![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendoicbv | Structured version Visualization version GIF version |
Description: Define inverse function for trace-preserving endomorphisms. Change bound variable to isolate it later. (Contributed by NM, 12-Jun-2013.) |
Ref | Expression |
---|---|
tendoi.i | ⊢ 𝐼 = (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) |
Ref | Expression |
---|---|
tendoicbv | ⊢ 𝐼 = (𝑢 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ◡(𝑢‘𝑔))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendoi.i | . 2 ⊢ 𝐼 = (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) | |
2 | fveq1 6842 | . . . . . 6 ⊢ (𝑠 = 𝑢 → (𝑠‘𝑓) = (𝑢‘𝑓)) | |
3 | 2 | cnveqd 5832 | . . . . 5 ⊢ (𝑠 = 𝑢 → ◡(𝑠‘𝑓) = ◡(𝑢‘𝑓)) |
4 | 3 | mpteq2dv 5208 | . . . 4 ⊢ (𝑠 = 𝑢 → (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓)) = (𝑓 ∈ 𝑇 ↦ ◡(𝑢‘𝑓))) |
5 | fveq2 6843 | . . . . . 6 ⊢ (𝑓 = 𝑔 → (𝑢‘𝑓) = (𝑢‘𝑔)) | |
6 | 5 | cnveqd 5832 | . . . . 5 ⊢ (𝑓 = 𝑔 → ◡(𝑢‘𝑓) = ◡(𝑢‘𝑔)) |
7 | 6 | cbvmptv 5219 | . . . 4 ⊢ (𝑓 ∈ 𝑇 ↦ ◡(𝑢‘𝑓)) = (𝑔 ∈ 𝑇 ↦ ◡(𝑢‘𝑔)) |
8 | 4, 7 | eqtrdi 2793 | . . 3 ⊢ (𝑠 = 𝑢 → (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓)) = (𝑔 ∈ 𝑇 ↦ ◡(𝑢‘𝑔))) |
9 | 8 | cbvmptv 5219 | . 2 ⊢ (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) = (𝑢 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ◡(𝑢‘𝑔))) |
10 | 1, 9 | eqtri 2765 | 1 ⊢ 𝐼 = (𝑢 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ◡(𝑢‘𝑔))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ↦ cmpt 5189 ◡ccnv 5633 ‘cfv 6497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3409 df-v 3448 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-cnv 5642 df-iota 6449 df-fv 6505 |
This theorem is referenced by: tendoi 39260 |
Copyright terms: Public domain | W3C validator |