Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoicbv Structured version   Visualization version   GIF version

Theorem tendoicbv 38807
Description: Define inverse function for trace-preserving endomorphisms. Change bound variable to isolate it later. (Contributed by NM, 12-Jun-2013.)
Hypothesis
Ref Expression
tendoi.i 𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))
Assertion
Ref Expression
tendoicbv 𝐼 = (𝑢𝐸 ↦ (𝑔𝑇(𝑢𝑔)))
Distinct variable groups:   𝑢,𝑠,𝐸   𝑓,𝑔,𝑠,𝑢,𝑇
Allowed substitution hints:   𝐸(𝑓,𝑔)   𝐼(𝑢,𝑓,𝑔,𝑠)

Proof of Theorem tendoicbv
StepHypRef Expression
1 tendoi.i . 2 𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))
2 fveq1 6773 . . . . . 6 (𝑠 = 𝑢 → (𝑠𝑓) = (𝑢𝑓))
32cnveqd 5784 . . . . 5 (𝑠 = 𝑢(𝑠𝑓) = (𝑢𝑓))
43mpteq2dv 5176 . . . 4 (𝑠 = 𝑢 → (𝑓𝑇(𝑠𝑓)) = (𝑓𝑇(𝑢𝑓)))
5 fveq2 6774 . . . . . 6 (𝑓 = 𝑔 → (𝑢𝑓) = (𝑢𝑔))
65cnveqd 5784 . . . . 5 (𝑓 = 𝑔(𝑢𝑓) = (𝑢𝑔))
76cbvmptv 5187 . . . 4 (𝑓𝑇(𝑢𝑓)) = (𝑔𝑇(𝑢𝑔))
84, 7eqtrdi 2794 . . 3 (𝑠 = 𝑢 → (𝑓𝑇(𝑠𝑓)) = (𝑔𝑇(𝑢𝑔)))
98cbvmptv 5187 . 2 (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓))) = (𝑢𝐸 ↦ (𝑔𝑇(𝑢𝑔)))
101, 9eqtri 2766 1 𝐼 = (𝑢𝐸 ↦ (𝑔𝑇(𝑢𝑔)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cmpt 5157  ccnv 5588  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-cnv 5597  df-iota 6391  df-fv 6441
This theorem is referenced by:  tendoi  38808
  Copyright terms: Public domain W3C validator