98cbvmptv 4985 . 2 (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓))) = (𝑢𝐸 ↦ (𝑔𝑇(𝑢𝑔)))
101, 9eqtri 2801 1 𝐼 = (𝑢𝐸 ↦ (𝑔𝑇(𝑢𝑔)))
 Colors of variables: wff setvar class Syntax hints:   = wceq 1601   ↦ cmpt 4965  ◡ccnv 5354  ‘cfv 6135 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3399  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-cnv 5363  df-iota 6099  df-fv 6143 This theorem is referenced by:  tendoi  36943
 Copyright terms: Public domain W3C validator